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Confronting theory with observations
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Distributions vary significantly…
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Fig. 6.— Compact BH-NS binaries visible by advanced
LIGO: Properties of the BH-NS binaries detectable by a single
advanced LIGO instrument, scaled in proportion to their detec-
tion probability. Different color and line styles indicate results for
different binary evolution models: high BH kicks (blue); delayed
SN (green); our standard model (black); and optimistic CE (red).
The top and and bottom panels shows the distribution of birth
time tbirth, birth metallicity and chirp mass, respectively. Though
our simulations use a discrete array of metallicity bins, to guide
the eye, their relative contributions have been joined by solid lines;
this histogram makes no correction for the density of metallicity
bins.

generation instruments.
These relatively small uncertainties pale in compari-

son to systematic uncertainties in stellar binary evolu-
tion astrophysics. Comparing our four fiducial binary
evolution models alone shows a wide range of mass dis-
tributions and event rates. Similarly large changes occur
when varying other parameters [ROS: citations] . That
said, advanced-LIGO scale instruments are only sensitive
to the local universe and hence, as a zeroth approxima-
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Fig. 7.— BH-BH binaries visible by advanced LIGO: Prop-
erties of BH-BH binaries detectable by a single advanced LIGO
instrument, scaled in proportion to their detection probability.
Different color and line styles indicate results for different binary
evolution models: high BH kicks (blue); delayed SN (green); our
standard model (black); and optimistic CE (red). Unlike NS-NS
binaries, the detected population of BH-BH binaries was preferen-
tially formed in the early universe over a wide range of metallicities.
Many detectable BH-BH binaries have high chirp mass and form
at significantly subsolar metallicities.

tion, to the parameters
〈

Mc
15/6

〉

and R(0) that enter

into Eq. (2). Crudely speaking, gravitational wave de-
tectors can identify a rate and typical chirp mass for each
type of binary, providing roughly 6 real parameters. Our
astrophysical intuition and simulation results that these
6 real parameters are not populated independently, av-
eraging over all astrophysically plausible models. Con-
versely, we anticipate that by constraining these 6 real
numbers, correlations between these measurements im-
ply they only constrain a few astrophysical parameters
well (e.g., the formation rate of massive binaries) and
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Distributions vary significantly…
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…and for physical reasons, like pair instability
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Pablo Marchant et al.: A new route towards merging massive black holes

Fig. 4. Total masses and orbital periods at core helium depletion for
systems with qi = 1 at four di↵erent metallicities. Dashed lines are
for constant merger times assuming direct collapse into a black hole,
and the shaded region indicates the mass range at which PISNe would
occur, resulting in the total disruption of the stars instead of black-hole
formation. The colored bands represent for each metallicity the relative
number of objects formed.

jects is small, this opens the exciting possibility of eventually
observing primordial black hole mergers at high redshift.

3.4. Mass distribution and mass-ratios

Figure 5 shows the predicted intrinsic chirp-mass distribution for
BH+BH mergers for our di↵erent metallicity grids, again assum-
ing no mass loss in the BH-formation process. The most promi-
nent feature is the prediction of a clear gap in this distribution,
which occurs because systems which would otherwise populate
this gap do not appear since the stars explode as pair-instability
supernovae without leaving a stellar remnant. The BH progeni-
tors in the systems above the gap also become pair unstable, but
the explosive burning can not reverse the collapse which leads
straight to the formation of a black hole (Heger & Woosley 2002;
Langer 2012).

There is a strong general trend towards higher chirp masses
with decreasing metallicity. At the lowest metallicity (Z =
Z�/50) we produce also BHs above the PISN gap. While ob-
viously their number is smaller than the number of BH systems
below the gap, they may still be significant as the amplitude of
the gravitational-wave signal is a strong function of the chirp
mass (cf. Sect. 4).

As indicated in Fig. 5, the vast majority of merging sys-
tems have passed through a contact phase. Since both stars are
relatively unevolved when they undergo contact, these contact
phases result in mass transfer back and forth until a mass-ratio
q ' 1 is achieved. This is depicted in Figure 6, where final mass-
ratios are shown for systems with qi = 0.9, 0.8 and Z = Z�/50.
For each mass-ratio, two distinct branches are visible, corre-
sponding to systems that undergo contact and evolve to q ' 1,
and systems that avoid contact altogether. Owing to the strong
dependence of mass-loss rates with mass, at high masses, even
systems that avoid contact altogether evolve towards q = 1.

Mandel & de Mink (2016) model this channel without in-
cluding contact systems and find an important number of bina-
ries forming double BHs from progenitors below the PISN gap,
with final mass-ratios in the range of 0.6 to 1, reflecting just a
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Fig. 5. Stacked distribution of chirp masses of BH+BH systems formed
at di↵erent metallicities, such that they merge in less than 13.8 Gyr. The
contribution from each metallicity is scaled assuming a flat distribution
in Z. At very short periods, systems are already at contact at the ZAMS.

Fig. 6. Mass-ratios of BH+BH systems resulting from our modelled
systems for qi = 0.9 and qi = 0.8 and a metallicity Z = Z�/50 under
the assumption that no mass is lost during collapse. The shaded region
indicates the limits for the occurrence of PISNe.

small shift from the initial mass-ratio distribution due to mass
loss. However, Mandel & de Mink (2016) do not perform de-
tailed stellar evolution calculations. They check whether their
binary components underfill their Roche-radii at the ZAMS, and
then assume that this will remain so in the course of the quasi-
homogeneous evolution of both stars. When considered in detail,
however, in particular the more massive and more metal-rich
stars undergo some expansion during core hydrogen burning,
even on the quasi-homogeneous path (Brott et al. 2011; Köh-
ler et al. 2015; Szécsi et al. 2015), likely due to the increase
of their luminosity-to-mass-ratio and the related approach to the
Eddington limit (Sanyal et al. 2015). As a result, the vast major-
ity of the binaries considered by Mandel & de Mink (2016) enter
contact when computed in detail. Therefore, our final mass-ratio
distribution is much more strongly biased towards q = 1.

Article number, page 5 of 13
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…or multiple mergers and single star evolution
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Nuclear Star Clusters

Antonini and Rasio 2016

Black holes in nuclear star clusters 11

Fig. 6.— Same as Figure 5 but for Z = 0.25 Z�.

NSCs and GCs obtained from our models. NSCs are
defined here as clusters with masses in the range 5 ⇥
106 � 5 ⇥ 107 M�, while GCs have masses in the range
105 � 107 M�. We assumed that all clusters formed
12 Gyr ago regardless of their mass and consider two
values of metallicities, Z = 0.01 and 0.25 Z�. In order
to obtain the mean rate of mergers we weighted the num-
ber of mergers from each of the cluster models by a clus-
ter initial mass function (CIMF). For GCs we assume a
power law CIMF: dM/dN ⇠ M�2 (e.g., Bik et al. 2003).
For NSCs the initial mass function is largely unknown.
Here we take the IMF of NSCs directly from the mass
distribution of NSCs at z = 2 from the galaxy forma-
tion models of Antonini et al. (2015b) (their Figure 10).
These models produce a mass distribution at z = 0 that
is consistent with the observed NSC mass distribution
from Georgiev et al. (2016). We note that here we might
be underestimating the number of massive mergers from
NSCs occurring at low redshift because we have assumed
that these systems are as old as Galactic GCs. In fact,
while most NSCs appear to be dominated by old stellar
components they are also known to have a complex star
formation history and to contain young stellar popula-
tions which can produce high mass mergers also at later
times (we will come back to this point below). It is also
possible that a large fraction of the NSC stars accumu-
lated gradually in time by infalling globular clusters that

decayed to the center through dynamical friction. If this
process is the main mechanism for NSC formation, then
NSCs and GCs will comprise similar stellar populations
(Antonini 2014).
Table 1 shows that our models predict a few thousands

BH mergers per NSC over 12 Gyr of evolution. This
expectation also appears to be consistent with previous
estimates (Portegies Zwart & McMillan 2000; Miller &
Lauburg 2009). In addition, NSCs produce between 50 to
⇡ 500 BH mergers with high mass > 50M� at z < 0.3 de-
pending on the BH spin magnitudes and assumed metal-
licities distribution of the underlining stellar population.
Our GC models produce only a few mergers per cluster
within z < 0.3 and total mass > 50 M�. These massive
binaries are found to form only in the most massive GCs
(Mcl & 106M�).
The number of massive mergers at low redshift is also

sensitive to the spin magnitude distribution we assume.
For high spin models, a smaller number of BHs are re-
tained in the clusters compared to the uniform spin mod-
els. Consequently, high spin models produce fewer high
mass BH mergers at low redshift compared to models
that assume low spins. However, in either spin models a
number of inspiraling BH binaries with mass & 50 M� is
found to merge at low redshift. Finally, Table 1 gives the
number of BH mergers that are retained inside the clus-
ter. Between 10 and 20 percent of high mass (> 50 M�)
mergers occurring in NSCs at z < 1 are retained inside

Highest Mass 
BHs

Multiple BH 
Mergers

Spins ~ 0.7

1.5 Gpc�3yr�1

Nuclear Star Clusters

Antonini and Rasio 2016  
[see Carl Rodriguez talk]



…that may be observationally accessible soon
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Fig. 5. Left panel: Observer frame (redshifted) total merger mass dis-
tribution for our models: with (M10; magenta broken line) and with-
out (M1; red solid line) pair-instability pulsation supernovae and pair-
instability supernovae included. The fiducial O2 LIGO upper limits
are marked; the most likely detections are expected when our models
are above these upper limits. Note that both models are hardly dis-
tinguishable by total merger mass with O2 observations, despite the
fact that more massive BH-BH mergers are produced in model M1.
The two detections and the next loudest gravitational-wave event from
LIGO O1 observations (The LIGO Scientific Collaboration et al. 2016)
are marked: GW150914 (36 + 29 M⊙ BH-BH merger at z ≈ 0.1),
GW151226 (14 + 8 M⊙ BH-BH merger at z ≈ 0.1), and LVT151012
(23 + 13 M⊙ BH-BH merger at z ≈ 0.2). Right panel: Source frame
BH-BH merger rate density for the local Universe. The local source
frame BH-BH merger rate density estimated by LIGO from the O1 run:
9 − 240 Gpc−3 yr−1 (range marked with blue arrows) may be compared
to our local (z < 0.1) source frame rate of RBHBH ≈ 220 Gpc−3 yr−1 (M1
and M10 models). Both model rate densities are almost the same and
are within the LIGO estimate. We additionally show the results for our
pessimistic model (M3) with high natal kicks: RBHBH ≈ 7 Gpc−3 yr−1
(just below of the LIGO allowed range).

∝ t−1delay (Dominik et al. 2012; Belczynski et al. 2016a). We also
show (Fig. 4) our pessimistic model with high compact object
natal kicks (M3). The local merger rate density is rather low:
RBHBH ≈ 7 Gpc−3 yr−1 (z < 0.1). Within the framework of our
model assumptions and simplifications (see Sec. 3) this model is
in tension with the LIGO estimate. This statement is subject to
degeneracy with other thus far untested model parameters that
could potentially increase the BH-BH merger rate density. For
example, an increase in the SFR at high redshifts (z > 2) with
respect to our adopted model (which is hard to exclude due to
rather weak observational constraints) could potentially bring
the high kick model back into agreement with the LIGO esti-
mate. We plan to present a detailed study of this and other similar
degeneracies when more stringent rate constraints appear from
LIGO’s next observation run (O2) in 2017. At the moment it

seems that full natal kicks (adopted in M3; see Sec. refmodel)
for black holes and heavy neutron stars are not supported by the
LIGO data.

Figure 5 shows the total redshifted (observer frame)
mass (Mtot,z = Mtot(1 + z)) distribution of NS-NS/BH-
NS/BH-BH mergers within the LIGO reach of the pro-
jected O2 scientific run with a NS-NS average detection dis-
tance of dnsns = 120 Mpc. The detection distance corre-
sponds to the optimistic O2 target sensitivity described by
The LIGO Scientific Collaboration et al. (2013). For compari-
son, O1 observations were sensitive only to dnsns = 70
Mpc. We have assumed that the O2 run will last 6 months,
and will produce 65 days of coincident data (duty cycle
p = 0.36 of two LIGO detectors observing simultaneously).
We have adopted a fiducial O2 noise curve (“mid-high”)
from The LIGO Scientific Collaboration et al. (2013). We show
both of our models and contrast them with the fiducial esti-
mate of the sensitivity of the O2 run (O2 expected upper lim-
its). In mass bins where our models are above the upper lim-
its (Mtot,z = 14–150 M⊙) we predict the most likely detections,
and detections are less likely in mass bins in which our models
are significantly below the upper limits (Mtot,z < 14 M⊙: NS-NS
mergers and most BH-NS mergers, and Mtot,z > 150 M⊙: the
heaviest and most redshifted BH-BH mergers). The most likely
detections are expected in three mass bins that exceed O2 upper
limits by the highest factors: Mtot,z = 25–73 M⊙.

In Table 1 we list local (within redshift of z < 0.1) merger
rate densities, as well as predicted O2 detection rates (RO2 yr−1).
The detection rate is easily transformed into a number of ex-
pected detection events in the O2 observational run (e.g., assum-
ing 65 effective O2 observation days): Rdet = (65/365)RO2. We
find that for our standard evolutionary model, whether or not
we include pair-instability pulsation supernovae (with the asso-
ciated mass loss) and pair-instability supernovae (with the total
disruption of BH progenitors), BH-BH mergers will dominate
the gravitational wave detections. In particular, we expect about
∼ 60 BH-BH merger detections in the O2 run for our standard
evolutionary assumptions (about 1 per day of coincident obser-
vations of two LIGO detectors). The prediction is significantly
lower for our pessimistic model M3; only ∼ 2 BH-BH merger
detections in the entire O2 run. Since model M3 is already be-
low the LIGO empirical estimate we expect more detections than
predicted in this model, and thus ! 2 detections.

In the mass regime in which we predict detections, bothmod-
els (M1 and M10) are almost indistinguishable (Fig. 5). Only at
very high total BH-BH merger mass (Mtot,z > 150 M⊙) are the
two models visibly different; the model with PPSN/PSN (M10)
does not extend to as high total merger mass as the model that
does not include PPSN/PSN (M1). The mass range in which the
two models differ significantly is not likely to be deeply probed
with the LIGO O2 observations. The number of expected detec-
tions in the entire O2 run is 3.5 and 1.5 for a total redshifted
merger mass of Mtot,z > 145 M⊙ and > 163 M⊙, respectively
for model M1, while it is 0.2 and 0 for Mtot,z > 145 M⊙ and
> 163 M⊙, respectively, for model M10. This is not a signifi-
cant difference, especially if the uncertainties on the maximum
mass of a black hole are taken into account (see Sec. 2). How-
ever, since the sensitivity of LIGO during the O2 observations
is already projected to be on the verge of distinguishing the two
models, it seems likely that the fully-advanced design sensitivity
will provide useful constraints on PPSN mass loss.

Article number, page 8 of 10
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Familiar statistical challenge
• Inference via Poisson likelihood + bayes

!

!

!

• Same likelihood for nonparametric, 
parametric, and physical models


•         expected n (selection bias)

•            measurements and error

•          binary parameter distribution, 

given model parameters

!

• Informal approaches: weighted histograms 
(=gaussian mixture models)
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Ivezic et al, Statistics, data mining, and machine learning in astronomy 
Gregory and Loredo (discrete photon light curves) !
ROS PRD 2013    
Hogg and Bovy 
W. Farr, LIGO LIGO-T1600562; Mandel, Farr, Gair LIGO-P1600187 
ROS LIGO T1600208
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http://adsabs.harvard.edu/abs/2013PhRvD..88h4061O
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Distinguishing a discrete model set straightforward
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Figure 5. The median posterior probability for each model in the
set of Dominik et al. (2012) models after an O1 like observing pe-
riod of 0.16 years, calculated from 10000 repeats. The model which
observations were drawn from is shown on the axis labelled Uni-

verse. The models which these observations were then compared
to is labelled Model, so that the probabilities in each row sum to
one. Models 0-11 are described in Table 1. The two submodels, A
and B, are described in Section 2.2.2.

model.
In cases where one or few models have a high prob-

ability, these would be distinguishable from the other
models. However, all models with a high probability
would be consistent with the observations. We reiterate
that here we restrict attention to the models in Dominik
et al. (2012). Of course these do not cover the full space
of binary merger predictions. If we were to include a
broader range of models, it is likely that the conclusions
we are able to draw would be weaker as various models
would lead to comparable rates and mass distributions.
Nonetheless, some of the conclusions we reach, such as
excluding a number of models if there are no observations
in O1, are robust.
We first observe that, for the most part, we would

be able to distinguish between submodels A and B that
correspond to di↵erent common envelope scenarios (see
Sec. 2.2.2). This is unsurprising as the predicted rates
for the majority of models are significantly higher for
submodel A (cf. Table 2). Models which predict low de-
tection rates for model A remain degenerate with those
in model B. The mass distribution from such a small
sample does not provide enough additional information
to break these degeneracies in the rates. For example,
model 1 A uses a very high, fixed envelope binding en-
ergy, meaning that most binaries entering a common en-
velope event fail to throw o↵ the common envelope and
merge, causing them to never form BBH systems (for
a more detailed discussion of this, see Dominik et al.
(2012)). On the other hand, submodel B does not allow
a binary to survive a common envelope event if the donor
is on the Hertzsprung Gap, and so again, many binaries
merge and never form BBHs. This generically lowers the
merger rates and thus detection rates for submodel B
models, leading to the degeneracy visible in the upper
right quadrant of Fig. 5.

Another interesting example involves models 4 and 8
that, in the pessimistic submodel B, are consistent with
no observations at all during O1. Hence, they cannot
be distinguished from each other, or indeed model 8 A,
although they are favoured over all other models if indeed
no detection are made.
Within the two submodels, it is di�cult to identify

the correct model. Indeed, there are numerous varia-
tions which would be indistinguishable from the standard
model. The only model which can be clearly identified is
model 11, a model which reduces the strength of stellar
winds by a factor of 2 over the standard model. We now
discuss why we are able to distinguish this model from
the others in such a short observational period.

6.2. Stellar winds

In massive O-type stars, stellar winds of high tem-
perature charged gas are driven by radiation pressure.
In Wolf–Rayet stars mass loss rates can be as high as
10�4M�yr�1 (Nugis & Lamers 2002). This can cause
stars to lose a large amount of mass prior to the super-
nova. Theoretical uncertainties in modelling these mass
loss rates therefore translate into uncertainties in the
pre-supernova masses for massive stars. Dominik et al.
(2012) examine the e↵ects of reducing the strength of
stellar winds by a factor of 2 on the distribution of BBHs
in their Variation 11. Firstly, reducing stellar winds re-
sults in stars having a higher mass prior to supernova
than they would otherwise have. This in turn leads to
more mass falling back onto the compact object during
formation, which reduces the magnitude of natal kicks
given to black holes. This results in more systems sur-
viving the supernova (rather than being disrupted) and
increases the merger rates. More massive pre-supernova
stars also form more massive remnants, resulting in the
most massive BBH having a chirp mass of ⇠ 64M� with
reduced stellar winds compared to ⇠ 37M� using the
standard prescription. Finally, reducing the strength of
stellar winds allows stars with a lower zero age main se-
quence mass to form black holes due to more mass being
retained. This can boost the BBH merger rate compared
to the standard model.
All of these e↵ects combined mean that Variation

11 predicts BBHs with characteristically higher chirp
masses, as well as predicting a much higher merger rate
than all other models (even for the pessimistic submodel
B in O1, Variation 11 predicts O(10) observations). We
therefore expect that we would be able to correctly dis-
tinguish a universe following Variation 11 from all other
models with relatively few observations. In Figure 6 we
show the median posterior probability for each model
as a function of the observation time, based on 10000
redraws of the observations. We find that when draw-
ing observations from a universe following Variation 11
we overwhelmingly favour it within the duration of O1,
with O(10) observations.

6.3. Second aLIGO observing run (O2)

We now turn our attention to the second observing run,
O2, and investigate which models can be distinguished
using the much larger time-volume surveyed by O2. In
Figure 7 we again show a matrix plot showing the (me-
dian) posterior probability for each model after a period
corresponding to the O2 run.

Stevenson, Ohme, Fairhurst (1504.07802), based on Dominik et al 2012 
See also Miyamoto et al, GWPAW 2016; Dhani, Mukerjee et al 2016 (LVC meeting)

but this is driven by large rate differences. Rate is highly degenerate with other factors…
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Figure 6. The median posterior probability for each of the models
in the set as a function of observation time for a period of time cor-
responding to the aLIGO O1 run (0.16 years). GW observations are
drawn from a universe following Variation 11, submodel B which
reduces the strength of stellar winds by a factor of 2 compared to
the standard model. The blue (solid) line shows the median pos-
terior probability for Variation 11 taken from 10000 repeats, and
the shaded error bar shows the 68% confidence interval. Variations
0,2,5,6,7 & 10 are plotted in green (dot-dash), while variations 1,3
& 9 are plotted in black (dotted). Variations 4 & 8 predicting ⇠ 0
observations in O1 are plotted in red (dashed).

Figure 7. The median posterior probability for each model in
the set of Dominik et al. (2012) models after an O2 like observing
period of 0.32 years with a detector more sensitive than the early
aLIGO noise curve by a factor of 2. The median is calculated based
on 10000 redraws of the observations. The model which observa-
tions were drawn from is shown on the axis labelled Universe. The
model which these observations were then compared to is labelled
Model. Models 0-11 are described in Table 1. The two submodels,
A and B, are described in Section 2.2.2.

Figure 7 has a more diagonal form than Figure 5,
meaning that in many cases the correct model is favoured
and others are disfavoured within the O2 period. In par-
ticular, the optimistic and pessimistic submodels A and
B become almost entirely distinct from each other. This
is because most of the Dominik et al. (2012) models pre-

dict O(100) (O(10)) observations during the O2 period
for the optimistic (pessimistic) submodels respectively
(as shown in Table 2). Furthermore, the majority of
variations in submodel A can be unambiguously identi-
fied; the exception being that the standard model which
remains degenerate with models 5, 6 and 7, as we dis-
cuss in detail in Section 6.3.1. For the pessimistic sub-
model B, the standard model remains indistinguishable
from a number of other variations. However, there are a
few models which can be clearly distinguished, including
models 4 and 8 (that predict significantly lower rates),
and 9, 10 and 11. All of these models predict tens of
observations and consequently, we are able to use infor-
mation from both the chirp mass distribution and the
detection rate to help distinguish models. Model 10 in-
volves the variation of the supernova engine, which we
elaborate on in Section 6.3.2.

6.3.1. Black hole kicks and maximum neutron star mass

Not all models are distinguishable, even with the
O(100) observations predicted by the optimistic sub-
model A for O2. For example, in Figure 7 we see that the
standard model is degenerate with Variations 5, 6 and 7.
We now explain why this is so.
As already mentioned, it is unclear what the correct

distribution of natal kicks given to black holes upon for-
mation is. In order to investigate the possibilities, Do-
minik et al. (2012) vary two parameters relating to the
kicks imparted onto newly formed black holes; the char-
acteristic velocity � and the fraction of mass fb which
falls back onto the newly born black hole.
In their standard model, black holes receive a kick vk

whose magnitude v
max

is drawn from a Maxwellian distri-
bution with � = 265km s�1, and reduced by the fraction
of mass falling back onto the black hole fb as

vk = v
max

(1� fb), (28)

where fb is calculated using the prescription given in
Fryer et al. (2012).
In order to test the e↵ects of smaller natal kicks, in

Variation 7 Dominik et al. (2012) reduce the magnitude
of kicks given to neutron stars and black holes at birth by
a factor of 2. They use a Maxwellian distribution with
� = 132.5km s�1. For BBHs, this has very little e↵ect
on the chirp mass distribution, and so one cannot expect
to be able to distinguish this model from one using full
kicks.
The same holds true when the maximum neutron-star

mass is increased (decreased) from its fiducial value in
the standard model of 2.5M�. This has very little im-
pact on the BBH chirp mass distribution and so there
is e↵ectively a degeneracy between these models. This
could be resolved by also including BNS observations in
the comparison. We do not do this here as we concen-
trate on the BBH predictions, due to the prediction by
Dominik et al. (2012) that these will dominate the early
aLIGO detections.

6.3.2. Supernova engine

In their standard model, Dominik et al. (2012) employ
the Fryer et al. (2012) prescription to calculate the frac-
tion of mass falling back onto the black hole during for-
mation, and thus the black hole masses. In particular,

O1-scale O2-scale

https://emvogil-3.mit.edu/gwpaw2016/presentations/gwpaw2016_miyamoto.pdf
https://www.researchgate.net/publication/289525248_Distinguishing_population_synthesis_models_of_binary_black_holes_using_gravitational-wave_observations


Distinguishing a discrete model set straightforward

• Mass distributions alone are more similar, given measurement error
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Rates only Mass distribution only

Figure 8. Probabilities for the scenario of Fig. 7, separated into contributions from the rates (left) and the mass distribution (right).

ing information about binary evolution. Ignoring other
families of compact binaries also allowed us to avoid am-
biguities in discerning the family of the source (BNS,
NSBH or BBH) due to degeneracies which exist in mea-
suring the mass ratio for these systems (Hannam et al.
2013), although this can be dealt with in the future (Farr
et al. 2013).
All these considerations have to be carefully taken into

account in future studies. However, our results indicate
that the upcoming generation of advanced GW detectors
will soon start putting non-trivial bounds on current and
future binary evolution models, and analyses like the one
presented here will provide an important basis to link
theoretical models with GW observations.
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Figure 6. The median posterior probability for each of the models
in the set as a function of observation time for a period of time cor-
responding to the aLIGO O1 run (0.16 years). GW observations are
drawn from a universe following Variation 11, submodel B which
reduces the strength of stellar winds by a factor of 2 compared to
the standard model. The blue (solid) line shows the median pos-
terior probability for Variation 11 taken from 10000 repeats, and
the shaded error bar shows the 68% confidence interval. Variations
0,2,5,6,7 & 10 are plotted in green (dot-dash), while variations 1,3
& 9 are plotted in black (dotted). Variations 4 & 8 predicting ⇠ 0
observations in O1 are plotted in red (dashed).

Figure 7. The median posterior probability for each model in
the set of Dominik et al. (2012) models after an O2 like observing
period of 0.32 years with a detector more sensitive than the early
aLIGO noise curve by a factor of 2. The median is calculated based
on 10000 redraws of the observations. The model which observa-
tions were drawn from is shown on the axis labelled Universe. The
model which these observations were then compared to is labelled
Model. Models 0-11 are described in Table 1. The two submodels,
A and B, are described in Section 2.2.2.

Figure 7 has a more diagonal form than Figure 5,
meaning that in many cases the correct model is favoured
and others are disfavoured within the O2 period. In par-
ticular, the optimistic and pessimistic submodels A and
B become almost entirely distinct from each other. This
is because most of the Dominik et al. (2012) models pre-

dict O(100) (O(10)) observations during the O2 period
for the optimistic (pessimistic) submodels respectively
(as shown in Table 2). Furthermore, the majority of
variations in submodel A can be unambiguously identi-
fied; the exception being that the standard model which
remains degenerate with models 5, 6 and 7, as we dis-
cuss in detail in Section 6.3.1. For the pessimistic sub-
model B, the standard model remains indistinguishable
from a number of other variations. However, there are a
few models which can be clearly distinguished, including
models 4 and 8 (that predict significantly lower rates),
and 9, 10 and 11. All of these models predict tens of
observations and consequently, we are able to use infor-
mation from both the chirp mass distribution and the
detection rate to help distinguish models. Model 10 in-
volves the variation of the supernova engine, which we
elaborate on in Section 6.3.2.

6.3.1. Black hole kicks and maximum neutron star mass

Not all models are distinguishable, even with the
O(100) observations predicted by the optimistic sub-
model A for O2. For example, in Figure 7 we see that the
standard model is degenerate with Variations 5, 6 and 7.
We now explain why this is so.
As already mentioned, it is unclear what the correct

distribution of natal kicks given to black holes upon for-
mation is. In order to investigate the possibilities, Do-
minik et al. (2012) vary two parameters relating to the
kicks imparted onto newly formed black holes; the char-
acteristic velocity � and the fraction of mass fb which
falls back onto the newly born black hole.
In their standard model, black holes receive a kick vk

whose magnitude v
max

is drawn from a Maxwellian distri-
bution with � = 265km s�1, and reduced by the fraction
of mass falling back onto the black hole fb as

vk = v
max

(1� fb), (28)

where fb is calculated using the prescription given in
Fryer et al. (2012).
In order to test the e↵ects of smaller natal kicks, in

Variation 7 Dominik et al. (2012) reduce the magnitude
of kicks given to neutron stars and black holes at birth by
a factor of 2. They use a Maxwellian distribution with
� = 132.5km s�1. For BBHs, this has very little e↵ect
on the chirp mass distribution, and so one cannot expect
to be able to distinguish this model from one using full
kicks.
The same holds true when the maximum neutron-star

mass is increased (decreased) from its fiducial value in
the standard model of 2.5M�. This has very little im-
pact on the BBH chirp mass distribution and so there
is e↵ectively a degeneracy between these models. This
could be resolved by also including BNS observations in
the comparison. We do not do this here as we concen-
trate on the BBH predictions, due to the prediction by
Dominik et al. (2012) that these will dominate the early
aLIGO detections.

6.3.2. Supernova engine

In their standard model, Dominik et al. (2012) employ
the Fryer et al. (2012) prescription to calculate the frac-
tion of mass falling back onto the black hole during for-
mation, and thus the black hole masses. In particular,

O2-scale, no rate infoO2-scale, as before



Theory and modeling challenge

• Robust theoretical control (or parameterization) over everything?

• Massive evolution and J transport (with rotation, winds, extra mass loss)?

• SN

• Binary physics:tidal coupling, common envelope, supereddington accretion, …

• Initial conditions: 


• IMF (at low Z ?)

• SFR over all time

• Z distribution

!

• How much progress can we make in 5 years?

11



cost =                 ~200  (d=10,n=1000)

Theory and modeling challenge: by force?
• Computational limits example: isolated evolution


• ~ 1000 binaries/hour/core

• 20 M binaries for an accurate result -> 20k CPU-hours (kSU)

• With 50 MSU, limited to 2500 simulations (!)…


• But: easy to optimize:   ~ 4000 distinct simulations by ROS et al 2008 
(0706.4139), with <<1 MSU

!

• Can we find a model matching the data? 

• “Understood” model with d parameters: 

• use hierarchical search + likelihood interpolation

•                       new simulations per refinement (factor 4 in n)   

!

• Conservative — assumes all parameters always significant

• “Complicated”: brute-force grid in d parameters: impossible unless ~ universal             


12

ROS et al 2010,2008

d(d + 1)/2
d(d + 1)

2
log4 n

cost = nd/2

http://adsabs.harvard.edu/abs/2008ApJ...675..566O
http://adsabs.harvard.edu/abs/2010ApJ...716..615O
http://adsabs.harvard.edu/abs/2008ApJ...675..566O


Mass ratio/spin: degenerate or not?  [B. Farr talk]

• “Nonprecessing” binaries:

• Strong degeneracy between q, spin at low(er) mass

• Limits ability to probe mass-ratio dependent questions:


• “mass gap” between BH, NS [Farr talk]

• “Deconvolution” may be possible…requires high #s.

!

!

• Identifiably precessing binaries (e.g., BH-NS)

• Precession not always identifiable…but…

• Spin measurements enable very informative spin distribution

• Mass ratio accuracy lets you probe mass gaps, NS mass 

function, …

13



Beyond the mass distribution: Power of spin

• High mass binaries may be strictly and positively aligned (fallback)

• Low spins required for GW150914…possible?      [Kushnir et al]


• Tells us something about how massive stars evolve? About tides?

• Or favors dynamics?
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FIG. 7. Aligned spin components not constrained [aligned only
shown]: Colors represent the marginalized log likelihood as a func-
tion of the aligned spin components �1,z and �2,z. Each point rep-
resents an NR simulation; only nonprecessing simulations are in-
cluded. Points with 265.8 < ln L < 268.6 are shown in light
gray, with ln L > 268.6 are shown in black, and with ln L < 265.8
are shown according to the color scale on the right (points with
lnLmarg < 172 have been suppressed to increase contrast). [The
quantity ln L is the maximum value of lnLmarg with respect to mass;
see Eq. (7).] Consistent with our other results, flow = 30 Hz. For
comparison, the solid black contours show the 90% credible intervals
derived in LVC-PE[1], assuming spin-orbit alignment and omitting
corrections for waveform systematics. The solid and dashed green
contours are the nominal 90% credible interval derived using an ap-
proximation to our data for lnLmarg, assuming both spins are exactly
parallel to the orbital angular momentum, for l = 2 (solid) and l = 3
(dashed), respectively; see Section IV B for more details.

Figure 5.
The di↵erences between the results reported here and

LVC-PE[1] should be considered in context: not only does
our study employ numerical relativity without analytic wave-
form models, but it also adopts a slightly di↵erent starting
frequency, omits any direct treatment of calibration uncer-
tainty, and employs a quadratic approximation to the likeli-
hood. That said, comparisons conducted under similar lim-
itations and using real data, di↵ering only in the underlying
waveform model, reproduce results from LALInference; see
PE+NR-Methods[10] for details.

By assuming the binaries are strictly aligned but permitting
generic spin magnitudes, our analysis (and that in LVC-PE[1])
neglects prior information that could be used to significantly
influence the posterior spin distributions. For example, the
part of the posterior in the bottom right quadrant of Figure 7
is unstable to large angle precession [100]: if a comparable-
mass binary formed at large separation with �1,z > 0 and
�2,z < 0, it could not remain aligned during the last few orbits.
Likewise, the astrophysical scenarios most likely to produce
strictly aligned binaries — isolated binary evolution — are
most likely to result in both �1,z, �2,z > 0: both spins would be

strictly and positively aligned (see, e.g, [101]). In that case,
only the top right quadrant of Figure 7 would be relevant. Us-
ing the analytic tools provided here, the reader can regenerate
approximate posterior distributions employing any prior as-
sumptions, including these two considerations.

C. Transverse and precessing spins

Figure 8 shows the maximum likelihood for the available
NR simulations, plotted as a function of the magnitude of the
aligned and transverse spin components. The figure shows
that there are both precessing and nonprecessing simulations
that have large likelihoods (black points), indicating that many
precessing simulations are as consistent with the data as non-
precessing simulations. Moreover, simulations with large pre-
cessing spins are consistent with the GW150914: many con-
figurations have �e↵ ' 0 but large spins on one or both BHs in
the binary. Keeping in mind the limited range of simulations
available, the magnitude and direction of either BHs spin can-
not be significantly constrained by our method.

Not all precessing simulations with suitable q, �e↵ are con-
sistent with GW150914; some have values of ln L that are
not within 10 of the peak; see the right panel of Fig. 8) The
marginal log-likelihood ln L depends on the transverse spins,
not just the dominant parameters (q, �e↵ ,Mz). As a concrete
illustration, Figure 9 shows that the marginalized log likeli-
hood depends on the specific direction of the transverse spin,
in the plane perpendicular to the angular momentum axis.
Specifically, this figure compares the peak marginalized log
likelihood (ln L) calculated for each simulation with the value
of ln L predicted from our fit to nonprecessing binaries. For
precessing binaries, ln L is neither in perfect agreement with
the nonprecessing prediction, nor independent of rotations of
the initial spins about the initial orbital angular momentum by
an angle �.

While the transverse spins do influence the likelihood,
slightly, the data do not favor any particular precessing con-
figurations. No precessing simulations had marginalized like-
lihoods that were both significant overall and significantly
above the value we predicted assuming aligned spins. In other
words, the data do not seem to favor precessing systems, when
analyzed using only information above 30 Hz.

Our inability to determine the most likely transverse spin
components is expected, given both our self-imposed restric-
tions ( flow = 30 Hz) and the a priori e↵ects of geometry. For
example, the lack of apparent modulation in the signal re-
ported in LVC-detect[2] and LVC-Burst[4] points to an ori-
entation with J parallel to the line of sight, along which
precession-induced modulations are highly suppressed. In ad-
dition, the high mass and hence extremely short observation-
ally accessible signal above 10 Hz provides relatively few cy-
cles with which to extract this information. The timescales
involved are particularly unfavorable to attempts to extract
precession-induced modulation from the pre-merger signal:
the pre-coalescence precession rate for these sources is low
(⌦p ' (2 + 3m2/m1)J/2r3 ' 2⇡ ⇥ 1 Hz( f /40 Hz)5/3 for this
system, where J is the magnitude of the total orbital angu-

Abbott et al  2016 (1606.01262)

Pablo Marchant et al.: A new route towards merging massive black holes

Fig. 8. Angular-momentum profiles at core helium depletion for the
primary stars of binaries from our grid that result in double-helium-
star binaries. Shown are stars of three di↵erent initial masses in bi-
naries with similar initial orbital periods, at metallicities of Z =
Z�/50,Z�/20,Z�/10. The curves for the specific angular momentum
of the last stable orbit for a non-rotating (Schwarzschild) and critically
rotating (Kerr) black hole are also included.

3.9. Explosive mass loss and momentum kicks

In all models below the pair-instability regime we expect the for-
mation of black holes. If the whole star collapses without eject-

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
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Fig. 9. Kerr parameter as function of the final system mass, for our
models at Z = Z�/50,Z�/20,Z�/10, assuming a complete collapse of
our helium stars to black holes. Binaries indicated through symbols with
a red frame have merger times which exceed the Hubble time.

Fig. 10. The evolution in the Tc � ⇢c-diagram for the three stellar mod-
els at Z = Z�/50 (with the masses at helium depletion as indicated)
calculated to the final evolutionary stage. The shaded region shows the
region that is unstable to pair creation. Both the 35 M� and the 200 M�
stars collapse to form black holes, while the 90 M� is disrupted in a
PISN.

ing any mass or energy, the masses and periods in Figure 4 would
also represent the masses of the final black holes and the post-
collapse orbital periods. On the other hand, as our helium stars
tend to be rapidly rotating, some of them may go through a col-
lapsar phase (Woosley 1993), producing LGRBs, in which part
of the collapsing star is ejected, and the binary orbit may receive
a supernova kick. The e↵ect of the mass loss would be to reduce
the final black-hole masses (and to reduce the strength of any
eventual gravitational-wave signal) and widen the system (and
increase the merger time), while the e↵ect of a kick can be to ei-
ther increase or decrease the orbital period and the merger time
(see Appendix A for a more detailed discussion). While the de-
tails of the collapse phase are still very uncertain, which may
have an e↵ect on the BH+BH detection rates, our main conclu-
sions are not dependent on these.

In any case, the final angular-momentum profiles of our
models (see Sect. 3.7) suggest that only the lowest-mass models
(Mfinal ⇠< 40 M�) at the two lowest metallicities (Z = Z�/20,
Z�/50) may retain enough angular momentum in the core to
be good LGRB candidates. Nevertheless, because of the large
amount of available angular momentum, we expect many of the
BHs formed in this scenario to be rapidly rotating, with the spin
parameter roughly scaling inversely with the final orbital pe-
riod shown in Fig. 4 (i.e. the largest spins are expected for the
lowest-mass BHs at the lowest metallicity). Finally, we note that,
below the disruptive PISN regime, there is a regime of pulsa-
tional PISNe (Chatzopoulos & Wheeler 2012), where substantial
mass loss is expected but a BH is nevertheless ultimately formed
(Woosley et al. 2007).

4. Merger rates

Concerning the conventional scenario to produce close double
compact binaries involving common envelope evolution (see
Appendix B), except for a few cases (Voss & Tauris 2003; Bel-
czynski et al. 2010; Dominik et al. 2015), the far majority of
published population synthesis studies predict a much higher
NS+NS merger rate per Milky Way equivalent galaxy (MWEG)
compared to the rate of BH+BH mergers. Based on a detailed
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Beyond the mass distribution: Power of spin

• Misalignments trace key 
kinematic effects (kicks or 
dynamics)


• “Single spin” (e.g., unequal 
mass  or BH-NS binary): 

• Key misalignment is ~ conserved 

since past infinity.

• Easy to interpret for 

astrophysics

• Very many GW and precession 

cycles possible 

• Strong precession requires high 
mass ratio and BH spin


• “Two spin” (e.g., comparable 
mass): 

• both spins accessible
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FIG. 4: Angular momentum dominated versus spin-dominated
binaries: In terms of the mass and spin of the black hole, contours
of the ratio � = |�S|/|�L| evaluated at 40Hz. The bottom left re-
gion is angular-momentum dominated (|�L| ⇥ |�S|); the top right
region of large black hole mass and spin is strongly spin-dominated
(|�S| ⇥ |�L|). Contours show the ratio |�S|/|�L| � � = 1 (thick
curve), sin ⇥/4 = 1/

⌅
2, sin ⇥/6 = 1/2 and sin ⇥/8, evaluated

with a 1.4M⇥ NS companion, versus the black hole mass and spin
parameters mBH , ⇤BH . Above (below) the thick curve, BH-NS bi-
naries’ total angular momenta are spin (orbit) dominated in band. If
spin and orbital angular momenta are nearly antialigned, these bi-
naries have undergone transitional precession at lower frequencies,
typically not in band. Conversely, for orbital-angular-momentum-
dominated binaries (� < 1), transitional precession has not occurred
in the past at lower frequencies and may, if anti-aligned and � near
1, occur in band in the immediate future. Finally, below the bottom
curve, BH-NS binaries waveforms are modulated little by precession
in band.

and bounded above by

�max ⇥ sin�1 ⇥ . (8)

In the neighborhood of this extreme misalignment, at ⇤ = �⇥,
the opening angle is nearly stationary with spin-orbit mis-
alignment (i.e., d cos �/d⇤ ⌃ 0). In short, a distribution of
⇣L dominated binaries has two choices for spin-orbit misalig-
ment (i.e., two values of ⇤) consistent with each realized open-
ing angle. Additionally, because of the local maximum in �
as a function of ⇤, a randomly oriented distribution of spins
will have opening angles � that cluster near that maximum
(i.e., � ⌃ �max). To illustrate which regions are ⇣L and ⇣S
dominated, Figure 4 shows contours of constant ⇥, assuming
m2 = 1.4M⇥.

C. Regions of parameter space II: Steady precession and
geometry

Unless transitional precession happens in band, ground-
based gravitational-wave detectors are sensitive to emission
from a relatively well-defined epoch: the precession cone has
relatively constant opening angle [Fig. 1]. Quantitatively,
we define a reference frequency fpeak corresponding to the
frequency up to which half of the signal power has been ac-
cumulated. The specific reference frequency depends on the
noise curve adopted.5 For this paper, we adopt the fiducial
advanced LIGO noise curve with zero-detuned signal recy-
cling; see [41]). This includes a low-power mode for which
fpeak ⌃ 40 Hz and high-power for which fpeak ⌃ 60 Hz.
However, all planned noise curves we have examined have a
reference frequency in the neighborhood of which a constant
precession cone is a good approximation. Henceforth the ra-
tio ⇥ = |S1|/|L| and opening angle � between L̂ and Ĵ will
refer to quantities predicted at this frequency by the simple
precession expressions [Eqs. 4,3].6

Second, not only is the precession cone nearly fixed, but
as shown in Figure 2 at least a few complete precession cy-
cles occur between 20� 100 Hz, where most of the signal-to-
noise accumulates. For example, for an angular-momentum-
dominated binary (⇥ ⌅ 1), the number of precession cycles
for a single-spin binary can be approximated by the spin-
independent expression

NP ⌃
� �fmax

�fmin

dforb
dt

dforb
�p

=
5
96

(2 + 1.5
m2

m1
)[(M⌅fmin)�1 � (M⌅fmax)�1]

⇤ 27(1 + 0.75m2/m1)
M/10M⇥

(9)

with a comparable but spin-dependent number for an S-
dominated binary (⇥ ⇧ 1); see ACST Eqs. (45, 63) for
a general solution. As indicated by Figure 2, each preces-
sion cycle usually accumulates a comparable proportion of
detectable power (i.e., each pair of peaks is a similar order
of magnitude in area). More critically, the figure indicates
that at least one and often several precession cycles contribute
to the total signal to noise. With many precession cycles, a
gravitational-wave detector should be relatively insensitive to
the initial value of the precession phase.

For our purposes, then, the binary undergoes nearly steady
simple precession in band. The instantaneous beam pattern of

5 In the text we choose the reference frequency as the half-power point,
where

R
f�7/3/Sh(f)df reaches half of its total value. Alterna-

tively, the reference frequency can be set by maximizing d⇢/d ln f =
4f |h̃(f)|2/Sh, or even phenomenologically, in whatever manner is
needed for numerically-calculated amplitude and match to reproduce our
expressions. For the noise curves considered in this paper, all approaches
nearly agree.

6 For simplicity, we adopt the leading-order (Newtonian) expression for
r(f). Higher order corrections are small.



Example: Evidence for misalignment

• Idea: If almost all binaries are tightly spin-orbit aligned, then 
dynamical formation channels aren’t consistent with the data

!

• One realization of this idea: odds ratio for aligned vs generic

• Tight constraints on presence of misalignment, very quickly
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tually exclusive2. Given the amount of simulations that
would be necessary to fully explore those scenarios, we
leave it for future work.

It is worth remarking that while we consider two possi-
ble formation channels, this framework can be extended
to take into account more models, provided they are mu-
tually exclusive. Similarly, if one believes only one for-
mation channel is possible in the universe, and thus all

events will either have aligned or not-aligned spins (that
would correspond to fa = 0, 1), model selection can be
used to quantify how many detections are required before
the model can be proven right.

Although we believe considering a mixture of two mod-
els is more consistent with today’s understanding of bi-
naries’ formation, we give an example of a single-channel
test. For this, we simulate a situation in which all sources
have non-aligned spins and we calculate the cumulative
odds ratio:

Oa
ā ⌘ p(Ha|~d)

p(Hā|~d)
=

p(~d|Ha)p(Ha)

p(~d|Hā)p(Hā)
= Ba

ā
p(Ha)

p(Hā)

where Ba
ā is the cumulative Bayes factor for aligned vs

non-aligned models. Since the data corresponding to the
N detections is statistically independent, the cumulative
Bayes factor can be written as a product over the single
events:

Ba
ā =

NY

k=1

p(dk|Ha)

p(dk|Hā)
⌘

NY

k=1

Za
k

Z ā
k

(5)

The logarithm of the odds ratio is shown in Fig. 2 as
a function of the number of events, for random sub-
catalogs of 10 NSBH and 50 BBH. We have assumed
p(Ha) = p(Hā). We see that for both type of sources the
correct non-aligned model is favored in a significant way
(log odds below the solid horizontal line favor the non-
aligned model at a > 2.7� level). NSBH curves go down
faster since for NSBH the e↵ect of spin misalignment are
stronger in the waveform, and thus harder to match with
an aligned model.

CONCLUSIONS

Two formation channels are commonly considered for
CBC: common envelope evolution, which should result in
spins to be preferentially along (or very close to) the di-
rection of the orbital angular momentum, and dynamical

2 In our simulations we assumed isotropic tilt distributions p(⌧) /
sin ⌧ , with cuts at 10�. This makes our non-aligned distribu-
tion basically equal to a fully isotropic distributions, since the
probability that both tilts are small (or close to ⇡ for BBH) is
negligible.

Figure 2: (color online) Cumulative odds ratio for
NSBH (red) and BBH (blue), with non-aligned

injections. Each line is a sub-catalog. Cumulative odds
values below the solid horizontal thick line favor the
(correct) non-aligned model with a significance larger
than ⇠ 2.7 �. We notice that we cut the y axis at -250
to improve clarity. Some NSBH catalogs go down to

cumulative odds of -1000.

capture, which should results in randomly oriented spins.
In fact, there is not complete agreement on whether com-
mon envelope evolution is e�cient enough in aligning
spins, or if instead eventual kicks from the core collapse
supernova of the progenitor stars will be the dominant
factor. It would thus be of importance to calculate which
fraction of the compact binaries have spins nearly aligned
with the orbital angular momentum, which could be used
to expand our understanding of formation channels. In
this paper, we have shown how gravitational waves emit-
ted by compact binaries containing a black hole, and de-
tected by Advanced LIGO and Virgo, can be used to
verify if spins are preferentially aligned with the orbital
angular momentum. We considered neutron star - black
hole and binary black hole systems, and created cata-
logs of sources with increasingly large fraction of aligned
sources (from 0 to 100%). Black holes in NSBH were
of low mass (up to 11M�), while for BBH we simulated
heavy objects, comparable to GW150914 (masses in the
range [30�50]M�), which will be detected in large num-
ber in the coming months and years.
We showed how a couple hundred signals are enough

to pinpoint the underlying value of the aligned fraction
with ⇠ 10% uncertainty, which suggests GWs represent
a viable way of gaining insight into the orientation of
spins in compact binaries, and ultimately on their evolu-
tion. We have verified the robustness of the test against
some common prior mismatch (distance, masses). Future
work includes introducing a mismatch between the defi-
nition of aligned in the test and the true distribution of
aligned sources. We also stress that if more information
is available which could help distinguish between the two
channels (e.g. the resulting mass ratio distribution), it
could be folded in an extended version of this test.

http://adsabs.harvard.edu/abs/2015arXiv150304307V


Interpreting spin misalignment

• 2-spin systems have strong spin-spin interactions 
• Very significant, complicated spin evolution since formation


• Interpreting LIGO results: Be careful. Not reported at past infinity (yet)

• Predicting what can be identified: Always evolve forward to LIGO band!

17
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Interpreting spin misalignment

• Examples

18

Gerosa et al  (1506.30492)
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FIG. 11. Evolution of the spin morphology and the allowed ranges of the spin angles ✓i over a precession cycle as functions of
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1

(purple/darker) and cos ✓
2
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C (green) for circulating, L0 (blue) for �� librating about 0, and L⇡ (red) for �� librating about ⇡. The morphology changes
whenever cos ✓i = ±1 (vertical dashed lines). BBHs in the leftmost column do not undergo any transitions in the PN regime;
one transition into a librating morphology occurs for BBHs in the center columns; two transitions (circulating to librating,
librating to circulating) occur for BBHs in the rightmost column. The mass ratio and spin magnitudes are q = 0.95, �
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Interpreting spin misalignment

• 2-spin systems: 
• relationship between tilt angles at infinity and now

• defined in terms of constants J,L, 

!

• influence of both spins often accessible
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�e� =
�1m1 + �2m2

m1 + m2
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Interpreting spin misalignment

• 2-spin systems: 
• relationship between tilt angles at infinity and now

• defined in terms of constants J,L, 

!

• influence of both spins often accessible
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Interpreting eccentricity: Favata GWPAW 2016

21

Parameter	es)ma)on:	measurability	of	e0	
!  We	report	preliminary	results	of	a	Fisher-matrix	study.	
!  Advanced	LIGO	design-sensi?vity;	single-detector.	
!  Parameter	set:	!a	=[A,	tc,	"c,	Mtot,	#,	χ2,	e0	(10Hz)]	
	
NS/NS	1.25+1.4	M�	
	χ2	=	0.01	
f	=	10	Hz	to	1000	Hz	
SNR	=	13.9	(100	Mpc)	
	
BH/BH	10+15	M�	
	χ2	=	0.5	
f	=	10	Hz	to	372	Hz	
SNR	=	18.6	(500	Mpc)	
	
NS/BH	1.4+10	M�	

	χ2=0.5	
f	=	10	Hz	to	616	Hz	
SNR	=	15.6	(200	Mpc)	

Favata, GWPAW 2016 (gwpaw2016.mit.edu)

https://emvogil-3.mit.edu/gwpaw2016/presentations/favata-gwpaw2016.pptx
http://gwpaw2016.mit.edu


Interpreting eccentricity

• Detectable eccentricities may be populated frequently enough
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• Masses
• Mass ratios
• Eccentricity
• Spins

Triples inside globular clusters 7
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Fig. 4.— Eccentricity distribution of merging BH binaries at the moment they first enter the 10Hz (left panel) and 40Hz (right panel)
frequency bands. While the octupole level secular equation of motions predict that only a few percent of systems will have finite eccentricity
as they enter the aLIGO band, accurate N−body integrations show that ∼ 20% (∼ 10%) of BH mergers in GC will have an eccentricity
larger than 0.1 at 10Hz (40Hz) frequency. About 10% (∼ 5%) of all mergers will have extremely high eccentricities, i.e. 1− e ! 10−4, at
10Hz (40Hz) frequency. Note that the stippled regions are in front in both panels, which means that the lack of stippled regions at high
eccentricities is because there are none, rather than because they are hidden behind the solid hystograms.

GW frequency of the inner BH binaries through Equa-
tion (13). This allowed us to estimate the eccentricity
of the BH binary when its GW frequency is " 10 Hz,
i.e., when it would be large enough to be into the aLIGO
frequency band (Abadie et al. 2010).
Figure 3 gives the ratio of the triple survival timescale,

Tenc, to the LK timescale plotted against the value of
a2(1−e2)/a1. From this plot we see that non-secular dy-
namical effects are expected to become important to the
evolution of most BH triples in our models, possibly lead-
ing to the formation of eccentric GW sources. Also, most
BH mergers are found to occur in moderately hierarchical
triples with a2(1 − e2)/a1 ! 10. This is expected for at
least two reasons: (1) the closer the outer BH to the inner
binary the less significant is the quenching of the LK cy-
cles due to relativistic precession of the inner binary (e.g.,
Blaes et al. 2002), so that typically the smaller the ratio
a2(1 − e2)/a1 the larger the maximum eccentricity at-
tained by the inner binary and, consequently, the shorter
its merger time; (2) triples with small a2(1−e2)/a1 ratio,
have also larger Tenc/TLK ratio, which naturally leads to
a higher chance for a merger before the triple is disrupted
by gravitational encounters with other stars. In Figure 3
we also identify those systems for which at least one of
the 10 random realizations led to a merger (blue points)
and those for which at least one realization produced a
BH binary merger with an eccentricity larger than 0.9
at " 10 Hz frequency (red symbols). As predicted on
the basis of our discussion in Section 2, most eccentric
mergers occur at a2(1− e2)/a1 ! 10, near the boundary
for instability.
Figure 4 shows the eccentricity distribution of all BH

binary mergers in our simulations, when the associated
fGW first enters the 10 Hz and 40 Hz frequency bands.
Figure 5 and 6 show the corresponding merger time and
mass distribution of the merging binaries. The distri-
butions showed in Figures 4, 5 and 6 were obtained by
weighing the number of mergers for each cluster model
by the likelihood of that model to represent a typical GC

in the Milky Way (MW). More in detail, the weights are
obtained by creating a kernel density estimate (WMW)
of the MW GCs on the fundamental plane (which we
take to be mass and ratio of the half to core radius),
then estimating the weight for each model using the ker-
nel density estimate at the position of that model on the
fundamental plane. In this way, cluster models that are
more likely to be drawn from the same distribution of
MW GCs are more heavily weighted. The weight for a
model of total mass MGC, core radius Rc and half mass
radius Rh after 12 Gyr of evolution is computed as:

W (M,Rc/Rh) =
WMW(M,Rc/Rh)

WModels(M,Rc/Rh)
, (14)

where we have divided by WModels, the kernel density es-
timate of the models themselves. This serves to normal-
ize the distribution, so that regions of parameter space
that are over-sampled by the models are given lower
weights (see Rodriguez et al. 2015, for more details).
The fraction of mergers with a given property (e.g., total
mass, eccentricity) is then simply f =

∑

i NiWi/
∑

i Wi,
with Ni the number of mergers occurring in the ith clus-
ter model.
Huerta & Brown (2013) showed that for eccentricities

less than e1 ! 0.1 at ≈ 10 Hz, circular templates will be
effective at recovering the GW signal of eccentric sources.
Figure 4 shows that approximately 20% of all BH mergers
in our three-body integrations had an eccentricity e > 0.1
at " 10 Hz frequency. This percentage drops to ∼ 10%
at 40 Hz frequency. The difference with the results of
the secular equations of motion is evident in these plots.
The secular integrations clearly underestimate the num-
ber of eccentric mergers producing just a few percent of
inspirals with e " 0.1 at 10 Hz frequency. The direct
three-body integrations also produce a significant pop-
ulation (∼ 15% of the total) of highly eccentric sources
in the aLIGO frequency window, which are fully missed
when evolving the triples with the secular equations of
motion. These sources will start to inspiral due to GW

Antonini et al. 2015

Nuclear Star ClustersField vs. Clusters

Antonini and Rasio 2016

O’Leary 2009 (0807.2638)
See also: Kozai 
primordial (Bird et al PRL 2016)

12 O’Leary, Kocsis,& Loeb

Figure 5. The secular evolution of BH binaries. We have plotted
in 10% probability intervals the evolution of the binaries as they
decay (M = m = 10M⊙; see Fig. 4 for details). The solid line
is the orbit averaged evolution given by Eqs. (21) & (22). The
solid circles denote the completion of approximately one orbital
period, ∆torb. The gap between the solid line and e = 1 is due to
the finite loss of energy during the initial parabolic encounter. For
nearly ∼ 30% of all binaries, the orbit averaged approximation is
(visibly) not valid, as can be seen by the large space between
each orbit. The dotted (red) line denotes where the binaries peak
harmonic is 10 Hz, the lower limit of the LIGO band. Nearly 90%
of all binaries that form in galactic nuclei are within this limit
upon first passage. The dashed (blue) line denotes the eccentricity
at the last stable orbit (Eq. 23).

centric throughout the inspiral, especially near plunge, may
be the most readily detectable encounters. Therefore we are
interested in the eccentricity of the binary as it reaches the
LSO (see Eq. 23). From Eq. (34), and the equation of evolu-
tion (Peters 1964, Eq. 24) we solve for the probability dis-
tribution of eccentricity at the LSO. We plot the eccentric-
ity distribution at LSO in Figure 6 for both galactic nuclei
and globular clusters. For encounters which that to direct
plunge, our calculation gives an eccentricity greater than
1. However, for normalisation purposes, we include this in
our calculations, as they interestingly comprise a significant
fraction of merger events.

Until now, nearly all LIGO sources were expected to
have a negligible eccentricity as they enter the LIGO band
(but see Mandel et al. 2008, for intermediate mass ratio in-
spirals in star clusters). The comparatively low eccentricity
binary formed through few-body encounters or standard bi-
nary evolution circularise before they enter the LIGO band
and are detected. Therefore, the detection of eccentric in-
spirals is a strong test of the formation scenario of nuclear
binaries, and can conclusively reveal the origin of the BHs.

Figure 6. The eccentricity distribution of events. Plotted is
the eccentricity distribution of mergers at the last stable orbit
(dΓ/d ln eLSO) for one example of a galactic nucleus (solid line)
and a globular cluster (dotted line). Both lines are normalised so
that they reach a maximum value of 1. eLSO ! 1 corresponds to
encounters that directly undergo a plunge. See the text and Fig. 4
for our assumptions and details of the calculation.

3.3.4 Radius Dependence inside the Galactic Nucleus

In Figure 7, we plot the cumulative binary formation rate
for radii larger than r, Γ(> r), as well as dΓ/d ln r. For
most models, the total differential rate of binary formation
per logarithmic bin is roughly flat. Thus, each logarithmic
radius interval contributes equally to the rate. We there-
fore conclude that the rates determined are rather robust
to the depletion of BHs very close to the SMBH as may
be caused by resonant relaxation (Rauch & Tremaine 1996;
Rauch & Ingalls 1998; Hopman & Alexander 2006a) or our
choice of the innermost radius for BHs. In order for the rate
to be dominated by mergers at large r, the number density
of the BHs would have to decrease with an exponent r−α

where α = p +3/2 < 3/2 (see § 2). This is precisely the rea-
son we accounted for the stars in determining the potential
in Eq. (6), and did not let the density profile of the BHs and
stars go to a constant value as in previous analyses.

We do not expect these tight binaries in their subse-
quent inspiral phase to have any observable effect dynami-
cally. Overall, we expect ∼ 10 − 103 such binaries to merge
over a Hubble time. This presents a much smaller source
of energy than the SMBH, which accretes ∼ 104 BHs over
a Hubble time (FAK06). However small the intrinsic rate
in each galaxy, the cumulative merger rate of many galax-
ies is large enough to be detected by future ground based
gravitational wave observatories.

c⃝ 0000 RAS, MNRAS 000, 000–000

cluster nuclear cluster

http://adsabs.harvard.edu/abs/2016PhRvL.116t1301B


Remarks on parameter estimation

• Calibration error may limit utility of “golden”/exceptional binaries

!

• No complete model including eccentricity and other effects (spin, 
precession, IMR)

!

• Waveform model systematics for precessing spins need careful 
checking in this regime, biases possible for long signals (e.g., 
unknown PN terms)

• Opening angle / evidence for precession can be robust

!

• If (enough) binaries detected with precession, spin distributions easy. 
But note many requirements (opportunity to precess in band [q,spin, 
large L cone], not face on)

23



Summary

• Enormous potential, and clear path to phenomenology

• May directly constrain common features to multiple models 


• masses-> SN physics & isolated mass loss, for both field and clusters

• May enable robust, detail-independent constraints in some cases


• Spins: consistent spin alignment favors isolated evolution


• Theory challenges significant, but brute force may be possible

!

• The most easy-to-interpret parameters are hard to measure & use, 
and GR/astro systematics can limit their utility

!

• Independent corroboration critical

• Galactic populations (XRBs, pulsars, WDs, massive star binaries, proper motions)

• New resources (e.g., GAIA) and perspectives (e.g., ionizing photons; XRLF of low-

Z galaxies)
24



Bonus slides: Supplementary discussions
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What about measuring spins in BH-NS binaries

26

Based on:      ROS et al arxiv:1403.0544

Prior work:    ROS et al arxiv:1308.4704

                       Cho et al  PRD 87, 24004  (2013)



• Shrinking binary “chirps”

!

!

!

!

!

!

!

• Chirp rate (df/dt) set by “chirp mass”

• “Exactly” measurable

!

• Fisher matrix

One thing we measure reliably: “Chirp” mass

27
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FIG. 1: Chirp mass and mass ratio 90% confidence in-
terval: Zero spin: Assuming our fiducial nonspinning sig-
nal is present in distinct realizations of Gaussian noise (colors,
described below), the contour shows the 90% confidence in-
tervals forMc, � derived from the half of our zero-spin calcu-
lations marked with “*”. Solid curves correspond to a signal
without higher harmonics; dashed curves include higher har-
monics; and colors denote specific noise realizations listed in
Table III, not all of which appear in this figure: zero noise
(black); 1234 (blue); and 56789 (red). [To better distinguish
between cases including higher harmonics, the zero noise case
is shown as a black dashed curve.] All posteriors have similar
shape; di�erences between the estimated posteriors are con-
sistent with finite sample and noise realization e�ects. Higher
harmonics do not improve our estimates of intrinsic parame-
ters in any noticeable way. For comparison, the thick black
solid and dotted curves are analytic estimates using the ef-
fective Fisher matrix normalized to ⇥ = 20, described in
greater detail in Section V. To help translate these results
to an astrophysically relevant scale, the two black points and
pairs indicate the chirp mass and mass ratios corresponding
to (m1/M⇥, m2/M⇥).

(Mc, �,⌥) coordinates the error contours are both weakly
nonellipsoidal and have shape that weakly depends on
noise realization. As seen in the right panel of Figure 3,
however, alternative coordinates mitigate nongaussianity
and reduce noise-realization-dependent e�ects. This im-
provement persists for low signal amplitudes, which have
broader posteriors than shown here.

B. Marginal information from higher harmonics is
confined to source orientation

Using apples-to-apples comparisons of the same source
in the same data, we can explicitly confirm that higher

harmonics provide minimal new information about in-
trinsic parameters. In fact, the di�erences between the
zero-spin, zero-noise posterior in Mc, � calculated with
and without harmonics are at best comparable to the
fluctuations seen between di�erent data realizations; see
Table IV for the one-dimensional measurement errors,
Table V for comparisons between simulations using DKL,
and Table III for a comparison using V/Vprior.

With aligned spin, higher harmonics seem to pro-
vide some additional information. For example, Fig-
ure 3 shows the two-dimensional posteriors inMc, � for
three starred data realizations (black, red, blue) both
with (dotted) and without (solid) higher harmonics; each
pair of contours di�er slightly in direction and extent.
These distributions are manifestly similar: the presence
of higher have less of an e�ect than a change of noise re-
alization (e.g., a change in ⇧ of order unity). Physically,
though higher harmonics provide information, di�erent
data realizations shift the error ellipsoids’ positions, ori-
entations, and scales so much that their marginal impact
cannot be easily isolated. In all cases, however, higher
harmonics seem to provide minimal additional informa-
tion about our two fiducial sources’ intrinsic parameters.

By contrast, as illustrated by Figure 4, higher har-
monics do provide geometric information, improving our
knowledge about the source position and orientation rel-
ative to the line of sight. Higher harmonics are known to
break almost-perfect degeneracies present in the leading-
order gravitational wave signal [33, 34, 35]. This signal
can be represented in a compact complex form as

h = h+ � ih⇥ = �e�2i� 8µv2

dL

⇧
⌅

5

⇥
⇤
e�2i�orbY (�2)

22 (⇥, 0) + e2i�orbY (�2)
2�2 (⇥, 0)

⌅
(35)

where Y (s)
lm are spin-weighted spherical harmonics and we

note that14:

Y (�2)
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⇧
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For most orientations, either one or the other spin-
weighted harmonic dominates this sum15. Our two
sources have ⇥ = ⌅/4, so the (2, 2) mode dominates by
a factor cos4(⌅/8)/ sin4(⌅/8) ⇤ 34. This means that to
a good approximation the gravitational wave signal de-
pends on � and ⌃ref principally through � + ⌃ref and on
dL and ⇥ through (1 + cos ⇥)2/dL. More generally, in the
absence of higher harmonics, to a first approximation the

14 The azimuthal argument of Y
(�2)
22 is degenerate with ⇤ref , so we

can set it to zero without loss of generality.
15 Only when the binary is nearly edge-on, i.e. � � ⇥/2, are the two

comparable
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What can we learn from the “chirp”?

• Shrinking binary “chirps”


!

!

!

!

!

!

!

• Measure masses, spins, tides, ...

• Adding parameters (spin) degrades 

measurement accuracy

• Fisher matrix
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14

Source Harmonics Seed ⇥ ⇥rec ln Z ln V/Vprior ⇤Mc
⇤� ⇤a DKL Neff

⇥103 ⇥103 (Mc, �) (⌅0, ⌅3) (Mc, ��2) (Mc, �, a1) (⌅0, ⌅3, a1) (Mc, ��2, a1)

Zero spin no - 20.33 20.64 180. -33.4 2.13 1.40 - 0 0 0 - - - 7517

Zero spin no 1234 20.33 20.5 177. -33.3 2.26 1.40 - 0.026 0.035 0.048 - - - 8025

Zero spin no 56789 20.33 20.34 172. -34.8 2.57 1.52 - 0.089 0.074 0.061 - - - 10403

Zero spin with - 21.01 21.33 191. -36.3 1.97 1.25 - 0.029 0.028 0.026 - - - 8027

Zero spin with 1234 21.01 21.76 200. -37. 1.90 1.16 - 0.087 0.076 0.068 - - - 7511

Zero spin with 56789 21.01 20.67 177. -36.6 2.34 1.33 - 0.13 0.12 0.12 - - - 11358

Aligned spin no - 22.34 22.67 222. -34.6 6.19 7.89 0.038 0 0 0 0 0 0 9841

Aligned spin no 1234 22.34 22.81 225. -35.1 5.50 7.12 0.029 0.018 0.018 0.030 0.13 0.13 0.15 8670

Aligned spin no 56789 22.34 24.89 272. -37.5 4.70 4.34 0.021 0.95 0.26 0.093 1.6 0.9 0.79 10508

Aligned spin with - 22.86 23.18 231. -37.8 5.15 5.83 0.035 0.16 0.12 0.10 0.19 0.14 0.12 3355

Aligned spin with 1234 22.86 23.67 241. -39.5 4.74 4.98 0.030 0.45 0.27 0.17 0.56 0.35 0.24 5572

Aligned spin with 56789 22.86 25.41 280. -43.2 3.93 4.13 0.017 1.1 0.43 0.44 2.8 2.3 2.4 12070

TABLE III: Simulation results: Table of distinct simulations performed. The first set of columns indicate which of the two
fiducial binaries was used (zero spin vs aligned spin), whether higher harmonics were included, and random seed choice used
to generate noise (a “-” means no noise was used). The two quantities ⇥, ⇥rec provide the injected and best-fit total signal
amplitude in the network [Eqs. (18,20)]. The latter quantity depends on the noise realization of the network. The columns
for ln Z and V/Vprior provide the evidence [Eq. (14)] and volume fraction [Eq. (16)]; the evidence, volume fraction, and signal
amplitude are related by ⇥2

rec/2 = ln Z/(V/Vprior). The next three columns show the one-dimensional standard deviations in
chirp mass (⇤Mc), symmetric mass ratio (⇤�), and BH dimensionless spin (⇤a). These quantities fluctuate significantly, driven
both by noise realization dependence and the large number of e�ective samples needed to accurately estimate their value [Eq.
(24)]. The six quantities DKL are calculated from the two- and three-dimensional covariance matrices using Eq. (21), using
the coordinate systems labeling the columns. The two rows with zeros as entries indicate the two reference choices, against
which all nonspinning or spinning parameter estimation was compared. For zero spin, the first three rows show di�erences
consistent with noise fluctuations [Eq. (27)]; for aligned spin, di�rences are more substantial and coordinate-system dependent,
but not above the conditions needed to distinguish between distributions [Eq. (28)]. Finally, Ne� is the e�ective number
of independent samples in our calculations. FIXME: Explain zero-noise SNR, or replace by zero noise value. [Some DKL

numbers are unclear which 2 rows are being compared. e.g. what is row 4 being compared to, row 1? Is row 5 compared to
row 4 or row 2?]
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FIG. 2: 99.9% confidence intervals in mass plane for aligned-spin binary: For our fiducial aligned-spin signal injected
into distinct realizations of Gaussian noise (colors, as described in the caption to Figure 1), the contours show the 99.9%
confidence intervals from each calculation in our various coordinates for the mass plane. Contour styles are as described in
Figure 1. This figure conveys three key points. First, the similarity between the blue solid and dotted contours shows higher
harmonics provide little additional information about intrinsic parameters. Second, because of the extent of the contour in �,
measurements of spinning binaries cannot distinguish between a broad range of astrophysically distinct sources. Third, suitable
coordinates can simplify all posterior probability distributions, independent of noise realization.
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FIG. 3: 90% confidence intervals for aligned-spin binary: For our fiducial aligned-spin signal injected into distinct
realizations of Gaussian noise (colors, as described in the caption to Figure 1), the contour shows the 90% confidence intervals
from each calculation in theMc, � plane (left panel) and the �, ⇥ plane (right panel). Contour styles are as described in Figure
1; as previously, the heavy black solid and dashed curves show revised analytic predictions using the COOKL method, provided
in Table VI.

B. Marginal information from higher harmonics,
confined to source orientation and position

Using apples-to-apples comparisons of the same source
in the same data, we can explicitly confirm that higher
harmonics provide minimal new information about in-
trinsic parameters. In fact, the di⇥erences between the
zero-spin, zero-noise posterior in Mc, � calculated with
and without harmonics are at best comparable to the
fluctuations seen between di⇥erent data realizations; see
Table III.

With aligned spin, higher harmonics seem to provide
some additional information. For example, Figure 3
shows the two-dimensional posteriors in Mc, � for the
1234 data realization both with (dotted blue) and with-
out (solid blue) higher harmonics; the two ellipsoids di⇥er
slightly in direction and extent. Quantitatively, the DKL

between these two-dimensional posteriors12 is 0.46; be-
tween the corresponding three-dimensional posteriors, it
is 0.56. These distributions therefore di⇥er more than
would be expected from statistical fluctuations alone, for
example due to change in ⌅ by of order unity. However,

12 These numbers are not provided in and cannot be derived from
Table I: because KL divergence is not symmetric under exchange
of K, K�.

these di⇥erences are also manifestly much smaller than
the range of DKL seen when changing noise realizations.
Physically, though higher harmonics provide information,
di⇥erent data realizations shift the error ellipsoids’ posi-
tion, orientation, and scale so much that their marginal
impact cannot be easily isolated. In all cases, however,
higher harmonics seem to provide minimal additional in-
formation about our two fiducial sources’ intrinsic pa-
rameters.

By contrast, as illustrated by Figure 4, higher har-
monics do provide geometric information, improving our
knowledge about the source position and orientation rel-
ative to the line of sight. Higher harmonics are known
break almost-perfect degeneracies present in the ab-
sence of higher harmonics. These degeneracies are well-
understood features of the leading-order graviational-
wave signal:

�
h+

h�

⇥
= �4µv2

dL

�
cos 2⌃ � sin 2⌃

sin 2⌃ cos 2⌃

⇥

⇥
�

(1+cos2 �)
2 cos(2(�orb(t)� ⇧)

cos ⇥ sin(2(�orb(t)� ⇧)

⇥
(33a)

where ⌃ is the orientation of the projection of the bi-
nary’s total angular momentum onto the plane of the
sky; �orb(t) is the orbital phase versus time, with fidu-
cial value ⇧ref ⇤ �orb(tref); ⇥,⇧ are the polar coordinates

ROS et al 2013
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Approximate precessing kinematics

!

• Example: one spin

!

!

       

!

• Extend known single-spin precession solutions                              [Apostolatos et al 1994]


•             : set by |L| and (conserved) L.S


•             : precession phase

!

!

  : analytic approximations exist

29

dL̂
dt
� J

r3

�
2 +

3m2

2m1

�
� L̂

|J| = |L + S|

�
=

�
�p

dt

dv
dv

�(v)

�

� L

J
�tX = �X �X, X = L,S1,S2

Apostolatos et al 1994; Lundgren and ROS 2013



Sample precessing geometry: BH-NS

30

J
`

L
`

x̀ ỳ
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FIG. 7: Source geometry: Angular momenta (C): This figure demontrates (1) that the individual angular momenta to
be well-constrained to two discrete regions; (2) higher harmonics allow us to distinguish between the two alternatives; and (3)
that the precession cone is well-determined, at the accuracy level expected from the number of precession cycles. As in Figure
4, colors indicate di�erent noise realizations; solid and dotted lines indicate the neglect or use of higher harmonics; the green
point shows the expected solution; and the solid blue path shows the trajectory of L and S over one precession cycle. Top
panels:Projection of the orbital angular momentum direction (L̂; top left panel); spin angular momentum direction (Ŝ; center
panel); and total angular momentum direction Ĵ into the plane of the sky (top right). Bottom left panel : The precession angle
�JL of L around J . For comparison, the green points show the simulated values; when present, the solid blue path shows
variables covered in one precession cycle. Roughly speaking, the precession phase can be measured with relative accuracy of a
few times ⌅�1: tens of percent. Bottom right panel : Illustration that both the opening angle ⇥ of the precession cone and the
angle ⇤JN between the line of sight and Ĵ can be measured accurately, with relative error � 1/NP ⌅ significantly smaller than
the relative error in the precession phase �JL. ROS: Fix plots, they are not showing the right base points

quasicircular (or even orbit-averaged) EOMs is not prop-
agated back in...and with precession, di�erences can be
significant. Physical intuition and experience with NR
suggests the orbit-averaged equations are more physi-
cal...but detailed studies are needed.

* Demonstrate geometrical parameters can be mea-
sured and their measurements understood. Believe
these symmetry-breaking features are leading-order ef-
fects, less-susceptible to systematic error than fine issues
in the GW phase

** particularly opening angle of precession cone, which
can be constrained with extremely high precision in a rel-
atively model-neutral way. Should be INDEPENDENT
of PN order (confirm!) – systematics are interpreta-
tion/ID of �(f)?

** that reference angle along precession cone does not
shift best-fit values for masses, or shape of distribution
(intuitively obvious) – but beware case B

** that except in very well-chosen coordinates, the con-
fidence regions are not ellipsoidal, so a naive Fisher ma-
trix approach is poorly-suited to the problem

* demonstrate that higher harmonics add some relative
value here – not small things, either

** this is despite the fact that we have lots of small
eigenvalues, so higher harmonics have greater leverage to
change the small measurements a lot

** main e�ect is GLOBAL, to eliminate degenerate
peaks, usually in orientation

** but this can influence the intrinsic parameters, de-
pending on the precise orientation of the precession phase
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Results 2: Intrinsic parameters
• Chirp rate, precession rate set limits


• More cycles -> more accuracy


• Precession enables measurements


• Spin-orbit misalignment


• Mass ratio                       better                 
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7

of the number of orbital or precession cycles.2

B. Geometry

As expected analytically and demonstrated by Figure
5, precession-induced modulations encode the orientation
of the various angular momenta relative to the line of
sight. For our loud fiducial signal, the individual spin
components can be well-constrained. Equivalently, be-
cause our fiducial source performs many precession cycles
about a wide precession cone and because that source is
viewed along a generic line of sight, we can tightly con-
strain the precession cone’s geometry: its opening angle;
its orientation relative to the line of sight; and even the
precise precession phase, measured either by cos ⇤ or �JL.
The e�ective Fisher matrix provides a reliable estimate
of how well these parameters can be measured; see Table
IV and Figure 5.

C. Comparison to and interpretation of analytic
predictions

COOKL presented an e�ective Fisher matrix for
two fiducial precessing binaries, adopting a specific
post-Newtonian model to evolve the orbit. Following
OFOCKL, we adopt a refined post-Newtonian model,
including higher-order spin terms. In the Supplemen-
tary Material, available online, we provide a revised e�ec-
tive Fisher matrix, including the contribution from these
terms. Table V summarizes key features of this seven-
dimensional e�ective Fisher matrix for case A. As noted
above, the two-dimensional marginalized predictions are
in good qualitative agreement. The one-dimensional
marginalized predictions agree surprisingly well with our
simulations [Table IV]. Since the ingredients of the e�ec-
tive Fisher matrix are fully under our analytic control,
we can directly assess what factors drive measurement
accuracy in each parameter.

First and foremost, as in COOKL, this e�ective Fisher
matrix has a hierarchy of scales and eigenvalues, with
decreasing measurement error: Mc, ⇥, a, . . .. Unlike non-
precessing binaries, this hierarchy does not clearly split
between well-constrained intrinsic parameters (Mc, ⇥, a)
and poorly-constrained geometric parameters (every-
thing else); for example, as seen in Table V, the eigen-
values of the Fisher matrix span a continuous range of
scales.

The scales in the Fisher matrix are intimately tied to
timescales and angular scales in the outgoing signal. The

2 With relatively few precession cycles in our study, the discrep-
ancy between these two measurement accuracies is fairly small.
However, when advanced instruments with longer waveforms can
probe more precession cycles, we expect this simple argument
will explain dominant correlations.
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FIG. 4: Estimating astrophysical parameters (C): For
our fiducial binary C, the solid and dotted lines show an
estimated 90% confidence interval with and without higher
harmonics, respectively; colors indicate di⇥erent noise real-
izations; and the (nearly indistinguishable) thick solid and
dashed lines shows an approximate e⇥ective Fisher matrix re-
sult, with and without higher harmonics, not accounting for
the constraint imposed by ⇤1 < 1. Results for case A are
qualitatively and quantitatively similar. The di⇥erent panels
show di⇥erent two-dimensional projections of the astrophys-
ically relevant parameters of a merging BH-NS binary: the
binary mass mass ratio, black hole spin, and degree of spin-
orbit misalignment ⇥ ⇥ L̂ · Ŝ1. Top,center panels: The masses
and spin magnitude of the binary can be measured very re-
liably, consistent with a single gaussian distribution in four
dimensions. The analytic predictions produced by an e⇥ec-
tive Fisher matrix agree qualitatively but not quantitatively
with our simulations. Bottom panel : To guide the eye, the
posterior versus ⇤1 and L̂ · Ŝ1 is compared with contours of
constant � = cos�1 0.65, 0.7, 0.75 (precession cone opening
angle; dotted black) and �p [Eq. (15)] (precession rate; solid
black). The precession rate is relatively well constrained by
the presence of several (⇤ 7) precession cycles available in
data, while the geometry is relatively poorly constrained, rel-
ative to the whole ⇤1 vs L̂ · Ŝ1 plane.
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ancy between these two measurement accuracies is fairly small.
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FIG. 4: Estimating astrophysical parameters (C): For
our fiducial binary C, the solid and dotted lines show an
estimated 90% confidence interval with and without higher
harmonics, respectively; colors indicate di⇥erent noise real-
izations; and the (nearly indistinguishable) thick solid and
dashed lines shows an approximate e⇥ective Fisher matrix re-
sult, with and without higher harmonics, not accounting for
the constraint imposed by ⇤1 < 1. Results for case A are
qualitatively and quantitatively similar. The di⇥erent panels
show di⇥erent two-dimensional projections of the astrophys-
ically relevant parameters of a merging BH-NS binary: the
binary mass mass ratio, black hole spin, and degree of spin-
orbit misalignment ⇥ ⇥ L̂ · Ŝ1. Top,center panels: The masses
and spin magnitude of the binary can be measured very re-
liably, consistent with a single gaussian distribution in four
dimensions. The analytic predictions produced by an e⇥ec-
tive Fisher matrix agree qualitatively but not quantitatively
with our simulations. Bottom panel : To guide the eye, the
posterior versus ⇤1 and L̂ · Ŝ1 is compared with contours of
constant � = cos�1 0.65, 0.7, 0.75 (precession cone opening
angle; dotted black) and �p [Eq. (15)] (precession rate; solid
black). The precession rate is relatively well constrained by
the presence of several (⇤ 7) precession cycles available in
data, while the geometry is relatively poorly constrained, rel-
ative to the whole ⇤1 vs L̂ · Ŝ1 plane.
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Simple approximate (intrinsic) Fisher matrix 

!

!

!

!

• Good:

• Easy to calculate

• Similar to nonprecessing 

(weighted average)

• Intuition about separating 

parameters


• “Bad”

• Ansatz / approximation

• At best, retains all degeneracies 

of full problem (phases, …)
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Simple approximate (intrinsic) Fisher matrix 
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• Good:

• Easy to calculate

• Similar to nonprecessing 

(weighted average)

• Intuition about separating 

parameters


• “Bad”

• Ansatz / approximation

• At best, retains all degeneracies 

of full problem (phases, …)
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