Graviton scattering on curved self-dual backgrounds via twistors/integrability

Lionel Mason

The Mathematical Institute, Oxford lmason@maths.ox.ac.uk

KITP, 21/4/2022

Work with: Tim Adamo & Atul Sharma 2003.13501, 2103.16984, 2110.06066, 2203.02238 ...

Compact gravity scattering formulae on SD backgrounds using integrability from twistors at \mathscr{I} .

Promise: Encode fully nonlinear effects, exact to all-orders! Challenges:

- Construct momentum eigenstate analogues.
- Construct exact propagators on background.
- Perform space-time perturbation theory.

What has been done?

- 3-4 points on generic plane waves general: [2018 Adamo, Casali, M., Nekovar], BMN: [Constable-et. al., Spradlin-Volovich].
- AdS/dS correlators: 5 pt [Goncalves, Perreira, Zhou], n-pt MUV [Green-Wen].
- That's it?

Here: give all multiplicity formulae on generic SD backgrounds.

Twistors at null infinity, and integrability

• Newman's good cuts attempt to rebuild space-time from \mathscr{I} data.

- Yields instead *H*-space: a complex self-dual space-time.
- We use Penrose's asymptotic twistor space at \mathscr{I} , reformulating Newman's good cuts.
- Penrose's construction embodies integrability of self-dual sector.
- Use amplitudes to give perturbations of *H*-space approximating real space-time.

Gravity amplitudes at MHV: $- + \ldots +$ helicity.

Scatter *n* gravitons with momenta k_i , i = 1, ..., n.

- In 2-component spinors, null momenta $k_{i\alpha\dot{\alpha}} = \kappa_{i\alpha}\kappa_{i\dot{\alpha}}$.
- Spinor helicity: $\langle 1 2 \rangle := \kappa_{1\alpha} \kappa_2^{\alpha}$, $[1 2] := \kappa_{1\dot{\alpha}} \kappa_2^{\dot{\alpha}}$,
- Hodges 2012 MHV formula, defines n × n matrix:

$$\mathbb{H}_{ij} = \begin{cases} \frac{[ij]}{\langle ij \rangle} & i \neq j \\ -\sum_k \frac{[ik]}{\langle ik \rangle} & i = j \end{cases}.$$

- Then: $\mathcal{M}(1,\ldots,n) = \langle 12 \rangle^6 \det' \mathbb{H} \, \delta^4(\sum_i k_i).$
- Sum of tree diagrams with propagators [i] [Bern, et. al. '98]

For what theory??? $\mathcal{M} = \text{Tree correlator } \langle V_1 \dots V_{n-2} \rangle.$

MHV formula on self-dual background (schematic)

Can we exploit integrability of SD background?

- The $\kappa_{i\alpha}$ survive as contants.
- We can 'dress' the $\kappa_{i\dot{\alpha}}$ and send $[ij] \rightarrow [[ij]]$ in formulæ.
- Can define (x-dependent) ℍ

But:

- there are, say, *t* interactions with background, t < n 2,
- and fields generate tails after hitting background...

Nevertheless, define $(n + t) \times (n + t)$ generating matrix for *t* interactions with background

$$\mathcal{H} := egin{pmatrix} \mathbb{H} & \mathfrak{h} \\ \mathfrak{h}^{\mathcal{T}} & \mathbb{T} \end{pmatrix}$$

Gives contribution $\int_M d^4x \prod_{m=1}^t \partial_{\epsilon_m}^{p_m} \det' \mathcal{H}|_{\epsilon_m=0} \times \dots$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Generating functional for the gravity MHV amplitude from the Plebanski scalar for SD background.
- 2 Lift to asymptotic twistor space at \mathcal{I} .
- 3 Twistor sigma model for Plebanski scalar and tree formulae.
- 4 Computation on background.
- **(**Extension to full gravity tree S-matrix & on background.)
- **6** ($Lw_{1+\infty}$ -symmetry.)

Plebanski scalar as MHV generating function

MHV generating function: SD metric g^+

$$\mathcal{M}(\mathsf{1}^-,\mathsf{2}^-,g^+) := \left.rac{\delta^2 \mathcal{S}_{ extsf{EH}}[g]}{\delta g \delta g}(h_1^-,h_2^-)
ight|_{g=g^+}$$

where h_1^-, h_2^- are ASD linear gravitons on SD background g^+ .

- Take h⁻_i, i = 1, 2 be plane waves at *I*, momenta κ^α_iκ^ά_i.
- κ_i^{α} defines coordinates $(\mathbf{x}^{\dot{\alpha}}, \tilde{\mathbf{x}}^{\dot{\alpha}}) := (\mathbf{x}^{\alpha \dot{\alpha}} \kappa_{1\alpha}, \mathbf{x}^{\alpha \dot{\alpha}} \kappa_{2\alpha}),$
- $g^+ \leftrightarrow$ Plebanski scalar (Kahler scalar)

$$m{g}^+ = rac{\partial \partial \Omega(m{x}^{\dotlpha}, m{ ilde{x}}^{\dotlpha})}{\partial x^{\dotlpha} \partial m{ ilde{x}}^{\doteta}} m{d} x^{\dotlpha} m{d} m{ ilde{x}}^{\doteta}\,, \qquad \qquad \det \partial m{ ilde{\partial}} \Omega = 1.$$

Proposition (Adamo, M., Sharma, 2103.16984) Generating function reduces to

$$\mathcal{M}(1^-,2^-,g^+) = \langle 12 \rangle^6 \int_M d^4 x \ \Omega \ \mathrm{e}^{[ilde\kappa_1 x] + [ilde\kappa_2 ilde x]}$$

(日) (日) (日) (日) (日) (日) (日)

Asymptotic Twistor space

Penrose's nonlinear graviton at \mathscr{I} with $\bar{\partial}$ -operator deformed by \mathscr{I} data.

Twistor space $\mathcal{T} = \mathbb{C}^4$ or projective $\mathbb{P}\mathcal{T}^3$, homogeneous coords:

$$W = (\lambda_{lpha}, \mu^{\dot{lpha}}) \in \mathbb{T}, \qquad W \sim aW, a
eq 0.$$

Poisson bracket: $\{f, g\} = \varepsilon^{\dot{\alpha}\dot{\beta}} \frac{\partial f}{\partial \mu^{\dot{\alpha}}} \frac{\partial g}{\partial \mu^{\dot{\beta}}} = \left[\frac{\partial f}{\partial \mu} \frac{\partial g}{\partial \mu}\right].$

• Gravity data on T is

$$\mathbf{h} = h(\mu^{\dot{lpha}}ar{\lambda}_{\dot{lpha}},\lambda,ar{\lambda})[ar{\lambda}dar{\lambda}] \in \Omega^{0,1}(2)$$
 .

• From \mathscr{I} data: $h = \int^u \sigma^0 du$, $\sigma^0 =$ asymptotic shear.

• For SD black hole: $h = h([\mu|T|\lambda\rangle, \lambda, \overline{\lambda})$ works.

 $\bar\partial$ -operator on $\mathcal T$ is deformed by 'Hamiltonian' **h** to

$$\bar{\partial}_h f := \bar{\partial}_0 f + \{\mathbf{h}, f\}$$

The self-dual space-time from holomorphic curves

To reconstruct self-dual space-time

 $(M^4, g) = \{ \text{ Holomorphic degree-1 } \mathbb{CP}^1 \text{s in } PT \}$

• Parametrize the $\mathbb{CP}^1_{x,\sigma} \subset \mathbb{PT}$, with hgs coords (σ_0, σ_1) by

$$\lambda_{\alpha} = \left(\frac{1}{\sigma_0}, \frac{1}{\sigma_1}\right) = \frac{(1, z)}{\sigma_0}, \qquad \mu^{\dot{\alpha}} = \frac{x^{0\dot{\alpha}}}{\sigma_0} + \frac{x^{1\dot{\alpha}}}{\sigma_1} + M^{\dot{\alpha}},$$

• d-bar eq for \mathbb{C} -curves in deformed $\mathbb{P}\mathcal{T}$:

$$ar{\partial}_{\sigma}\mu^{\dot{lpha}} = \{\mu^{\dot{lpha}}, \mathbf{h}\} = \varepsilon^{\dot{lpha}\dot{eta}} rac{\partial \mathbf{h}}{\partial\mu^{\dot{eta}}}\,,$$

Sigma model action and MHV generating function

- For curve in PT: $\mu^{\dot{\alpha}}(x,\sigma) := x^{0\dot{\alpha}}/\sigma_0 + x^{1\dot{\alpha}}/\sigma_1 + M^{\dot{\alpha}}(x,\sigma)$,
- Holomorphy follows from action

$${old S}[\mu^{\dotlpha},{old x}] = \int {old D}\sigma \left([{old M} ar \partial_\sigma {old M}] + 2 {old h}(\lambda,\mu)
ight) \,.$$

Key proposition: [Adamo, M., Sharma, 2103.16984] Given small data *h*, for all $x \in M$, $\exists ! \mu^{\dot{\alpha}}(x, \lambda)$ and then the on-shell action $S^{os}[x, h]$ yields:

1 The Kahler (Plebanski) scalar $\Omega(x^{0\dot{\alpha}}, x^{1\dot{\alpha}})$ for SD metric

$$g_{+}=rac{\partial^{2}\Omega}{\partial x^{0\dotlpha}\partial x^{1\doteta}}dx^{0\dotlpha}dx^{1\doteta},\qquad \Omega(x)=S^{os}[x,h]$$

2 the generating function for MHV amplitudes

$$\mathcal{M}(1^{-}, 2^{-}, h^{+}) = \langle 1 2 \rangle^{6} \int_{M} d^{4}x \, e^{(k_{1}+k_{2}) \cdot x} \, S^{os}[x, h^{+}] \, .$$

MHV generating function, trees and Hodge formula

Starting from the MHV generating function

$$\mathcal{M}(1,2,h) = \langle 1 2 \rangle^6 \int_M d^4 x \, \mathrm{e}^{(k_1+k_2)\cdot x} \, \mathcal{S}^{os}[x,h]$$

perturbatively expand in h in momentum eigenstates

$$h = \sum_{i=3}^{n} h_i$$
, $h_i = \int \frac{ds}{s^3} \bar{\delta}^2 (s \lambda_{\alpha} - \kappa_{i\alpha}) e^{i s[\mu \, \tilde{\kappa}_i]}$.

• On-shell action has tree expansion (ignoring $O(h_i^2)$)

$$S_{\mathbb{PT}}[M,h] = \langle V_{h_3} \dots V_{h_n} \rangle_{\text{tree}}$$

with vertex operators $V_h = \int_{\mathbb{CP}^1} h D\sigma$ and propagators

$$\mathbb{H}_{ij} := \frac{[\partial_{\mu} h_i \, \partial_{\mu} h_j]}{\langle ij \rangle} = \frac{[ij]}{\langle ij \rangle} h_i h_j, \qquad i \neq j$$

• Yields tree-diagram formalism of Bern et. al. 1998. Matrix-tree theorem gives $\langle V_{h_3} \dots V_{h_n} \rangle_{\text{tree}} = \det' \mathbb{H}$ \sim Hodges reduced determinant formula, [cf Feing-Hei 12].

Sigma model at higher MHV degree

For N^{k-2} MHV need *k* ASD particles:

ASD wave functions as momentum eigenstates

$$\tilde{h}_r(W_r) = \int s^5 ds \, \bar{\delta}^2(s\lambda - \kappa) \mathrm{e}^{is[\mu\kappa]} \in H^1(\mathcal{O}(-6)) \, .$$

• Insert ASD particles at $W_r \in \mathbb{T}$ and $\sigma_r \in \mathbb{CP}^1$, r = 1, ..., k:

$$W(\sigma) = \sum_{r=1}^{k} \frac{W_r}{\sigma - \sigma_r} + (0, M^{\dot{\alpha}}) : \mathbb{CP}^1 \to \mathbb{PT}.$$

- There exists unique $W(\sigma)$ with *M* of weight (-1, 0).
- Action is now simply

$$S[W(\sigma), W_r, \sigma_r, h] = \int_{\mathbb{CP}^1} d\sigma \left([M \bar{\partial} M] + 2h \right)$$

Propn: On-shell action $S^{os}[W_r, \sigma_r, h]$ generates N^{*k*-2}MHV tree-amplitudes

The full gravity S-matrix: $N^{k-2}MHV$ amplitudes

The formula for k ASD particles on SD background h is:

$$\mathcal{M}(1^{-},\ldots,k^{-},h) = \int_{(\mathbb{CP}^{1}\times\mathbb{PT})^{k}} S^{os}[W_{r},\sigma_{r},h] \det {}^{\prime}\tilde{\mathbb{H}} \prod_{r=1}^{k} \tilde{h}_{r} D^{3} W_{r} d\sigma_{r}.$$

here we have inserted $\det{'\tilde{\mathbb{H}}},$ for the 'conjugate' Hodge matrix

$$\tilde{\mathbb{H}}_{ij} = \begin{cases} \frac{\langle \lambda_r \lambda_s \rangle}{\sigma_r - \sigma_s} & r \neq s \\ -\sum_q \frac{\langle \lambda_r \lambda_q \rangle}{\sigma_r - \sigma_q}, & r = s \end{cases}$$

Expanding $h = \sum_{i=k+1}^{n} h_i$ as before gives

$$\mathcal{M} = \int_{(\mathbb{CP}^1 \times \mathbb{PT})^k} \langle h_{k+1} \dots h_n \rangle_{\text{tree}} \det' \tilde{\mathbb{H}} \prod_{r=1}^k \tilde{h}_r D^3 W_r d\sigma_r ,$$
$$= \int_{(\mathbb{CP}^1)^n \times \mathbb{PT}^k} \det' \mathbb{H} \det' \tilde{\mathbb{H}} \prod_{r=1}^k \tilde{h}_r D^3 W_r d\sigma_r$$

proof: reduce to Cachazo-Skinner formula. [Adamo, M, Sharma 2103-16984]

Perturbations on SD background

Now expand $h = h_0 + \sum_i \epsilon_i h_i$ around background h_0 in

$$\mathcal{M}(1,2,h) = \langle 12 \rangle^4 \int_M d^4 x \, \mathrm{e}^{(k_1+k_2)\cdot x} \, \mathcal{S}^{os}[x,h]$$

• Now perturb $M^{\dot{\alpha}} = M_0^{\dot{\alpha}}(x,\sigma) + m^{\dot{\alpha}}(x,\sigma)$ with $\bar{\partial}_{\bar{\sigma}}M_0^{\dot{\alpha}} = \frac{\partial h_0}{\partial \mu^{\dot{\alpha}}}$

$$S[M,x]=S[M_0]+S[m]+\sum_{p\geq 3}U_p.$$

where the quadratic perturbation is

$$\boldsymbol{S}[\boldsymbol{m}] := \int \boldsymbol{D}\sigma \left([\boldsymbol{m}\bar{\partial}_{\sigma}\boldsymbol{m}] + \left. \frac{\partial^{2}\boldsymbol{h}_{0}}{\partial\mu^{\dot{\alpha}}\partial\mu^{\dot{\beta}}} \right|_{\boldsymbol{M}=\boldsymbol{M}_{0}} \boldsymbol{m}^{\dot{\alpha}}\boldsymbol{m}^{\dot{\beta}} \right)$$

• and the *p*-vertices U_p are

$$U_{p} := \int D\sigma \left. \frac{\partial^{p} h_{0}}{\partial \mu^{\dot{\alpha}_{1}} \dots \partial \mu^{\dot{\alpha}_{p}}} \right|_{M=M_{0}} m^{\dot{\alpha}_{1}} \dots m^{\dot{\alpha}_{p}} = \int D\sigma \left[\bar{\lambda} m \right]^{p} \partial_{u}^{p-1} \sigma^{0}.$$

Feynman diagrams on the sphere

We want correlator of vertex operators $V_{h_i} = \int_{\mathbb{CP}^1} h_i D\sigma$

$$h_i = \int rac{ds}{s^3} ar{\delta}^2 (s \lambda_lpha - \kappa_{ilpha}) \, \mathrm{e}^{i s [M \, ilde{\kappa}_i]}$$

• The quadratic term dresses the \mathbb{CP}^1 propagator

$$\langle m_1^{\dot{\alpha}}(x,\sigma_1)m_2^{\dot{\beta}}(x,\sigma_2)\rangle = \frac{H(x,\sigma_1)^{\dot{\alpha}}H(x,\sigma_2)^{\dot{\beta}\dot{\gamma}}}{\sigma_1 - \sigma_2}, \quad H_{\dot{\beta}}^{\dot{\alpha}} := \frac{\partial M_0^{\dot{\alpha}}}{\partial x^{\dot{\beta}}}$$

This leads to dressed square brackets, i.e.:

$$\langle V_{h_i} V_{h_j} \rangle = \frac{\llbracket i j \rrbracket}{\langle i j \rangle} V_{h_i} V_{h_j}, \qquad \llbracket i j \rrbracket := \kappa_{i \dot{\alpha}} H_{i \dot{\gamma}}^{\dot{\alpha}} H_j^{\dot{\beta} \dot{\gamma}} \kappa_{j \dot{\beta}}.$$

- Diagrams can include *t* vertices U_{p_1}, \ldots, U_{p_t} .
- For connected trees $t \le n-4$, in fact $\sum (p_r 2) \le n-4$.

So must compute $\langle V_{h_1} \dots V_{h_{n-2}} U_{p_1} \dots U_{p_t} \rangle_{S[m]}$ as sum of trees.

An enhanced matrix-tree theorem

 $\langle V_{h_1} \dots V_{h_{n-2}} U_{p_1} \dots U_{p_t} \rangle_{S[m]}$ needs trees on t + n - 2 vertices. • Define $(n - 2 + t) \times (n - 2 + t)$ matrix of propagators

$$\mathcal{H} := egin{pmatrix} \mathbb{H} & \mathfrak{h} \\ \mathfrak{h}^{\mathcal{T}} & \mathbb{T} \end{pmatrix}$$

• Propagators between V_{h_i} and V_{h_i}

$$\mathbb{H}_{ij} = \begin{cases} \underbrace{\mathbb{I}_{ij}}_{\langle ij \rangle} & i \neq j \\ -\sum_{I} \mathbb{H}_{iI} & i = j \end{cases}$$

• Propagators resp. between V_{h_i} and U_{p_r} and U_{p_r} and U_{p_s}

$$\mathfrak{h}_{ir} := -\varepsilon_r \frac{\llbracket ir \rrbracket}{\langle ir \rangle}, \qquad \mathbb{T}_{rs} = -\varepsilon_r \varepsilon_s \frac{\llbracket \bar{\lambda}_r \bar{\lambda}_s \rrbracket}{\langle rs \rangle}, \quad \mathbb{T}_{rr} = \dots$$

here the parameters ε_r count the valency of U_{p_r} .

Propn: Sum of trees generated by reduced determinant det' \mathcal{H} .

(日) (日) (日) (日) (日) (日) (日)

For MHV amplitude, sum over all contributions

$$\mathcal{M}_n^0 = \sum_{\substack{\# \text{ of tails, } t \\ \text{mult. of tails, } p}} \int \mathrm{d}^4 x \left(\prod_{r=1}^t D\sigma_r \, \partial_u^{p_r-1} \sigma^0(u_r, \sigma_r) \, \partial_{\varepsilon_r}^{p_r} \right) \det' \mathcal{H}_t|_{\varepsilon_r=0} \, .$$

- For radiative Gibbons-Hawking, SD black holes etc., $M^{\dot{\alpha}}(x,\sigma)$ etc. can be made explicit.
- At *n* points expect n-2 space-time integrals, here just one.
- On plane wave \mathbb{CP}^1 and three d^3x integrals localize.
- Higher MHV degree version can be made as explicit but requires more integrations.

Conclusions & discussion

- Gravity tree amplitudes generated by on-shell action of sigma model for curves in PT (from cuts of 𝒴).
- Gives value of Einstein-Hilbert action at MHV.
- degree of map = k 1 at N^{k-2}MHV corresponds to rational approximation of true light cone cut.
- Story extends to $\Lambda \neq 0$, YM.
- Gives computable perturbation theory around nonlinear SD background, including SD black holes.

Further developments in celestial holography and $Lw_{1+\infty}$:

- Penrose's nonlinear graviton realizes SD graviton phase space as loop group Lw_{1+∞}.
- Geometric action of *Lw*_{1+∞} on PT is by Čech vertex operators for SD gravitons.
- Soft graviton expansion \leftrightarrow mode expansion for $Lw_{1+\infty}$.
- Beyond SD sector, ideas embed into 4d ambitwistor-string.

Thank You

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Einstein gravity tree = tree sigma model correlator (MHV).
- Does full quantum sigma model correlator ↔ gravity loops?

$$\langle \mathbf{1} \, \mathbf{2} \rangle^{2n} \prod_{i=3}^{n} \frac{1}{\langle \mathbf{1} \, i \rangle^2 \, \langle \mathbf{2} \, i \rangle^2} \, \exp\left[-\frac{\mathrm{i} \, \alpha}{8\pi} \sum_{j \neq i} \frac{[ij]}{\langle ij \rangle} \, \frac{\langle \mathbf{1} \, i \rangle^2 \, \langle \mathbf{2} j \rangle^2}{\langle \mathbf{1} \, \mathbf{2} \rangle^2}\right]$$

- Does quantum sigma model realize W_{1+∞} or W-gravity?
- Moyal quantization of $\mu^{\dot{lpha}}$ -plane and 'palatial twistors'?