X-Ray Synchrotron Emission & Magnetic Fields in Supernova Remnants

Jacco Vink

Astronomical Institute Utrecht University

> SN & GRB remnants KITP, Santa Barbara, February 9, 2006

Observed Cosmic Ray Spectrum

Supernova remnants and Cosmic Rays

- SNe & SNRs most important source of energy in Galaxy
- But: Can they accelerate up to or beyond the "knee"?
- •According to standard shock acceleration/SNR scenario:

No

(assuming Galactic B-field, realistic parameters) (Lagage & Cesarsky 1983)

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

Needed for reaching high energies

- Fermi acceleration:
 - particles bounce between shocked and unshocked medium
- High magnetic field:
 - 1) gyroradius << SNR size 2) fast acceleration
- Highly turbulent magnetic field:
 - particles scatter on magnetic field waves
 - the more scattering (higher diffusion) the earlier they recross the shock (on average)
 - most rapid acceleration: mean free path = gyroradius (Bohm diffusion)

Some acceleration physics

- Particles scatter elastically from downstream to upstream
- Each shock crossing the particle increases its momentum with a fixed fraction ($\Delta p = \beta p$)
- Resulting spectrum (e.g. Bell 1978): $dN/dE = C E^{-(1+3/(X-1))}$ (X shock compression ratio, X=4 \rightarrow $dN/dE = C E^{-2}$)

Earliest evidence for acceleration in Supernova Remnants

Radio emission: only electrons & low energies (GeV)

Cas A (VLA)

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

First Evidence for efficient CR acceleration

SN1006 (Chandra) X-ray synchrotron radiation: electrons up to $\sim 5 \times 10^{13}$ eV (but depends on B-field)

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

Young Supernova Remnants

Cas A (SN1671?)

Kepler (SN1604)

(continuum emission in blue)

New developments: 1 TeV detections of SNRs (→Aharonian) 2 *All* young remnants emit X-ray synchrotron radiation from a narrow region near shock

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants Tycho (SN1572)

SN1006

KITP, Santa Barbara, February 2006

Synchrotron rims of Cassiopeia A

in SNRs

Rims are narrow and continuum dominated 1.5" to 4" (0.025 – 0.07 pc)

> (Vink & Laming 2003) Jacco Vink KITP, Santa Barbara, February 2006

The Magnetic Field near the Shock

- Rim emission dominated by X-ray synchrotron radiation
- Rim width corresponds to synchrotron loss time, T, through $l_{adv} = \Delta V T$ (advection length)
- $V_s = 5200$ km/s (Vink et al. '98, Delaney et al. '03)
- $\Delta V = u = \frac{1}{4}V_s = 1300 \text{ km/s}$

(plasma velocity)

- Loss times 18 50 yr
- Loss time $T \sim 1/B^2 E$
- $E_{photon} \sim E^2 B$

(Vink & Laming 2003)

Determining the Magnetic Field

Combining gives: B = 100 – 300 μG downstream of shock! (c.f. mean Galactic ~5 μG)

- Alternative: widths is set by diffusion length
 - (Bamba et al. '04, for SN1006)
- $L_{diff} = D/u$ -D diffusion parameter,
 - Bohm limit $D = cr_g/3 = Ec/3eB$
 - Bohm limit most efficient acc. $(\delta B/B \sim 1)$
- Clearly always width $l_{obs} \ge l_{diff}$

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

Why diffusion & advection give same B-field

- For efficient acceleration: $L_{adv} \ge L_{diff}$
- In X-rays: $L_{adv} \approx L_{diff}$, i.e. we see electrons with E_{max}
- Hence: power laws steeper than in radio, as observed
- $L_{adv} \approx L_{diff}$, for *Bohm-limit* \rightarrow Observational evidence for Bohm-limit

A more formal approach

- Assume loss limited electron spectrum
- I.e. only a net acceleration when
- Losses mostly downstream (higher B): $l_{adv} = uT_{loss}$
- Shock acceleration theory: (within a factor ~2)
- So accelaration only for :
- But diffusion length

$$l_{diff} = D/u$$

 $T_{acc} \approx D/u^2$

$$\Gamma_{\rm acc} < T_{\rm loss}$$

 $D/u^2 < l_{adv}/u$ $l_{diff} < l_{adv}$

Consequence For a loss limited spectrum (i.e. steepened) $l_{diff} \approx l_{adv}$ \Rightarrow $l_{obs} \approx (l_{diff}^2 + l_{adv}^2)^{1/2} = 0.7 l_{adv}$

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

Summary for all young remnants

SNR	Age	Radius	Vs	Width	B _{diff}	B _{loss}	B _{combined}	P_B	P _{ram}	P_B/P_R
	(yr)	(')	(km/s)	(")	(microG)	(microG)	(microG)	(dyne/cm ⁻²)	(dyne/cm ⁻²)	X1000
Cas A	329	2.55	5189	0.5	298	249	376	2.5E-09	1.9E-06	1.3E+00
Kepler	396	1.64	5268	1.5	113	132	142	7.0E-10	2.3E-07	3.1E+00
Tycho	428	3.95	4482	2	165	156	208	9.6E-10	1.4E-07	6.8E+00
SN1006	994	14.37	4311	20	33	41	49	6.8E-11	4.3E-08	1.6E+00
RCW 86	1815	22.5	3533	45	20	19	30	1.5E-11	2.9E-08	5.0E-01

(see also Bamba et al. '05, Ballet '05, Voelk et al. 2005, Warren et al. '05)

All young SNRs have high B-fields
 Likely cause: B-field enhancements by
 cosmic ray streaming (Bell&Lucek 2001, Bell 2004)

 B_{diff} ~ B_{loss}: Evidence for Bohm-diffusion!
 Need ions to generate B-field and B-turbulence
 B-field/V of Cas A high enough to reach
 E = 1.5 x 10¹⁵ Z eV

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

Magnetic Field Amplification

There is a clear correlation between ρ , V and B, in rough agreement with theoretical predictions (Bell 2004).

(See also Voelk et al. 2005)

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

The oldest X-ray synchrotron emitter?

RCW 86 (SN 185?)

Problem: Max synchrotron energy $E_{max} \sim V_s^2$ Independent of B! (Aharonian & Atoyan 2001) But measured $V_s \sim 700$ km/s (Ghavamian et al. '01) much lower than Cas A, Tycho, SN1006 etc.

XMM-Newton

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

Chandra/XMM-Newton observations of Northeastern shell

In NE synchrotron from shock front (edge on: 3D geometry less uncertain)
Abrupt change thermal to non-thermal (thermal becomes weaker)
Radio relatively weak

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

What are to make of this?

- From width (~45") and demanding diffusion and advection give same B-field (~20µG) we obtain Vs ~ 3000 km/s
- Much higher than H α measurements (~700 km/s Ghavamian et al.), but consistent with shock theory
- Requires large differences in V_s along shell
- Consistent with shock partially interacting with cavity wall
- High shock velocity is consistent with identification RCW86=SN185!!
- Suggests also why new X-ray synchrotron/TeV remnants are large and faint (Ueno PhD Thesis 2005): low density → V_s remains high for longer time

weakness of radio: not more electrons are accelerated they are accelerated to higher energies!

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

Thermal spectra

- Use thermal spectra to estimate time since interacting with cavity wall
- NE bright shell gives $kT \sim 1 \text{ keV}$, $n_e t = 4x10^9 \text{ cm}^{-3}\text{s}$ (=ionization time)
- Emission measure: $n_e \sim 0.5 \text{ cm}^{-3}$
- Combining gives $t \sim 250 \text{ yr}$
- So $\Delta R \sim \Delta V_s t = 0.8 \text{ pc}$ $\Delta R / R \sim 5\%$ consistent with morphology!

Radio vs X-ray synchrotron emission

How does weak radio emission fit in with X-ray synchrotron?

•Simple extrapolation of radio spectrum (srcut-like) does not fit

- X-ray index too steep!
- Requires flattening of spectrum to $\Gamma=1.5-2$
- Low maximum energy (e.g. ~8 TeV vs ~28 TeV)
- Flattening predicted for efficient cosmic ray acceleration (non-linear effects)

Concave spectra also fit Cas A better

Drawback: less need for pion decay TeV emission!!

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants

Uncertainties...

1 X-ray rim interpretation very consistent diffusion vs advection, support for Bohm diffusion But...

Assumption compression ratio = 4

Hydrodynamic models of Tycho give evidence for higher compression ratios

2 What is the correct interpretation of Cas A interior X-ray synchrotron filaments

Summary and Conclusions

- All young remnants show evidence for X-ray synchrotron emission
- Rim width can be interpreted as synchrotron cooling effect
- Rim width can be used to infer B-field
- Advection/Diffusion model requires Bohm diffusion
- B-field scales with density * $V\alpha$
- Highest CR energies reached early on in RSG winds
- RCW 86 X-ray synchrotron rim:
 - lowest B-field of historical remnants
 - need locally high shock velocity
 - concave electron spectrum needed
- Loose ends: rim width model vs Tycho hydro model
 - interior X-ray synchrotron Cas A

36th COSPAR Assembly 16-23 July 2006, Beijing

Meeting E1.4: New High-Energy Results on Supernova Remnants and Pulsar Wind Nebulae

http://meetings.copernicus.org/cospar2006

Deadline for abstracts: 24th of February!

Invited speakers:

Z. R. Wang, K. Koyama, D. Helfand, P. Ghavamian, S. Park, M. Laming, M. Renaud, B. Gaensler, N. Bucciantini, D. Kaplan, G. Cassam-Genai, S. Funk, E. Berezhko, J. Hoerandel

Organizers: Jacco Vink, Patrick Slane, Aya Bamba, Fabrizio Bocchino, Yang Chen, Parviz Ghavamian, Anne Green, David Green, Una Hwang, Fang-Jun Lu

Circumstellar Media and Late Stages of Massive Stellar Evolution September 4–8 2006, Ensenada, Baja California, Mexico

S.O.C.

N. Brickhouse A. J. Castro-Tirado R. A. Chevalier Y.-H. Chu D. Cox J. Franco C. Fransson G. Garcia-Segura U. Hwang N. Langer E. Ramirez-Ruiz M. Rupen R. Terlevich J. Vink

Instituto de Astronomia-Universidad Nacional Autonoma de Mexico

http://www.astrosen.unam.mx/~ggs/Ens2006.html

X-ray Synchrotron Emission & Magnetic Fields in SNRs SN & GRB remnants