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Tools



The "Boltzmann" Supernova Code

1D version: VERTEX, multi-D version: MuDBaTH

(Rampp & Janka 2002; Buras et al. 2005)

- PROMETHEUS

* based on Riemann solver, 3" order PPM
* general relativistic gravitational potential
* time-explicit

 Neutrino transport: variable Eddington factor technique
* moment equations of number, energy, momentum transport

* closure by solution of “model Boltzmann equation”

x

(energy-dependent)
* relativistic redshift and time dilation included

* Neutrino transport in 2D: multi-energy, “ray-by-ray plus” scheme
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Explosion Models

Do neutrino-driven explosions work?



Chemical composition, model N2.2
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1D Simulations: ONeMg Core
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Kitaura et al., A&A, in press (2006)
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1D Simulations: ONeMg Core
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2D Simulation: 11.2 Msun, 180" Grid

* Full 180° grid

e allows low-mode (I=1,2)
convection to occur,

* global anisotropy develops,

* weak explosion takes place.

Supernovae can explode
globally aspherically by the
neutrino-heating mechanism
even if rotation is absent!

(cf. I=1 mode shock instability pointed out
by Blondin, Mezzacappa and DeMarino
(ApJ 584 (2003) 971); Foglizzo 2002;
Thompson 2001; Chandrasekhar 1980)

t=225.7ms

R. Buras et al. (2005), A&A, submitted
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2D Simulations with Rotation

Influence of and
rotation on the neutrino-heating L SR

et

mechansim. i ~

“Moderate” initial iron core —
rotation of 15 Msun star =
assumed: &
period ~ 12 seconds, ;“*

g

angular frequency ~0.5 rad/s.

This rotation rate is between
magnetic and nonmagnetic cores
of Heger, Woosley & Spruit.

Initially, centrifugal force < 1% of 6
gravitational force;

maximizes angular momentum

effects at late post-bounce times;

for j = const, NS will have period

P >1 ms.
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2D Simulations

Without rotation postshock
convection is suppressed by
shock recession.

Rotation helps shock
expansion and enhances
postshock convection.
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Summary and Outlook I

"Full models": On the road to massive star explosions:

* ONeMg core collapse (1D): shock expands, neutrino-driven wind;
explosion for 8-10 solar mass stars with (0.1-0.2)*10°! ergs

e 11.2 M__star (180° grid): global I=1,2 modes, large asymmetry,
weak explosion due to strong I=1 mode convection.

« Rotating 15 M_ star: “near” explosion
(neutrino heating ~factor 2 too low).

* More models with 180° grid and full spectral Boltzmann neutrino
transport are on the computers, also runs for t > 500 ms post bounce.

* Exploration in 3D needed (see below)!



Neutron Star Recoil

What, if neutrino-driven explosions worked?
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Parametric Explosion Studies

Contracting neutron star interior replaced by boundary condition
(Motivation: Physics at very high densities - e.g., nuclear EoS, nonradial instabilities,
neutrino opacities — incompletely understood).

At this boundary: Neutrino number and energy fluxes prescribed.
Systematic variation of neutrino luminosities and progenitors.

Simplified neutrino transport
(by time-dependent, radial integration of energy equation for neutrinos and antineutrinos
of all flavors; NO “lightbulb” approximation: L not constant!).

Advantages:

* CPU-time efficient computations with reasonably accurate neutrino
treatment,

allows for large number of explosion simulations in 2D to study
multi-D effects and their consequences in SN explosions,

3D simulations affordable NOW!
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"



Parametric Explosion Studies in 2D

* |f explosion develops slowly, convective structures have time to
merge/develop to low-mode (I = 1,2) flow.

* Very asymmetric shock expansion and mass ejection although
boundary neutrino flux isotropic.

Scheck et al. (PRL, 2004), Scheck et al. (2006), A&A, submitted

1.0 . . 5 . .
_ radial velocity . — 1.5 radial velocity
g 0.8 [10° cm/s] g
[0)] [0}

o 0.6 L, O
n 0.4 E 1 n
= 3
© 0 ©
o 0.2 O
x -1 o
— F 7/ —
€ 0.2 -
(@] O
D 0.4 6 o
N JE
nsi
S 08 0gio(density) 2
o xx

[9/cm”] 4

-1.0 -0.5 0.0 0.5 1.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Radius [10° cm] Radius [10° cm]


file:///home/guest/TALK_Kavli06/scripts/avi_b0122d.sh
file:///home/guest/TALK_Kavli06/scripts/avi_b0182d.sh

0.[ A(Rgie) ]

2D Models: Low-Mode Asymmetries

* Growth of asymmetry in the linear phase shows evidence for the
action of the advective-acoustic cycle ala Foglizzo (2001, 2002)

* Amplitudes of spherical harmonics of vorticity and velocity field
show characteristic oscillations on expected timescale.
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2D Models: Low-Mode Asymmetries

* Stochastic and chaotic growth of instabilities ====> different morpologies
* Explosion asymmetries 1 second after core bounce:
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Parametric Explosion Studies in 3D

* Explosions in 3D
show also very large
asymmetry.

L. Scheck (PhD Thesis 2006)

* Convection grows
faster than in 2D.

* Explosion energy
somewhat higher.

e Resolution: 1.5°-3°.

First 3D models by
Fryer & Warren (ApJ,
2002, 2004)
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Parametric Explosion Studies in 3D

e 3D with rotation

* Significant prolate
asymmetry

L. Scheck (PhD Thesis 2006)
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Parametric Explosion Studies in 3D
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Growth of low modes during convective
overturn
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Parametric Explosion Studies in 3D

* Accretion flow to neutron star develops | = 1 mode also in 3D.

14000 km
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Ejecta Mixing



Long-Time SN Evolution in 2D

2 seconds
Kifonidis et al.
(2005), A&A,
submitted 10 seconds




Long-Time SN Evolution in 2D
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e Strong metal mixing into H envelope [v__(metals) ~ 3500 km/s]

* Strong H mixing deep into He layer
* |arge asymmetries of metal distribution
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Long-Time SN
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SN Remnant Cassiopeia A

A Million Second CHANDRA View of Cassiopeia A
(Hwang et al., ApJL, 2004)




Summary and Outlook II

Parametric explosion studies:

* When explosion starts “slowly”: low-mode flow dominates in 2D and 3D.
* |n 3D explosions “easier” than in 2D.

* Large asymmetry of ejecta ==> pulsar kicks > 1000 km/s (in 2D)

* NS kick in opposite direction to main mass ejection.

* SN 1987A asymmetries and observed element mixing can be explained.
* (Can global deformation & polarization of most/all SNe be explained?

* Role of cycle (Foglizzo 2002) for amplifying non-
radial modes in convective environment needs more studies.
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