Using GW to infer
Prospects and procedures

Richard O'Shaughnessy

KITP: Astrophysics from LIGO's first black holes
Aug 3, 2016

Confronting theory with observations

Belczynski et al Nature 2016

A function has infinitely many degrees of freedom

Distributions vary significantly...

Distributions vary significantly...

(Detected distribution)
Dominik et al (2015: 1405.7016)

...and for physical reasons, like pair instability

...or multiple mergers and single star evolution

...that may be observationally accessible soon

Belczynski et al 1607.03116

Familiar statistical challenge

- Inference via Poisson likelihood + bayes

$$
L(\Lambda)=e^{-\mu} \frac{\mu^{n}}{n!} \prod_{k} \int d \lambda_{k} p\left(d_{k} \mid \lambda_{k}\right) p\left(\lambda_{k} \mid \Lambda\right)
$$

- Same likelihood for nonparametric, parametric, and physical models
- μ expected n (selection bias)
- $p\left(d_{k} \mid \lambda_{k}\right)$ measurements and error
- $p\left(\lambda_{k} \mid \Lambda\right)$ binary parameter distribution, given model parameters
- Informal approaches: weighted histograms (=gaussian mixture models)

Distinguishing a discrete model set straightforward

O1-scale

O2-scale

but this is driven by large rate differences. Rate is highly degenerate with other factors...

Distinguishing a discrete model set straightforward

- Mass distributions alone are more similar, given measurement error

O2-scale, as before O2-scale, no rate info

Theory and modeling challenge

- Robust theoretical control (or parameterization) over everything?
- Massive evolution and J transport (with rotation, winds, extra mass loss)?
- SN
- Binary physics:tidal coupling, common envelope, supereddington accretion, ...
- Initial conditions:
- IMF (at low Z ?)
- SFR over all time
- Z distribution
- How much progress can we make in 5 years?

Theory and modeling challenge: by force?

- Computational limits example: isolated evolution
- ~ 1000 binaries/hour/core
- 20 M binaries for an accurate result -> 20k CPU-hours (kSU)
- With 50 MSU, limited to 2500 simulations (!)...
- But: easy to optimize: ~ 4000 distinct simulations by ROS et al 2008 (0706.4139), with $\ll 1$ MSU
- Can we find a model matching the data?
- "Understood" model with d parameters:
- use hierarchical search + likelihood interpolation
- $d(d+1) / 2$ new simulations per refinement (factor 4 in n)
$\mathrm{COSt}=\frac{d(d+1)}{2} \log _{4} n \sim 200 \quad$ (d=10,n=1000)
- Conservative - assumes all parameters always significant
- "Complicated": brute-force grid in d parameters: impossible unless ~ universal $\mathrm{COSt}=n^{d / 2}$

Mass ratio/spin: degenerate or not? [B. Farr talk]

- "Nonprecessing" binaries:
- Strong degeneracy between q, spin at low(er) mass
- Limits ability to probe mass-ratio dependent questions:
- "mass gap" between BH, NS [Farr talk]
- "Deconvolution" may be possible...requires high \#s.
- Identifiably precessing binaries (e.g., BH-NS)
- Precession not always identifiable...but...
- Spin measurements enable very informative spin distribution
- Mass ratio accuracy lets you probe mass gaps, NS mass function, ...

Beyond the mass distribution: Power of spin

- High mass binaries may be strictly and positively aligned (fallback)
- Low spins required for GW150914...possible? [Kushnir et al]
- Tells us something about how massive stars evolve? About tides?
- Or favors dynamics?

Marchant et al A\&A 2016 (1601.03718)

Beyond the mass distribution: Power of spin

- Misalignments trace key kinematic effects (kicks or dynamics)
- "Single spin" (e.g., unequal mass or BH-NS binary):
- Key misalignment is ~ conserved since past infinity.
- Easy to interpret for astrophysics
- Very many GW and precession cycles possible
- Strong precession requires high mass ratio and BH spin
- "Two spin" (e.g., comparable mass):
- both spins accessible

Example: Evidence for misalignment

- Idea: If almost all binaries are tightly spin-orbit aligned, then dynamical formation channels aren't consistent with the data
- One realization of this idea: odds ratio for aligned vs generic
- Tight constraints on presence of misalignment, very quickly

Interpreting spin misalignment

- 2-spin systems have strong spin-spin interactions
- Very significant, complicated spin evolution since formation
- Interpreting LIGO results: Be careful. Not reported at past infinity (yet)
- Predicting what can be identified: Always evolve forward to LIGO band!

Interpreting spin misalignment

- Examples

$$
q=0.95, \chi_{1}=0.5, \chi_{2}=1
$$

$$
1
$$

Interpreting spin misalignment

- 2-spin systems:

- relationship between tilt angles at infinity and now
- defined in terms of constants J,L,

$$
\chi_{\mathrm{eff}}=\frac{\boldsymbol{\chi}_{1} m_{1}+\boldsymbol{\chi}_{2} m_{2}}{m_{1}+m_{2}} \cdot \hat{\mathbf{L}}
$$

- influence of both spins often accessible

Interpreting spin misalignment

- 2-spin systems:

- relationship between tilt angles at infinity and now
- defined in terms of constants J,L,

$$
\chi_{\mathrm{eff}}=\frac{\boldsymbol{\chi}_{1} m_{1}+\boldsymbol{\chi}_{2} m_{2}}{m_{1}+m_{2}} \cdot \hat{\mathbf{L}}
$$

- influence of both spins often accessible

Interpreting eccentricity: Favata GWPAW 2016

Parameter estimation: measurability of e_{0}

- We report preliminary results of a Fisher-matrix study.
- Advanced LIGO design-sensitivity; single-detector.
- Parameter set: $\theta_{\mathrm{a}}=\left[A, t_{\mathrm{c}}, \varphi_{\mathrm{c}}, M_{\text {tot }}, \eta, \chi_{2}, e_{0}(10 \mathrm{~Hz})\right]$

NS/NS 1.25+1.4 M_{\odot}
$\chi_{2}=0.01$
$\mathrm{f}=10 \mathrm{~Hz}$ to 1000 Hz SNR = 13.9 (100 Mpc)

BH/BH 10+15 M ${ }_{\odot}$
$\chi_{2}=0.5$
$\mathrm{f}=10 \mathrm{~Hz}$ to 372 Hz
SNR = 18.6 (500 Mpc)

NS/BH 1.4+10 M ${ }_{\odot}$
$\chi_{2}=0.5$
$\mathrm{f}=10 \mathrm{~Hz}$ to 616 Hz
SNR = 15.6 (200 Mpc)

Interpreting eccentricity

- Detectable eccentricities may be populated frequently enough

See also: Kozai primordial (Bird et al PRL 2016)

Antonini and Rasio 2016

Remarks on parameter estimation

- Calibration error may limit utility of "golden"/exceptional binaries
- No complete model including eccentricity and other effects (spin, precession, IMR)
- Waveform model systematics for precessing spins need careful checking in this regime, biases possible for long signals (e.g., unknown PN terms)
- Opening angle / evidence for precession can be robust
- If (enough) binaries detected with precession, spin distributions easy. But note many requirements (opportunity to precess in band [q,spin, large L cone], not face on)

Summary

- Enormous potential, and clear path to phenomenology
- May directly constrain common features to multiple models
- masses-> SN physics \& isolated mass loss, for both field and clusters
- May enable robust, detail-independent constraints in some cases
- Spins: consistent spin alignment favors isolated evolution
- Theory challenges significant, but brute force may be possible
- The most easy-to-interpret parameters are hard to measure \& use, and GR/astro systematics can limit their utility
- Independent corroboration critical
- Galactic populations (XRBs, pulsars, WDs, massive star binaries, proper motions)
- New resources (e.g., GAIA) and perspectives (e.g., ionizing photons; XRLF of lowZ galaxies)

Bonus slides: Supplementary discussions

What about measuring spins in BH-NS binaries

Based on: ROS et al arxiv:1403.0544
Prior work: ROS et al arxiv:1308.4704
Cho et al PRD 87, 24004 (2013)

One thing we measure reliably: "Chirp" mass

- Shrinking binary "chirps"

time
- Chirp rate (df/dt) set by "chirp mass"
- "Exactly" measurable
- Fisher matrix

$$
\Gamma_{a b}=2 \int_{-\infty}^{\infty} \frac{\partial_{a} h^{*} \partial_{b} h}{S_{h}} d f
$$

BH-NS, no spin

$$
\mathcal{M}_{c}=\frac{\left(m_{1} m_{2}\right)^{3 / 5}}{\left(m_{1}+m_{2}\right)^{1 / 5}}
$$

What can we learn from the "chirp"?

- Shrinking binary "chirps"

- Measure masses, spins, tides, ...
- Adding parameters (spin) degrades measurement accuracy
- Fisher matrix

$$
\Gamma_{a b}=2 \int_{-\infty}^{\infty} \frac{\partial_{a} h^{*} \partial_{b} h}{S_{h}} d f
$$

Approximate precessing kinematics

$$
\partial_{t} \mathbf{X}=\boldsymbol{\Omega}_{X} \times \mathbf{X}, \quad \mathbf{X}=\mathbf{L}, \mathbf{S}_{1}, \mathbf{S}_{2}
$$

- Example: one spin

$$
\begin{aligned}
& \frac{d \hat{\mathbf{L}}}{d t} \simeq \frac{\mathbf{J}}{r^{3}}\left(2+\frac{3 m_{2}}{2 m_{1}}\right) \times \hat{\mathbf{L}} \\
& |\mathbf{J}|=|\mathbf{L}+\mathbf{S}|
\end{aligned}
$$

- Extend known single-spin precession solutions

[Apostolatos et al 1994]
- $\beta(v)$: set by $|\mathrm{L}|$ and (conserved) L.S
- α : precession phase

$$
=\int \Omega_{p} \frac{d t}{d v} d v
$$

: analytic approximations exist
Apostolatos et al 1994; Lundgren and ROS 2013

Sample precessing geometry: BH-NS

Results 2: Intrinsic parameters

- Chirp rate, precession rate set limits
- More cycles -> more accuracy
- Precession enables measurements
- Spin-orbit misalignment
- Mass ratio
$\times 3$ better

Simple approximate (intrinsic) Fisher matrix

$$
\rho_{2 m s}^{2} \equiv\left|-2 Y_{2 m}\left(\theta_{J N}\right) d_{m, 2 s}^{2}(\beta)\right|^{2} \int_{0}^{\infty} \frac{d f}{S_{h}(f)} \frac{4\left(\pi \mathcal{M}_{c}{ }^{2}\right)^{2}}{3 d_{L}^{2}}\left(\pi \mathcal{M}_{c} f\right)^{-7 / 3}
$$

- Amplitude
- Angular dependence

$$
\hat{\Gamma}_{a b}^{(m s)}=\frac{\int_{0}^{\infty} \frac{d f}{S_{h}(f)}\left(\pi \mathcal{M}_{c} f\right)^{-7 / 3} \partial_{a}\left(\Psi_{2}-2 \zeta-m s \alpha\right) \partial_{b}\left(\Psi_{2}-2 \zeta-m s \alpha\right)}{\int_{0}^{\infty} \frac{d f}{S_{h}(f)}\left(\pi \mathcal{M}_{c} f\right)^{-7 / 3}}
$$

- Good:
- Easy to calculate
- Similar to nonprecessing (weighted average)
- Intuition about separating parameters
- "Bad"
- Ansatz / approximation
- At best, retains all degeneracies of full problem (phases, ...)

Simple approximate (intrinsic) Fisher matrix

$$
\left.\left.\rho_{2 m s}^{2} \equiv\right|_{-2} Y_{2 m}\left(\theta_{J N}\right) d_{m, 2 s}^{2}(\beta)\right|^{2} \int_{0}^{\infty} \frac{d f}{S_{h}(f)} \frac{4\left(\pi \mathcal{M}_{c}{ }^{2}\right)^{2}}{3 d_{L}^{2}}\left(\pi \mathcal{M}_{c} f\right)^{-7 / 3}
$$

- Amplitude
- Angular dependence
- Phase

$$
\hat{\Gamma}_{a b}^{(m s)}=\frac{\int_{0}^{\infty} \frac{d f}{S_{h}(f)}\left(\pi \mathcal{M}_{c} f\right)^{-7 / 3} \partial_{a}\left(\Psi_{2}-2 \zeta-m s \alpha\right) \partial_{b}\left(\Psi_{2}-2 \zeta-m s \alpha\right)}{\int_{0}^{\infty} \frac{d f}{S_{h}(f)}\left(\pi \mathcal{M}_{c} f\right)^{-7 / 3}}
$$

- Good:
- Easy to calculate
- Similar to nonprecessing (weighted average)
- Intuition about separating parameters
- "Bad"
- Ansatz / approximation
- At best, retains all degeneracies of full problem (phases, ...)

