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First Order Constant Coefficient Sys-
tems

��� � � � � � �	� 
 � �� � � � � ��

Question: When is the above system well posed in the

 �

sense?

� � � � ��� � � ��� � � � ��� � � � � � �� � � ��� �

Answer: It is well posed if and only if for all co-vectors � � , the matrix

� � ��� � � has only real eigen-values and a complete set of eigen-vectors.
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First Order Constant Coefficient Sys-
tems II

�� � � � � � � � � � � � � ��

� � � ��� � � � � � � ��� � � � � � � �� � � �

� � � � � � � � ��� � � � � � � � ��� � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � �� � � �� �

� ��� � � �� 	


 � �
�� � �
� � 	

� �
� � � � � � ��� � 
 � � � � �
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First Order Quasi-linear Systems I

�� � � � � � �	� � ��
�

�
�

� � 
 � �� � � � � �
�

�
�

� �
The above system is well posed (w.r.t. a Sobolev Norm) in a neighborhood of

� �
 if and only if for all � � close enough to � �
 , all co-vectors � � and all

points, the matrix

� � � � � ��
�

�
�

� � � � has only real eigen-values and a complete

set of eigen-vectors. Plus some "technical" condition

We call such systems strongly hyperbolic.
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First Order Quasi-linear Systems II

If a system is strongly hyperbolic then there exists a positive definite bilinear

form (a metric)

� �� � � ��
� �
�

�
�

�
�

���
�

uniformly bounded by above and
away from zero in � � such that:

� ��
�� � � ���

is also symmetric. [Kreiss Matrix Theorem]

Technical condition requires

�

to be smooth also on � �

If there exists a

� �� independent of � � we say that the system is symmetric
hyperbolic

If strong hyperbolicity fails it is easy to construct a sequence solutions whose

initial data has norm one but whose norm at any future time tends to infinity.

Non-linear behavior can not cure this.
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Examples:

Example 1: Maxwell equations:

� �� � � � � ��

�� � � � �� �� �� �� �� �� � � �� � �� � � � �� � �

�� � �� � � � �� �
�

� � � �� � 	 � 	

This system is symmetric hyperbolic for � 
 � and

� 
 � � � (most general

symmetrizer built out of the 3-metric). But strongly hyperbolic for all

� ��
�

� �

such

that � �
� �

.
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Examples:

Example 2:

Consider the matrices,

� � � ���
� � �

� � �

� � �
�

��� � � � ���
� � � ��� � �

� � � �� �

� � �

��� � 	 � ���
� � � �

� �
�


� �

� � �
���

There is no positive definite

� �� which would symmetrize

� � � � for arbitrary � � .

Nevertheless

� � 
 �
� � � � � � � � � �

is diagonalizable.

� � � ��� � � � � � � � 	 � � ���
� � � � � � � �� � �

� �
� � � � � � �
�

�� � � 
 �� �

� � � �

���
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Covariant definitions I:

� � � � � ��
�

� � 

� �� � � �

� �
�

� �

The sum of two symmetric matrices is symmetric

Definition:The above system is symmetric hyperbolic if there exists

� �� � ��
�

� �

such that:

� �� � ��
�

� � �� �
�

� ��
�

� � is symmetric.

for some � � ,

� �� � ��
�

� � �� �
�

� �
�

� � � � is positive definite.

One can define an energy vector:

� � � � � �� � ��
�

� � �� �
�

� ��
�

� �� � �� ��

� � � � � �

If � � is as above, then � � ��� � � is also as above, for� small enough.KITP Program on Gravitational Interaction of Compact Objects – p.10/26



Covariant definitions II:

� � � � � ��
�

� � 

� �� � � �

� �
�

� �

The sum of two diagonalizable matrices is not necessarily diagonalizable

Definition A:The above system is strongly hyperbolic if there exists � � such that:

� � � � � � is invertible, and

for each loop � � � �
� � � � � � � � � � �� �
�

� � where � � is not proportional

to � � ,

� ��� �� �� � 	�
 � � 
 � �� � 	 � � � � � � � � �� � � � � ��� 	

manifold of fields

�

Definition B:The above system is strongly hyperbolic if there exists � � such that

for each co-vector � � there exists
� �� � ��
�

�
�

� � satisfying:

� �� � ��
�

�
�

� � �� �
�

� ��
�

� � ��� is symmetric.

� �� � ��
�

�
�

� � �� �
�

� ��
�

� � � � is symmetric and positive definite.

If � � is as above then � � � � ��� is also as above for� small enough.KITP Program on Gravitational Interaction of Compact Objects – p.11/26



First Order Pseudo-Differential Sys-
tems

�� � � � � � � � ��
�

�
�

�
�

� � �� � � � � ��
�

�
�

�
�

� � � �� � �� � � � � �� � �

The above system is said to be pseudo-differential of first order if the

following limit exists,

�� ���� 	
�

� � � ��
�

�
�

�
�

� � � � �� � � � � � ��� �
�

�
�

� � � ��

If furthermore

� � � � ��� �
�

�
�

� � � �� has only real eigenvalues and a complete set

of eigen-vectors we say the systems is strongly hyperbolic.

Strongly hyperbolic pseudo-differential operators plus technical condition are

well posed. [Taylor, Kreiss-Ortiz-R]
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Causality

We consider the domain of dependence of the linearized equation at a given

background � �
 .

The domain of dependence of a region

� 
 of a Cauchy surface is given by the

maximal foliation of such region produced by hypersurfaces whose normal is

such that:

� � �� � � � � � � �� � � ��� � � � � � � � �
�� � �

Surfaces with normal such that the determinant vanishes are called

characteristic surfaces.

For each co-vector

�
� which is a characteristic there is a perturbation which in

the high frequency limit moves along the integral lines of

	 � �

�
� � � � � 	 � �


 	 � at

points where

�� � � �� �� � � � (

	 � �
� � � ).

Question: what happens in the case of strongly hyperbolic systems?
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Holmgren’s Theorem

Given an analytic coefficient equation system (not necessarily hyperbolic!)

�� � � � � � � � �
�
�

� � 
 � �� � � � � �
�
�

� � ��
and assuming the solution vanishes in a hypersurface

� 
 then the solution, if

sufficiently smooth, vanishes in a whole neighborhood of it, given by the

maximal foliations such that their normals do not become characteristics.

Generalizable to the case of non-analytic coefficients for strng-hyp. systems.

Extend the space-time to

��

or
��

.

Approximate the system by an analytic sequence of strng-hyp. systems.

Use Holmgren’s theorem on each one of them to conclude that the one

parameter family of solutions so generated vanishes in some region

�
� .

Use continuous dependence of solutions of strongly hyperbolic systems to

show that the limiting solution would also vanish in a limiting set

�

.
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Summary

Strongly hyperbolic differential (and pseudo-differential) systems are well

posed.

There are global energy norms (pseudo-differential operators).

There are covariant definitions. And open set of "space-like" hyper-surfaces.

Strongly hyperbolic differential (and pseudo-differential) systems have finite

propagation speeds. With domain of dependence given by their characteristic

fields.

Symmetric hyperbolic energy � Summation by parts in finite differences

Strongly hyperbolic pseudo-energy � Pseudo-spectral methods.
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Applications:

ADM-BSSN first-second order systems [Frittelli-R,

Sarbach-Calabrese-Pullin-Tiglio, Kreiss-Ortiz, Nagy-Ortiz-R]

Constraint propagation. [Hyperbolicity properties of subsidiary systems of

constraints.]
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ADM equations I

� � � �

�
�����������������

�������������������

�
	 � � � 
 � � � ��


�
� � � �
�� �

� � 
 � � � � � � �

� � � �
�

� 

�
�

��� �
� 


� � � � �
�

� � �

 � � � � � �
� �



� � �� 
 � � � �
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ADM equations II

� � � � � � � �� � � � � � ��

� � � � � � � �� �

�
� � 	� �� � 	 �� � �� � � � �� � 	� � � � 	 � � � �� � � � � � ��

where

� �� � � � ��� � 	� � � 	� � � �� 	 � 	� � � � � � � �� � � � �� �� � � � �� �
�

� �� 	 � �

�
� � 	� � � � � � �� � 	 � � 	 � �� �
�

� �� � � � � � � � � �� 	 � 	 � � � � 	� � � � 	� � � � � � � �� � �� � �
�

� � � � � � � � � � ��
�
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ADM equations III

Hyperbolicity analysis: 1) consider only the principal part, 2) freeze coefficients,

3) substitute all derivatives by Fourier transforms (

� 	 � �� � � � 	 � � � 	 ), and 4) define��� �� � � � � � �� . [Kreiss, Ortiz][Taylor]

The associated first order system is then

��
� � �� � � � �
�

� � � � � �� � � � 	 � 	 � � ��
�

�

��
� � �� � � � �

�
�

�
�

� � � �� � � � � � �� � 	 � ��� 	� � � � � 	 � � � � � �� � 	
�
� � � 	 � 	 � � ��

	

with

� � � � � �� �.

Result:

ADM equations are only weakly hyperbolic (3 eigenvectors missing).
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ADM equations IV

� � � � �

(

�

= determinant of

� �� )

The associated first order system is then

��
� � �� � � � �
�

� � � � � �� � � � 	 � 	 �� ��
�

�

��
� � �� � � � �

�
�

�
�

� � � �� � � � � � � � � � � �� � 	� � � 	� � � � � 	 � � � � ���� � 	
�
� � � 	 � 	 � � ��

	

Result:

Modified ADM equations for

�� �
still weakly hyperbolic (2 eigenvectors

missing).

Adding Hamiltonian constraint does not change hyperbolicity, but does

change characteristics.
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BSSN equations I

� 	 � � �� � �� 	 � � � 	� � � �
� � � 	� � � �� � � �� � � �� � � � �

� � � � � � � �� � � � � � ��

� � � � � � � �� �

�
� � 	� �� � 	 �� � �� � � � � �� � 	� � � � � � � �� � � � ��

� � � � � � � � � � �� � �� � � � 	 � 	 � � � �� � � � � � 	 	 � � � �
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BSSN equations II

Hyperbolicity Analysis:

��
��� �� � � � �
�

� � � � � �� � � � 	 � 	 � � ��
�

��
� � �� � � � �
� �

�
�

� � � �� � � � � � � �� � 	 � �� 	� � � � � � � ��� �
�
� � � 	 � 	 � � ��

�

��
�� � � � � �
� � � �� � � � � � � � 	 � � 	 � � �� � � � � � � 	� � � 	� �
� � � 	 � 	 �� �

�

Result: [Nagy-Ortiz-R]

Modified BSSN equations for
�� � �� �

strongly hyperbolic.

Eigenvalues:

� �
�

� �
�

� � �
�

� �� � �
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Constraint Propagation

Evolution System:

�� � � � � � �
�

�
�

�
� � � � �

� �� � � � ��
�

�
�

�
� �
�

Constraints:

� � � � � ��
�

�
�

�
� � � � �

� �� � 
 � ��
�

�
�

�
� �
�

Integrability condition (subsidiary system):

�� � � � � � ��
�

�
�

�
� � �

�
�
�

� � � � � ��
�

� �
�

�
�

�
� �

�

� �
�

Want to study what can we say about the properties of the subsidiary system

from what we know from the evolution system.
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Constraint Propagation II

Problem: In general

� � �
�

�
�

�
� � �

� is not unique if the constraint themselves

satisfy certain identities.

For instance, if there is an


 � � � � such that:


 � � � � � � �
� �� � �

we could add to

� � ��
�

�
�

�
� � �

�

� � � 

�

With this addition there are easy examples where one can get any sort of

badly posed systems!
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Constraint Propagation III

Assume: For any � � ,

� � � � �� is surjective.

In general this is not satisfied, but in examples of interest one finds subset of

constraints which do satisfy it. [Maxwell, EC].
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Constraint Propagation IV

Integrability condition implies:

� � � �
�

� � � � � �
� � � � � �

�

� � � � � �
� � �

Lemma 1: Given any fixed non-vanishing co-vector �� . If

�
�
�

� � � is an

eigenvalue-eigenvector pair of

� � � � � � then

�
�
�

�
� � � � � � �� � � � , if �
�

is

non-vanishing, is an eigenvalue-eigenvector pair of

� � �
� �� .

Integrability condition implies:

Lemma 1: Given any fixed non-vanishing co-vector . If is an

eigenvalue-eigenvector pair of then , if is

non-vanishing, is an eigenvalue-eigenvector pair of .

Corollary 1: If the evolution system is strongly hyperbolic then so is the

subsidiary system. [It does not work symmetric symmetric].

Corollary 2: The characteristics of the subsidiary system are a subset of the

characteristics of the evolution system. The domain of dependence of the

subsidiary system is at least as large as the domain of dependence of the

evolution system.
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Constraint Propagation IV

Integrability condition implies:

� � �
�

� � � � �� �� � � � �
�

� � �
� �� �� � �

Lemma 1: Given any fixed non-vanishing co-vector �� . If

�
�
�

� � � is an

eigenvalue-eigenvector pair of

� � � � � � then

�
�
�

�
� � � � � � �� � � � , if �
�

is

non-vanishing, is an eigenvalue-eigenvector pair of

� � �
� �� .

Corollary 1: If the evolution system is strongly hyperbolic then so is the

subsidiary system. [It does not work symmetric symmetric].

Corollary 2: The characteristics of the subsidiary system are a subset of the

characteristics of the evolution system. The domain of dependence of the

subsidiary system is at least as large as the domain of dependence of the

evolution system.
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Constraint Propagation IV

Integrability condition implies:

� � �
�

� � � � �� �� � � � �
�

� � �
� �� �� � �

Lemma 1: Given any fixed non-vanishing co-vector �� . If

�
�
�

� � � is an

eigenvalue-eigenvector pair of

� � � � � � then

�
�
�

�
� � � � � � �� � � � , if �
�

is

non-vanishing, is an eigenvalue-eigenvector pair of

� � �
� �� .

Corollary 1: If the evolution system is strongly hyperbolic then so is the

subsidiary system. [It does not work symmetric � symmetric].

Corollary 2: The characteristics of the subsidiary system are a subset of the

characteristics of the evolution system. The domain of dependence of the

subsidiary system is at least as large as the domain of dependence of the

evolution system.
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