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Introduction

* Even neglecting spin, the two-body scattering problem
in GR has a large parameter space.

- We may take its “"coordinates” as: (m1, mz2, J, Ecm)

* In the classical limit (h->0) GR has no intrinsic length
or mass scale and physical observables can only depend
non-trivially on 3 independent (for scattering)
dimensionless quantities. In G=c=1 units we may take

them to be (mi/b, m2/b, v) or
(mimz2/b2, v =mimz/mimz)?2 , o= (1- v2)1/2) or ..
*Observables such as deflection angle, time delay,

waveforms, memory, radiated energy... do depend in a
complicated way on ALL these variables.



* The full problem is very hard, of course. One looks at
limits in which it simplifies.

» Two of them have been investigated for some time:
1. The post-Newtonian (PN) expansion in powers of v/c;
2. The probe-limit expansion in v ~ mo/m;

* A more recent popular expansion is the one in powers
of G: the so-called post-Minkowskian (PM) expansion
supposedly exact in v and v at each order in G.

It is close to the particle-physicist's heart since it
corresponds to the loop expansion in QFT.



* Actually, the HE community has been interested in the
gravitational 2-body problem since the late '80s
('t Hooft, Amati-Ciafaloni-GV, Muzinich & Soldate,...)
although with completely different motivations:

1.5ee the emergence of classical and quantum gravity
effects through thought-experiments in flat spacetime.

2.Construct a unitary S-matrix describing the formation
and decay of a BH in (say) a string-string collision =>
solution to Hawking's information puzzle.

*In that context transplanckian energy is needed for the
collision to be able to form a black hole larger than Ip.

It also allows to justify a semiclassical approximation.
URL (not a uniform resource locator) unavoidablel




*What was completely missed at the time is that, in some
limit, massive, astrophysical black holes can be thought
of as elementary particles (no hair, just mass and spin).

*Of course, for BH's the non-relativistic or mildly
relativistic regimes are the most relevant ones. Should
we then forget about the URL? (My) answer is NO!

« In 1710.10599, Damour argued that useful input for the
two-body problem can be obtained from the URL of
gravitational scattering and gave an example (see below).



* Giving other examples of
"Lessons from the UR frontier”
will be the main aim of this talk.

* All this rests on an essential property of gravity: the
absence of collinear singularities making the massless

limit well defined (Weinberg 1965).

* The massless (point particle) limit has a one-dimensional
parameter-space given by Ecn/b (or 6s).

*As we will see, one surprise (?) is that the UR frontier is
much richer and (at least) 3-dimensional.



Outline

* URL and deflection angle

® friviality of URL @ 2PM
® the 3PM puzzle and its resolution
® new problems @ 4PM

e URL and radiation

® ACVQO7 energy crisis & its partial resolution
® The Kovacs-Thorne (D'Eath) bound

* Improved eikonal operator in soft limit

® wave-forms, memory (see CH's talk)
® A rich UR frontier & non-analyticity in G

* Beyond the soft-radiation limit



URL & deflection angle @ 2&3PM
(DHRV* 2008.12743)

Reminder: the elastic eikonal "phase” defined by

S(E,b) = exp(2i6) ; 6 =09 + 61 + 69 + ... ; 6, = O(G™)

gives the scattering angle and Shapiro time delay as
derivatives of Re 26 w.r.t. impact parameter and
energy, respectively.

On the other hand, Im 26 > 0 is related to the
opening of inelastic channels and to the consequent
suppression of the elastic one.

* Di Vecchia, Heissenberg, Russo, GV



ACV90 results up to 3PM (D=4, GR, massless)

classical

quantum and

G
1PM 25, = —75 log b2
S
12G?
2PM 2Red; = 628 logs ; Imd; =0
7T

Damour's use of URL: URL ->0 & 2PM in ¢
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A puzzle @ 3PM

*In 1901.04424/1908.01493 an impressive calculation by
BCRSSZ led to the first 3PM (i.e. 2-loop) result (in GR
for two massive scalars).

 Checked to be consistent up to "6PN" (integer) order
but presented a puzzle.

* The high-energy (or just the massless) limit of the
BCRSSZ result exhibited a logarithmic divergence in
contrast with the finite result by ACV90.

XXkkkXkkkkkkk

BCRSSZ = Bern, Cheung, Roiban, Shen, Solon, Zeng



The ACV90 argument (m=0)

® Combining:
® Real analyticity: A*(s*,1) = A(s,1)
® Asymptotics => fixed-t dispersion relations.
® Xing symmetry: A(s,t) = A(u,t)
® Perturbative Unitarity

an explicit calculation of Imd2 from the inelastic
(3-particle) cut of the two-loop amplitude gives
the quoted result for Red. from

2R652 — i (2[m52) — 5—O(QV50)2

2log s S




2 = 21 — —(2
R€52 9 log S ( m52) S ( V5Q)

The logarithmically growing term in Imd2 has an IR
divergence which, however, cancels against the &¢
term. This yields the finite ACV result for Red:

(By contrast, in BCRSSZ Imd: grows like log2s and
this implies their (in)famous log s in Red?)
® Tn 2008.12743 DHRV extended the ACV90

argument tfo massive UR case & confirmed the ACV
result.

®*Then confirmed it by computing the full amplitude
in N=8 SUGRA including contributions from the
full soft (rather than just the potential)
integration region.



3PM eikonal in N=8 SUGRA

2G8 (2mymyo)?  P-MRZ/BCRSSZ

Re(9) = hb2 /
o o2 o3 (0 — 2)
cosh™ 1)5/2 )

ACV limit \N cancel @ large O

2Mmimeoc = S — m1

cosh™ (o) ~ logo as 0 —

NB: new & old terms behave quite differently in their
PN-expansion (o->1) but cancel in URL



*When we presented this result at a workshop in
Aug. 2020, Damour immediately grasped the
physical meaning of what we had found:

*Our half-integer PN terms meant that we had
added to the conservative dynamics the effect of
radiation on the eikonal phase, the so-called
radiation reaction.

*A couple of months later, using a smart shortcut,
Damour extended the result to GR (see below).

® A bit later, using a different shortcut, DHRV
gave another simple derivation of both the N=0 and
the N=8 result for the radiation reaction.

*More confirmations given last year by extracting
the RR from full-fledged two-loop calculations.



Damour's result for GR

__

PN(BCRSSZ)  opes, — 20 Mmas G574 40,2 4

\ hb%(02 — 1)3/2
2

N—"

4G mims3 o(140? + 25) A 5 cosh™ (o
NG 3 + (40" — 120“ — 3) 0% 1)1/2>
2G°mim3(20% —1)* (8 — 507 cosh™ (o
. = 22(_ - ) ( +0(20% — 3)— 1/2)
2.5PN/ hb?(0? — 1) 3 (62 —1)

UR-limit: log s terms become subleading &
(48 — 56/3 — 40/3)0” = 160° => ACV90!

UNIVERSALITY OF THE MASSLESS LIMIT!




Two shortcuts to
Radiation Reaction

I. RR from linear response
(T. Damour 2010.01641, see CH's talk)

IT. RR from soft theorems

(DHRV 2101.05772, see CH's talk)



New challenges @ 4PM



® New challenges appear at 4PM (= 3 loop) order

® A partial result ("conservative part”) has been
obtained by Bern et al in 2101.07254.

eUnfortunately, it exhibits the same shortcomings as
the 3PM conservative result, only worsened.

*Not only the UR (or zero mass) limit is even more
singular than at 3 PM. Even at finite o the result is IR
divergent (coeff. related to Erad, see below)

®Therefore at 4 PM adding RR is absolutely essential
for recovering a finite result at any d

® The IR divergence has now been cancelled but a full
4PM answer is still unavailable as of this talk.



Gravitational Radiation
and UR "energy crises”

I. A first radiation puzzle
and its (partial) resolution



An “energy crisis”
(ACV 0712.1209, J . Wosiek & 6V 0805.2973)

Gs R?
h b2
2R

REQG\/E, HSNT

Graviton spectrum @ ~ (ngr) > 1

dE,, 5 R? Egyy
L = Gs R® exp (—\kHb[—w—) ;= ~ 1

eveh @ small Os=> E-crisis.



Two approaches

1.A classical GR calculation
(A. Gruzinov & GV, 1409.4555)

2.An amplitfude-based (quantum) calculation

(CC&Coradeschi & GV, 1512.00281, Ciafaloni,
Colferai & GV, 1812.08137)

NB: 2. goes over to 1. in the classical limit in spite of the
two completely different methods!
Both limited to small 65and 6.



The classical limit (NB: a resummation in G!)
Frequency + angular spectrum (s = 4E2, R= 4GE)

ECW E? . b
d G |c|2 . 0=0—-0, :\0, =2R—
dw d29 b

2 2 -
c(w,é) _ / Uty C e—iwx-e [Q—QiRwCI)(x) o 1}
¢
- : 1. (x—b)* b-x
C—Zl?‘l_@y (I)(X):iln 2 | h2

Re (2 and Im (2 correspond to the usual (+, x) GW
polarizations, (2, {*2 to the two circular ones.



Analytic results: a Hawking knee
(& an unexpected bump, not today)



For bl < w <R! the GW-spectrum is almost flat in ®

dECY 4
I 7G6’§E2 log(wR)™*

Below w = bl it "freezes”, giving the expected zero-
frequency limit (ZFL) (Smarr 1977)

dECY 4
R f 0> E* log(6,°)

Above » = R1 drops, becomes “scale-invariant”

/ dECEW E

Hawking kneel! ~ 2=
dw W




(CCCV 1512.00281)

- ——— ..

EEEEEEEEESE

T T TT 7FL




The "scale-invariant” spectrum gives a log w* sensitivity
in the total radiated energy for a cutoff at w = w*

Using, with some motivations, w* ~R-16s2 one gets
(to leading-log accuracy & neglecting largish 6 contr.s ):

EGW 1 B
\/g — % 63 log(es 2)

The URL E-crisis is thus almost solved: we need to go
beyond some approximations made in G&V or CCCV,
find the actual value of w*, and also extend the
method to arbitrary 6.



The Kovacs-Thorne (D'Eath) bound

® Before embarking in those non-trivial calculations
of the URL we (G&V) checked the literature and
asked some experts, including num. rel. guys.

®Each time, after some initial optimism, the feedback
was disappointing...

® Instead, we found Kovacs & Thorne's warning on the
limit of validity of their 1977 result.



THE GENERATION OF GRAVITATIONAL WAVES.
IV. BREMSSTRAHLUNG *t}

SANDOR J. KovAcs, JRr.
W. K. Kellogg Radiation Laboratory, California Institute of Technology
AND

Kip S. THORNE

Center for Radiophysics and Space Research, Cornell University; and
W. K. Kellogg Radiation Laboratory, California Institute of Technology
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ABSTRACT

This paper attempts a definitive treatment of *“classical gravitational bremsstrahlung”—i.e., of
the gravitational waves produced when two stars of arbitrary relative mass fly past each other
with arbitrary relative velocity v, but with large enough impact parameter that

(angle of gravitational deflection of stars’ orbits) « (1 — v2/c?)¥/2,

Os 01/2 << 1 in our notations
T will refer to Os 012 = 1 as the KT bound



L REVIEW D VOLUME 18, NUMBER 4 15 AUG

High-speed black-hole encounters and gravitaticnal radiation

P. D. D’Eath
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, England
(Received 15 March 1977)

Encounters between black holes are considered in the limit that the approach velocity tends to the speed of
light. At high speeds, the incoming gravitational fields are concentrated in two plane-fronted shock regions,
which become distorted and deflected as they pass through each other. The structure of the resulting curvec
shocks is analyzed in some detail, using perturbation methods. This leads to calculations of the gravitational
radiation emitted near the fackward directions. These methods can be applied when the impaci

parameter is comparable td vhere M is a typical black-hole mass and 7y is a typical Lorentz
factor (measured in a centér-of-mass frame) of an incoming black hole. Then the radiation carries
power/solid angle of the gharacteristic strong-field magnitude ¢ °G ~! within two beams occupying a solic
angle of order 7y’ BuMt the methods are still valid whea-the black holes undergo a collision or clo:
encounter, where the/impact parameter is comparable tIn this case the radiation is apparently
not beamed, and th€ calculations describe detailed structure in the radjation pattern close to the forward and
backward directfOns. The analytic e'xpressions for strong-field gravitattepal radiation indicate that a
significant fragfion of the collision energy can be radiated as gravitational wave

KT bound M~y ~+/s; v~ /o Beyond KT bound!




2. New incarnations of
the “energy crisis”

® A recent O(G3) calculation of the total Erad
(HP-MRZ*, 2101.07255) has confirmed KT's result

leading to an “"energy crisis” similar to the one found
in ACVO7 (and "solved" as discussed above).

HP-MRZ= Hermann, Parra-Martinez, Ruf, Zeng



HP-MRZ, 2101.07255 (confirmed in DHRV, 2104.03256)

2

302 -1
El?“ad _ 7TG mlmz(m]_ _I_ m2) fl(o) -&fg(a) ]%0-}-1 +f3(0)0(.‘08h g
b3\/s | 2 2voT — 1
where in ' = 8
80° 8o* 160%(c* — 2)
h=G—oi P73 &= (02 -1)}
while in GR
f — 2100° — 5520° + 3390 — 9120° + 314807 — 33360 + 1151
o 48(0? — 1)7 ’
f 350" + 600" — 15007 + 760 — 5
o 8va? — 1 ‘
f (202 — 3)(350* — 3002 + 11)
3:

8(o? — 1)}

Another "energy
risis" @ fixed 0O
NB: log o cancels



®A warning sign can already be found in the 3PM
result in the ZFL for the URL:

dErad GS Erad
s — 021
o —0;log(o) = 7

®In this case, however, Weinberg et al. tell us how to
fix the problem.

*One can directly study the ZFL for massless
scattering and, as we have already seen, the result is
quite different (and finitel):
dE'rad
202 10g(072)

dw T

~ 0 log(0)

® The price to pay is that it is non-polynomial in G!



URL, radiation & eikonal
(see also CH's talk)

When radiation is included the eikonal phase
needs to be upgraded to an hermitian operator
in order to account for inelastic channels while
preserving unitarity

The above puzzles pushed us to propose an eikonal
operator implicitly containing some resummation of

perturbation theory, reproducing the correct ZFL,
and possibly valid (far?) beyond it.



An improved eikonal operator
in the soft-graviton limit
(DHRV 2204.02378)

® We start from Weinberg's soft theorem in
momentum space (a multiplicationl)

Sgﬂf)N — H f]?“ S(M) (0,Q)

oV
(k) = €5 (R Fu (), PP (k) = 3= el

® We then go over to b-space by FT (=> a convolution)



and arrive at following operator eikonal:

Ss.r.(0,b;a,a") = exp (; /k > i (k)af (k) ﬁ(k)aj(k)}) i Re20(a.b)

where in the f~ we have to use the replacement:
0

0b

® Since Red is O(h1) the classical limit is obtained by
replacing the quantum q with the classical Q:

qg — —th

O0(Re20)
0b

q—Q=nh = Q°**(0,b)




® At this point we can compute various radiative
observables, like the waveforms, the (linear) memory,
and the radiated-energy spectrum in the soft limit
(but at arbitrary c.o.m. velocity).

®| et me concentrate on the latter (more in CH's talk).



Features of the ZFL in the URL

® Rich structure of UR limit emerging

® ITn URL the ZFL depends non trivially on two “scaling
variables”: xi= Q/2mi. One combination is of course
related to v, the other is new, e.qg. faken to be 62 G.

®Dependence on G is non-analytic & a PM expansion in
powers of G (or of the xi) has a finite radius of
convergence, given by (xi=1, x»=1).

® Reason: a singularity at the unphysical points
Xi?z=-1: Q2 = - 4 m;2
corresponding to t-channel thresholds
®This defines quantitatively the KT bound!
®Only the truly massless limit (mi<< Q) is universal



Divergence of URL expansions (dE/d6, v = 1/4)




s —m? —m3 U —m? —m2 Q?
— 1 2 . L 1 2
0 = ,O-Q—— = 0 —

2myimg 2mi1ms 2mimo
. dE® 4G 1\ arccosho 5 1y arccoshog
(})11&) - — 7 2mq{mso (O' — —) =1 — 2mqimso (O’Q — 5) 1
9Q
2 N arccosh (1 + 2%22)
L (TI) 1
2 i Q2 2
GR () -
2 Q’
m% , 02 1 arccosh (1 + 2m§)
to —ma((1+55 ] =3
2 2m2 2 2 . O
(1 + 2%%) — 14 Q@=2psin 52

. AG ! B
iN URL |1+ 57 * 57 10802 + log(162122)

(14 x% + é) cosh ' (14+222) (14 2%+ =) cosh™ (1 +222)]

—
_ 85

V(1 +227)2 -1 V2222 — 1




and in N=8-SUGRA

. dEN=8 4G 5 o, arccosh o 5 5 arccoshog
im = mM1Mo0 — 2mimeo
w—0  dw 78 e Vo2 —1 12re 023—1
Q ( Q )
) (Q?)? arccosh (1 + 2m%> B (Q?)? arccosh (1 + 22 ]
2 2
4m1 \/<1+ Q22)2_1 4m2 \/(1_'_ Q22)2_1 Q:stin%

2m7 2m3

becoming in URL
4G

T

14 log(9_2) +log(162122) — 2 COSh_l(l + 227) 2 COSh_l(l + 2723)
8 i+ —1 /(I +222)2—1

Universality broken at finite xi, recovered only for x;
going to infinity




The URL beyond the ZFL
(DHRYV, in preparation)

*We have only considered the leading order in 0s<< 1.

*Fast fall-off above w* ~ b-103 (~ b1 0-32) appears to
be confirmed.

®A table summarizing the preliminary situation is given
below.



UR frontier @ different w

soft(mb<1)

interm. (1 <o b < c1?2)
(1 <mb< 1/9s)

hard (612 < m b < 63/2)
(Os'1< ob< 9s'3)

0% logo

below

KT

o
w?2b?

92 log (

)

preliminary

03V (wb) ™12
(same) (AE/\s = 03G)AE/Vs = 03/o

“T" |(same)

9—42
_ 3 S
above 62 log 98 1 (98 log (OLJQ H2 )

(AB/V5 = 6?)

05 (wb)™

G4V,

|

AE/\/s = 62 log 72

CCCV

1 dE'ra,d | AErad

Vs dwb T /s

|

under scrutiny



Conclusions

* T have sketched why I believe that the URL of
gravitational scattering is both useful and fun. But that
limit is also interesting on its own:

1. UR collisions of light particles in the very early
Universe may have generated an interesting stochastic
background of GW's (Cf. Weinberg's 1965 calculation of
GW's from NR thermal collisions in the sun).

2.Having developed further our computational tools, we
may try tfo come back to the (35 years-old) goal of
understanding how information is encoded in the S-
matrix for the collapse regime of trans-planckian-
energy collisions.



Additional slides



A classical GR approach
(A. Gruzinov & GV, 1409.4555)

Based on Huygens superposition principle in
Fraunhofer's approximation (needs 0 << 1)

For gravity this includes in an essential way
gravitational time delay in the (AS) shock-
wave metric.



In pictures




A quantum-amplitudes approach
(CCCV, 1512.00281, €CV,1812.08137)

Emission from external and internal legs throughout
the whole ladder (with its suitable phase) has to be
taken into account for not-so-soft gravitons.

One should also take into account the (finite)
difference between the (infinite) Coulomb phase of
a final 3-particle state and that of an elastic 2-
particle state.

When this is done (so far again for 0 < 1), the GR
result of G&V is recovered for hw/E -> Ol



In terms of 3PM sc. angle

2G> (2 ) 2
X3PM = ( n};mga) (S | ( mlgnga) (B+ A+ C))
3

S = L ° < “Schwarzshild.”

3 (02 — 1)3/2
B = —cosh™'(0) - P-MRZ (2PN)

o2 | .\cancel @
A = R < ACV-limit |arge O
C = cosh (o)

half-integer PN!




I. RR from linear response

® Tn 2010.01641 Damour derived the RR part of the
defl. angle in GR via a smart shortcut.

®Used a previous linear response formula with Bini
(1210.2834) relating RR to radiated energy and
angular momentum.

® He argued that, at 3PM, only latter at O(G2) enters

®*He then computed Jrad at O(62) and got the RR
correction to the BCRSSZ deflection angle
recovering smoothness and the ACV90 UR limit.

eDamour’s result has been confirmed by other
more direct techniques.

® Yet, it raises another puzzle (at least for somel)



Which is the true Jrad?
Which is the relevant Jrad?

® How can one radiate angular momentum w/out also
radiating, at the same order in G, energy?

®Looks puzzling at the quantum level if one associates
Ered and Jred with the E & J of emitted gravitons.

® 5. Vilkovisky and myself have been looking into this
question recently (2201.11607).



Which is the “true" Jrad?

® The definition of angular momentum, and of its
loss, is affected by ambiguities related to BMS
transformations (see e.g. Bonga Poisson )

® The shear in the Bondi-Sachs metric is affected by
BMS supertranslations and, under mild conditions, can
be gauged away. This fixes a "canonical Bondi frame
(CBF)". We found the ST removing Damour's shear.

® According to Ashtekar et al. () the angular
momentum of the system at u = - \infty coincides
with JADMonly in the CBF.

® In that gauge Jrd is O(G3), just like Erad,



Which is the "relevant”*) Jrad?

® GV2 also found, however, another Bondi frame
(that we dubbed "intrinsic") with the property that
its light cones coincide, asymptotically, with those
originating from the worldline of the c. 0. m.

*We believe this to be the reason why the Bini-Damour
formula should be used with Jrad computed in the
intrinsic Bondi gauge (IBG).

® Tndeed Jred computed in the IBG is nothing but

Damour's Jrad,
KEXRXKKXKEXKXKXkKkXkkXkkkkkX

*) for the linear response argument



Diagram with branch point at + = 4 m;?

soft graviton

0"
.




