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Overview

• High-resolution methods for first-order hyperbolic systems
• Shock waves in nonlinear problems
• Heterogeneous media with discontinuous properties
• Godunov-type methods based on Riemann solvers
• Second-order correction terms with limiters to minimize

dissipation and dispersion



Software

CLAWPACK (Conservation LAWs Package):

http://www.amath.washington.edu/˜claw

Includes a preliminary version of CLAWMAN for manifolds.

Developed by
• Derek Bale (relativistic flow)
• James Rossmanith (geophysical flow on the sphere)

Also includes AMRCLAW for adaptive mesh refinement on
rectangular patches (with Marsha Berger).



AMR on a manifold

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Pressure at time t = 1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Pressure at time t = 1.5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Pressure at time t = 2



Outline

• Brief review of Godunov-type methods
• wave propagation approach
• f-wave approach for discontinous fluxes and source terms
• curvilinear grids in flat space
• manifolds:

• parallel transport data to cell edges
• Express in local orthonormal frame
• Solve locally-flat Riemann problem
• Metric terms and geometric source term naturally

incorporated

References:

http://www.amath.washington.edu/˜rjl/publications and /students

J. Pons, Font, Ibanez, Marti, Miralles, General relativistic hydrodynamics with special
relativistic Riemann solvers, Astron. Astrophys. 339 (1998), 638-642



Finite-difference Methods

• Pointwise values Qn
i ≈ q(xi, tn)

• Approximate derivatives by finite differences
• Assumes smoothness

Finite-volume Methods

• Approximate cell averages: Qn
i ≈ 1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

• Integral form of conservation law,

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t)) − f(q(xi+1/2, t))

leads to conservation law qt + fx = 0 but also directly to
numerical method.



Godunov’s method

Qn
i defines a piecewise constant function

q̃n(x, tn) = Qn
i for xi−1/2 < x < xi+1/2

Discontinuities at cell interfaces =⇒ Riemann problems.
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Riemann solution for the Euler equations
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rarefaction wave shockcontact

The Roe solver uses the solution to a linear system

qt + Âi−1/2qx = 0.

All waves are simply discontinuities.

Typically a fine approximation if jumps are approximately
correct.



Wave-propagation viewpoint

For linear system qt + Aqx = 0, the Riemann solution consists of

waves Wp propagating at constant speed λp.
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High-resolution method for systems
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CLAWPACK

http://www.amath.washington.edu/˜claw/

• Fortran codes with Matlab graphics routines.
• Many examples and applications to run or modify.
• 1d, 2d, and 3d.

User supplies:
• Riemann solver, splitting data into waves and fluctuations

(Need not be in conservation form)

• Boundary condition routine to extend data to ghost cells
Standard bc1.f routine includes many standard BC’s

• Initial conditions — qinit.f



Some applications
• Gas dynamics, Euler equations

• Waves in heterogeneous / random media

• Acoustics, ultrasound, seismology

• Elasticity, plasticity, soil liquifaction

• Flow in porous media, groundwater contamination, oil recovery

• Geophysical flow on the sphere

• Shallow water equations, bottom topography, tsunami propagation

• Chemotaxis and pattern formation

• Traffic flow
• Crystal growth

• Multi-fluid, multi-phase flows, bubbly flow

• Streamfunction–vorticity form of incompressible flow

• Projection methods for incompressible flow

• Combustion, detonation waves
• Astrophysics: binary stars, planetary nebulae, jets

• Magnetohydrodynamics, shallow water MHD

• Relativistic flow, black hole accretion
• Numerical relativity — Einstein equations, gravity waves, cosmology



Spatially-varying flux functions

In one dimension:
qt + f(q, x)x = 0

Examples:
• Nonlinear elasticity in heterogeneous materials
• Traffic flow on roads with varying conditions
• Flow through heterogeneous porous media
• Solving conservation laws on curved manifolds



Riemann problem for spatially-varying flux

qt + f(q, x)x = 0

Cell-centered discretization: Flux fi(q) defined in ith cell.PSfrag replacements
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Wave-propagation algorithm using f-waves
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Wave-propagation algorithm using f-waves
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Source terms
qt + f(q)x = ψ(q)

Quasi-steady problems with near-cancellation:
f(q)x and ψ both large but qt ≈ 0.

Examples:
• Atmosphere or stellar dynamics with gravity balanced by

hydrostatic pressure

• Shallow water equations in a lake over bottom topography

Fractional step method: Alternate between

1. qt + f(x)x = 0,

2. qt = ψ(q)

Large motions induced in each step should cancel out, but won’t
numerically.
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Riemann problem with a delta-function source term

qt + f(q)x = ∆xΨi−1/2 δ(x− xi−1/2)
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Multidimensional Hyperbolic Problems

Integral form of conservation law:

d

dt

∫∫

Ω

q(x, y, t) dx dy = −
∫

∂Ω

~n · ~f(q) ds.

If q is smooth then the divergence theorem gives

d

dt

∫∫

Ω

q(x, y, t) dx dy = −
∫∫

Ω

~∇ · ~f(q) dx dy,

or ∫∫

Ω

[
qt + ~∇ · ~f(q)

]
dx dy = 0.

True for all Ω =⇒
qt + f(q)x + g(q)y = 0,



Finite volume method in 2D
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Unsplit Godunov in 2D

At each cell edge, the flux is determined by solving a Riemann
problem in the normal direction with data from the neighboring
cells.
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Finite volume method on a curvilinear grid
(Flat space)

Two possible approaches:

1. Transform equations to computational space.
Discretize equations that include metric terms, source terms.

2. Update cell averages in physical space.
Solve 1d Riemann problems for physical equations in direction
normal to cell edges to compute flux.



Example: Linear acoustics

Homogeneous medium with

density ρ ≡ 1, bulk modulus K ≡ 1, sound speed c ≡ 1,

p = pressure, u = velocity, T = pI = stress tensor
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One approach:
Discretize these equations directly in computational coordinates
xk.

∂

∂t
p+
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∂
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(√
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)
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∂
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nkT
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Note:
• Spatially varying flux functions
• Source term — conservative?



Better approach:

Update cell average of q over physical finite volume cell

• Store Cartesian velocity components u, v in each cell.
• At each cell edge, use data on each side to

• compute normal velocities at edge,
• solve 1d Riemann problem in normal direction,
• scale resulting waves by length of side,
• use to update cell average



Grid mapping:
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Flux differencing around boundary approximates covariant
divergence of flux.



Shallow water flow into a cylinder
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Acoustics on a manifold
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Now we must represent velocities in “computational coordinates”



At each cell edge:

• Parallel transport cell-centered velocities to edge,
• Change coordinates to a local orthonormal frame at cell edge

to obtain normal and tangential velocities,
• Solve 1d Riemann problem normal to cell edge

(assuming locally flat)
• Scale resulting waves by length of side,

transform back to cell-centered coordinates,
• Update cell averages.



CLAWMAN software

Currently only 2d.

Requires metric tensor H

• 2 × 2 matrix as function of x1 and x2,
• Used to compute scaling factors for edge lengths, cell areas,
• Used for orthonormalization at cell edges.

Christoffel symbols are needed for parallel transport

• Computed by finite differencing H.



Parallel Transport
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Parallel Transport for acoustics

For acoustics with q = (p, u1, u2)T , solve Riemann problem with
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f-wave formulation

Split jump in fluxes ∆F into waves.
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This is n = 1 portion of the source term
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Acoustics on a manifold
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With finite volume formulation,
• Source term is automatically incorporated by parallel

transport of fluxes,
• Covariant divergence is handled by use of edge lengths and

cell volume,
• Parallel transport and orthonormalization allows use of

standard flat-space Riemann solver at interface.



Cubed sphere grid

Six logically rectangular grids are
patched together.

Data is transferred between patches
using ghost cells



Shallow water on the sphere
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Shallow water on the sphere
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Outline

• Brief review of Godunov-type methods
• wave propagation approach
• f-wave approach for discontinous fluxes and source terms
• curvilinear grids in flat space
• manifolds:

• parallel transport data to cell edges
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