
Well-posed formulation of some gravitational
effective field theories

Harvey Reall

DAMTP, Cambridge University

Aron Kovacs and HSR 2003.04327, 2003.08398

Iain Davies and HSR 2112.05603



Motivation

Detection of gravitational waves from BH (or NS) mergers is an
opportunity to perform precision tests of GR in the strong field
regime.

To do this we need theoretical predictions for how a deviation from
GR would affect the gravitational waves emitted in a merger. Focus
on BH/BH mergers so looking for deviations from GR in vacuum.

Two problems:

1. Could try to predict using a theory of modified gravity but
which theory should we use?

2. To make predictions we need to perform numerical
simulations. This requires that the theory admits a well-posed
initial value problem, i.e., given suitable initial data there
should exist a unique (up to diffeos) solution of the equations
of motion that depends continuously on the initial data.



Effective field theory

Provides a way of studying (small) deviations from GR that is
agnostic about whatever “UV physics” causes this deviation.

Specify light fields and symmetries, then write down most general
Lagrangian for these fields as an expansion in terms with increasing
numbers of derivatives



e.g. vacuum gravity:

L = −2Λ + R + αR2 + βRabR
ab + γLGB + . . .

where α, β, γ ∝ L2 for some UV length scale L and
LGB ∝ RabcdR

abcd − 4RabR
ab + R2

Expansion in increasing numbers of derivatives: makes sense
provided higher derivative terms become successively less
important. So need curvature to be small compared to L−2. Call
this the weakly coupled regime. Compatible with strong field BH
dynamics provided BH large compared to L.

To be observable, need L ∼ km. Seems very unlikely from
perspective of fundamental theory! Instead view this just as a
framework for parameterising strong field tests of GR, analogous to
the PPN formalism.



Higher derivatives

If we truncate EFT at some number of derivatives then resulting
equations involving higher than second derivatives of fields.
Problematic because

I Well-posedness of initial value problem is determined mainly
by the terms with the highest number of derivatives in the eqs
of motion. They need to have “nice structure”. But no reason
for this structure to be present, and in EFT these terms
should be the least important terms, not the most important!

I With higher order equations, need to specify more initial data:
corresponds to additional (heavy) degrees of freedom that
should not be present in EFT.

Fortunately, for several theories of interest we can write the leading
order EFT corrections in a way that sidesteps these problems...



Field redefinitions

In EFT one can perform field redefinitions to simplify action.

e.g. for vacuum gravity can simplify to

L = −2Λ + R + γLGB + . . .

where LGB ∝ RabcdR
abcd − 4RabR

ab + R2

d > 4: LGB gives leading (4-derivative) EFT corrections to GR and
has second order eqs of motion

d = 4: LGB topological so no 4-derivative corrections to eqs of
motion, leading EFT corrections start at 6 derivatives



Scalar-tensor EFT

Light fields: metric plus scalar field. After field redefinitions,
assuming a parity symmetry, Lagrangian can be written

L = −V (φ) + R + X + α(φ)X 2 + β(φ)LGB + . . .

where X = −(1/2)gµν∂µφ∂νφ.

Attractive features of this theory:

I Leading EFT corrections now start at 4 derivatives

I LGB can source scalar field: guaranteed deviation from GR for
vacuum BHs

I If we neglect terms with more than 4 derivatives then
equations of motion are second order



Einstein-Maxwell EFT

Light fields: metric plus Maxwell field (the only observed
fundamental fields for which the classical approximation is useful)

Assume parity symmetry. Leading EFT corrections have 4
derivatives and, using field redefinitions, these can be written in a
way that gives second order equations of motion for gµν , Aµ



Field redefinitions can be used to write 4-derivative terms in a way
that gives second order equations of motion for:

I Vacuum gravity (although trivial in 4d)

I Parity symmetric scalar-tensor

I Parity symmetric Einstein-Maxwell

Do these theories admit a well-posed initial value problem?

If 4-derivative terms become comparable to 2-derivative terms then
well-posedness can fail Papallo & HSR 2017.

The best we can hope for is well-posedness at weak coupling. But
that’s all we need for EFT! However, even this is highly non-trivial.



Strong hyperbolicity

A sufficient condition for a well-posed initial value problem is that
the eq is strongly hyperbolic.

1st order linear constant coefficients system ∂tu = M i∂iu + Nu

u(t, x) ∝
∫

dξe iξjx
j
e(iM

iξi+N)t ũ(0, ξ)

For convergence of integral demand ||e iM iξi t || ≤ f (t) as ξ →∞.
This implies that M iξi must be diagonalizable with real
eigenvalues (which fix phase velocities of modes). This is the
definition of strong hyperbolicity, even when coefficients are not
constant. (Weakly hyperbolic: real evals but not diagonalisable.)

Second order systems: reduce to first order and apply this
definition. Nonlinear eqs: apply definition to linearisation around
general background (weakly coupled in our case).



Strategy for proving well-posedness of a gravitational theory:

(1) Find a way of gauge-fixing to give strongly hyperbolic equations
of motion: ensures well-posedness of initial value problem for any
initial data, even data that violates constraints and gauge condition

(2) Show that if initial data satisfies constraints and gauge
condition then, in the resulting solution, the gauge-fixing terms
vanish and so one obtains a solution of the original
(non-gauge-fixed) equations



Simplest gauge choice for conventional GR that gives strongly
hyperbolic eqs is (generalised) harmonic gauge: gives M iξi
diagonalizable with real but degenerate eigenvalues (all modes
have same phase velocity)

View weakly coupled 4-derivative theory as a small deformation of
conventional GR: small deformation of M iξi

Generic deformation of a real matrix with degenerate eigenvalues is
not diagonalizable!

In harmonic gauge, M iξi is not diagonalizable in a generic weakly
coupled background ⇒ eqs only weakly hyperbolic Papallo & HSR 2017,

Papallo 2017

Similar problem seen in other gauge-fixing approaches e.g. BSSN
Kovacs 2019



Problem arises from mixing between two types of unphysical
solutions of gauge-fixed eqs: “pure gauge” solutions and
“gauge-condition violating” solutions; these travel at same speed
as physical solutions

New idea: try to deform the harmonic gauge condition of
conventional GR to give these modes different phase velocities
(different eigenvalues); prevents mixing when we deform to a
4-derivative theory so should then retain diagonalizability of M iξi



Vacuum GR in modified harmonic gauge

Introduce two auxiliary (inverse) Lorentzian metrics g̃µν , ĝµν .
Gauge condition: Hµ = 0 where

Hµ ≡ g̃νρΓµ
νρ

Gauge-fixed equation: Eµν = 0 where

Eµν ≡ Gµν + P̂α
βµν∂βH

α P̂α
βµν ≡ δ(µα ĝν)β − 1

2
δβαĝ

µν

Implies �̂Hµ + . . . = 0

In linearised theory, gauge-condition violating solutions propagate
along null cone of ĝµν and pure gauge solutions propagate along
null cone of g̃µν . Physical solutions propagate along null cone of
gµν .



The three metrics

We choose the unphysical metrics so that their null cones do not
intersect each other or the null cone of the physical metric.

where
P̂↵

�µ⌫ = �(µ↵ ĝ⌫)� � 1

2
��↵ĝµ⌫ (10)

Our modified harmonic gauge equation of motion is

Eµ⌫
mhg = 0 (11)

We have three inverse metrics gµ⌫ , g̃µ⌫ and ĝµ⌫ . The inverse of gµ⌫ is denoted, as usual, by gµ⌫ and
index raising and lowering is always performed with g. When we need to refer to the inverse of ĝµ⌫

(say) we will write (ĝ�1)µ⌫ . The usual harmonic gauge formulation of GR is obtained by choosing
ĝµ⌫ = g̃µ⌫ = gµ⌫ .

We will assume that ĝµ⌫ is chosen so that the causal cone of gµ⌫ (in the cotangent space) lies
strictly inside the causal cone of ĝµ⌫ , so that any covector that is causal w.r.t. gµ⌫ is timelike w.r.t.
ĝµ⌫ . See Fig. 1a. This implies that the causal cone of (ĝ�1)µ⌫ (in the tangent space) lies strictly
inside the causal cone of gµ⌫ (Fig. 1b) so any smooth curve that is causal w.r.t. (ĝ�1)µ⌫ is timelike
w.r.t. gµ⌫ . This implies that any point in the domain of dependence D(⌃) of a partial Cauchy
surface ⌃ w.r.t. gµ⌫ is also in the domain of dependence D̂(⌃) of ⌃ w.r.t. (ĝ�1)µ⌫ . In other words,
D(⌃) ⇢ D̂(⌃).

We will also assume that g̃µ⌫ is chosen so that the causal cones of the three inverse metrics form
a nested set as in Fig. 1a, with the null cones of ĝµ⌫ and g̃µ⌫ lying outside the null cone of gµ⌫ .
This implies that a surface ⌃ that is spacelike w.r.t. gµ⌫ is also spacelike w.r.t. ĝµ⌫ and g̃µ⌫ .

In Fig 1 we have drawn the null cone of g̃µ⌫ inside that of ĝµ⌫ but we could also choose it to lie
outside. What is important is that these null cones do not intersect and that they both lie outside
that of gµ⌫ .4

gµ⌫ g̃µ⌫ ĝµ⌫

(a)

gµ⌫(g̃�1)µ⌫(ĝ�1)µ⌫

(b)

Figure 1: (a) Cotangent space at a point, showing the null cones of gµ⌫ , g̃µ⌫ and ĝµ⌫ . (b) Tangent
space at a point, showing the null cones of gµ⌫ , (g̃�1)µ⌫ and (ĝ�1)µ⌫ .

4 In section 5 we will comment on how the latter assumption might be relaxed in numerical relativity applications.

5

With this choice, can prove that vacuum GR is strongly hyperbolic
in our modified harmonic gauge formulation.

Straightforward to include a minimally coupled (2-derivative) scalar
field or Maxwell field (modified Lorenz gauge for Aµ)



Well-posedness of our EFTs

In the 2-derivative theory, M iξi is diagonalisable with real evals.

The evals associated with pure gauge and gauge-condition
violating modes are distinct from each other and from the evals
associated with physical modes.

Using this, can show that M iξi remains diagonalisable with real
evals when we deform the theory to include 4-derivative terms,
assuming weak coupling (i.e. a small deformation).

Hence, at weak coupling, our formulation gives strongly hyperbolic
equations so the initial value problem is well posed in the
4-derivative theories I have described.



Numerics

The first numerical simulations using our formulation have been
performed East & Ripley 2020:

I Shift-symmetric theory Einstein-scalar-GB

L = R − 1

2
(∂φ)2 + λφLGB

I Dynamical scalarisation of rotating BHs

I Head-on collisions of BHs

I Inspiral and merger of BHs

I Typical values λM−2 ∼ 0.01 to 0.2



Generalisations

Our modified harmonic gauge formulation gives well-posed
equations of motion for any weakly coupled Horndeski theory.

It also works for weakly coupled Lovelock theories such as
Einstein-Gauss-Bonnet:

L = R + αLGB

Opens possibility of studying effect of higher curvature corrections
on dynamical processes in d > 4 gravity e.g. black string
instability?



Summary

Effective field theory is an attractive formalism for parameterising
possible strong field deviations from GR.

For d > 4 vacuum gravity, d = 4 scalar-tensor theory, or d = 4
Einstein-Maxwell theory, the leading EFT corrections have 4
derivatives but second order eqs of motion.

For numerical simulations of BH mergers it is essential that a
formulation of these equations is found that is strongly hyperbolic
and hence admits a well-posed initial value problem.

We have found such a formulation, based on modified harmonic
gauge. It is well-posed at weak coupling.

The first simulations of BH mergers have been performed using
this formulation.


