Exploring the Root of Gravity

Henrik Johansson

Uppsala U. \& Nordita
April 6, 2022
KITP Program 2022:

High-Precision Gravitational Waves

Based on recent work with:
Bern, Carrasco, Chiodaroli, HJ, Roiban [1909.01358, 2203.13013];
Andi Brandhuber, Gang Chen, HJ, Gab Travaglini, Congkao Wen [2111.15649];
Maor Ben-Shahar, HJ [2112.11452]; Chiodaroli, HJ, Pichini [2107.14779]

Textbook perturbative gravity is complicated!

$$
\mathcal{L}=\frac{2}{\kappa^{2}} \sqrt{g} R, \quad g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

DeWitt ('67)

$=\operatorname{sym}\left[-\frac{1}{2} P_{3}\left(k_{1} \cdot k_{2} \eta_{\mu_{1} \nu_{1}} \eta_{\mu_{2} \nu_{2}} \eta_{\mu_{3} \nu_{3}}\right)-\frac{1}{2} P_{6}\left(k_{1 \mu_{1}} k_{1 \nu_{2}} \eta_{\mu_{1} \nu_{1}} \eta_{\mu_{3} \nu_{3}}\right)+\frac{1}{2} P_{3}\left(k_{1} \cdot k_{2} \eta_{\mu_{1} \mu_{2}} \eta_{\nu_{1} \nu_{2}} \eta_{\mu_{3} \nu_{3}}\right)\right.$ $+P_{6}\left(k_{1} \cdot k_{2} \eta_{\mu_{1} \nu_{1}} \eta_{\mu_{2} \mu_{3}} \eta_{\nu_{2} \nu_{3}}\right)+2 P_{3}\left(k_{1 \mu_{2}} k_{1 \nu_{3}} \eta_{\mu_{1} \nu_{1}} \eta_{\nu_{2} \mu_{3}}\right)-P_{3}\left(k_{1 \nu_{2}} k_{2 \mu_{1}} \eta_{\nu_{1} \mu_{1}} \eta_{\mu_{3} \nu_{3}}\right)$
$+P_{3}\left(k_{1 \mu_{3}} k_{2 \nu_{3}} \eta_{\mu_{1} \mu_{2}} \eta_{\nu_{1} \nu_{2}}\right)+P_{6}\left(k_{1 \mu_{3}} k_{1 \nu_{3}} \eta_{\mu_{1} \mu_{2}} \eta_{\nu_{1} \nu_{2}}\right)+2 P_{6}\left(k_{1 \mu_{2}} k_{2 \nu_{3}} \eta_{\nu_{2} \mu_{1}} \eta_{\nu_{1} \mu_{3}}\right)$ $\left.+2 P_{3}\left(k_{1 \mu_{2}} k_{2 \mu_{1}} \eta_{\nu_{2} \mu_{3}} \eta_{\nu_{3} \nu_{1}}\right)-2 P_{3}\left(k_{1} \cdot k_{2} \eta_{\nu_{1} \mu_{2}} \eta_{\nu_{2} \mu_{3}} \eta_{\nu_{3} \mu_{1}}\right)\right] \quad$ After symmetrization ~ 100 terms !
higher order vertices...

complicated diagrams:

$\sim 10^{7}$ terms

On-shell simplifications

~ Graviton plane wave: $\quad \varepsilon^{\mu}(p) \varepsilon^{\nu}(p) e^{i p \cdot x}$ $|\operatorname{spin} 2\rangle \sim|\operatorname{spin} 1\rangle \otimes|\operatorname{spin} 1\rangle$

Yang-Mills polarization

On-shell 3-graviton vertex:

Gravity scattering amplitude:

$$
M_{\text {tree }}^{\mathrm{GR}}(1,2,3,4)=\frac{s t}{u}\left[A_{\text {tree }}^{\mathrm{YM}}(1,2,3,4)\right]^{\text {Yang-Mills amplitude }}
$$

Gravity processes = "squares" of gauge theory ones: KLT, BCJ, CHY

Kawai-Lewellen-Tye Relations ('86)

String theory

 tree-level identity:```
closed string \(\sim\) (left open string) \(\times\) (right open string)
```



KLT relations emerge after nontrivial world-sheet integral identities
Field theory limit $\Rightarrow$ gravity theory $\sim(\mathrm{YM}$ theory $) \times(\mathrm{YM}$ theory $)$

$$
\begin{aligned}
M_{4}^{\text {tree }}(1,2,3,4)= & -i s_{12} A_{4}^{\text {tree }}(1,2,3,4) \widetilde{A}_{4}^{\text {tree }}(1,2,4,3) \\
M_{5}^{\text {tree }}(1,2,3,4,5)= & i s_{12} s_{34} A_{5}^{\text {tree }}(1,2,3,4,5) \widetilde{A}_{5}^{\text {tree }}(2,1,4,3,5) \\
& +i s_{13} s_{24} A_{5}^{\text {tree }}(1,3,2,4,5) \widetilde{A}_{5}^{\text {tree }}(3,1,4,2,5)
\end{aligned}
$$

gravity states are products of YM states:

$$
|2\rangle=|1\rangle \otimes|1\rangle
$$

$$
|3 / 2\rangle=|1\rangle \otimes|1 / 2\rangle
$$

## Squaring of YM theory - the double copy

Gravity processes = squares of gauge theory ones - entire S-matrix

Yang-Mills


E.g. pure Yang-Mills $\quad \rightarrow \quad$ Einstein gravity + dilaton + axion

4D YM + massless quarks $\rightarrow \quad$ Pure 4D Einstein gravity

## Example: axion-dilaton gravity

Consider double copy of D-dimensional pure YM:

$$
\text { States: }\left\{\begin{array}{lll}
\left(\varepsilon^{h}\right)_{\mu \nu}^{i j} & =\varepsilon_{\mu}^{((i} \varepsilon_{\nu}^{j))} & \\
\left(\varepsilon^{B}\right)_{\mu \nu}^{i j} & =\varepsilon_{\mu}^{[i} \varepsilon_{\nu}^{j]} & \\
\text { (graviton) } \\
\left(\varepsilon^{\phi}\right)_{\mu \nu} & =\frac{\varepsilon_{\mu}^{i} \varepsilon_{\nu}^{j} \delta_{i j}}{D-2} & \\
\text { (dield) } \\
\text { (dilaton) }
\end{array}\right.
$$

Amplitudes consistent with the theory:

$$
S=\int d^{D} x \sqrt{-g}\left[-\frac{1}{2} R+\frac{1}{2(D-2)} \partial^{\mu} \phi \partial_{\mu} \phi+\frac{1}{6} e^{-4 \phi /(D-2)} H^{\lambda \mu \nu} H_{\lambda \mu \nu}\right]
$$

In 4D this is axion-dilaton gravity:

$$
S=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} R+\frac{1}{4} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{4} e^{-2 \phi} \partial_{\mu} \chi \partial^{\mu} \chi\right]
$$

Symmetry $\quad \chi \rightarrow-\chi \quad$ allows for consistent truncation of scalars $\phi \rightarrow-\phi$

The (Square-)Root of Gravity

## Color-kinematics duality

Consider Yang-Mills 4p tree amplitude:

color factors: $\quad c_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}$
kinematic numerators:

$$
\begin{aligned}
n_{s}= & {\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right) p_{1}^{\mu}+2\left(\varepsilon_{1} \cdot p_{2}\right) \varepsilon_{2}^{\mu}-(1 \leftrightarrow 2)\right]\left[\left(\varepsilon_{3} \cdot \varepsilon_{4}\right) p_{3 \mu}+2\left(\varepsilon_{3} \cdot p_{4}\right) \varepsilon_{4 \mu}-(3 \leftrightarrow 4)\right] } \\
& +s\left[\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(\varepsilon_{2} \cdot \varepsilon_{4}\right)-\left(\varepsilon_{1} \cdot \varepsilon_{4}\right)\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\right]
\end{aligned}
$$

consider gauge transformation $\delta A_{\mu}=\partial_{\mu} \phi$

$$
\left.n_{s}\right|_{\varepsilon_{4} \rightarrow p_{4}}=s\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)\left(\left(\varepsilon_{3} \cdot p_{2}\right)-\left(\varepsilon_{3} \cdot p_{1}\right)\right)+\operatorname{cyclic}(1,2,3)\right] \equiv s \alpha(\varepsilon, p)
$$

(individual diagrams not gauge inv.)

## Color-kinematics duality

Consider Yang-Mills 4p tree amplitude:

color factors: $\quad c_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}$
kinematic numerators:

$$
\begin{aligned}
n_{s}= & {\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right) p_{1}^{\mu}+2\left(\varepsilon_{1} \cdot p_{2}\right) \varepsilon_{2}^{\mu}-(1 \leftrightarrow 2)\right]\left[\left(\varepsilon_{3} \cdot \varepsilon_{4}\right) p_{3 \mu}+2\left(\varepsilon_{3} \cdot p_{4}\right) \varepsilon_{4 \mu}-(3 \leftrightarrow 4)\right] } \\
& +s\left[\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(\varepsilon_{2} \cdot \varepsilon_{4}\right)-\left(\varepsilon_{1} \cdot \varepsilon_{4}\right)\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\right]
\end{aligned}
$$

consider linearized gauge transformation $\delta A_{\mu}=\partial_{\mu} \phi$

$$
\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\left.\frac{n_{u} c_{u}}{u}\right|_{\varepsilon_{4} \rightarrow p_{4}}=\underbrace{\left(c_{s}+c_{t}+c_{u}\right)}_{=0 \text { Jacobi identity }} \alpha(\varepsilon, p)
$$

## Color-kinematics duality

Consider Yang-Mills 4p tree amplitude:

color factors: $\quad c_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}$
kinematic numerators:

$$
\begin{aligned}
n_{s}= & {\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right) p_{1}^{\mu}+2\left(\varepsilon_{1} \cdot p_{2}\right) \varepsilon_{2}^{\mu}-(1 \leftrightarrow 2)\right]\left[\left(\varepsilon_{3} \cdot \varepsilon_{4}\right) p_{3 \mu}+2\left(\varepsilon_{3} \cdot p_{4}\right) \varepsilon_{4 \mu}-(3 \leftrightarrow 4)\right] } \\
& +s\left[\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(\varepsilon_{2} \cdot \varepsilon_{4}\right)-\left(\varepsilon_{1} \cdot \varepsilon_{4}\right)\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\right],
\end{aligned}
$$

$c_{s}+c_{t}+c_{u}=0 \quad$ Jacobi Id. (gauge invariance)
$\Leftrightarrow$
$n_{s}+n_{t}+n_{u}=0 \quad$ kinematic Jacobi Id. (diffeomorphism inv.)

## Double copy

Color and kinematics are dual...
$c_{s}+c_{t}+c_{u}=0 \quad \Leftrightarrow \quad n_{s}+n_{t}+n_{u}=0$
...replace color by kinematics $\quad c_{i} \rightarrow n_{i} \quad \mathrm{BCJ}$ double copy


## What is the Kinematic Algebra ?

- YM numerators obey Jacobi Id. $\rightarrow$ a kinematic algebra should exist!
- Algebra may dramatically simplify GR calculations!


## What is known?

Self dual YM in light-cone gauge: Monteiro, O'Connell ('11) $\quad p_{2}$
Generators of area-preserving diffeomorphisms:

$$
L_{k}=e^{-i k \cdot x}\left(-k_{w} \partial_{u}+k_{u} \partial_{w}\right)
$$



Lie Algebra:

$$
\left[L_{p_{1}}, L_{p_{2}}\right]=i X\left(p_{1}, p_{2}\right) L_{p_{1}+p_{2}}=i F_{p_{1} p_{2}}^{k} L_{k}
$$

$Y M$ vertex
Beyond the simplest helicity sectors (NMHV) Chen, HJ, Teng, Wang [1906.10683, 2104.12726]

## Cheung-Shen Lagrangian

Cubic Lagrangian that manifests color-kinematics duality, gives:
$\rightarrow$ NLSM pions at tree level
$\rightarrow$ YM trees for MHV sector
Cheung, Shen ('16)
$\mathcal{L}_{\mathrm{CS}}=Z^{a \mu} \square X_{\mu}^{a}+\frac{1}{2} Y^{a} \square Y^{a}-g f^{a b c} Z^{a \mu}\left(Z^{b \nu} X_{\mu \nu}^{c}+Y^{b} \partial_{\mu} Y^{c}\right)$
Jacobi Id. manifest: $\quad X_{\mu \nu}^{a}=\partial_{\mu} X_{\nu}^{a}-\partial_{\nu} X_{\mu}^{a}$,


NLSM pions: external states $Y^{a}$ or $\partial_{\mu} Z^{a \mu}$
Gives all YM numerator terms of type: $n^{\mathrm{YM}} \sim\left(\varepsilon_{1} \cdot \varepsilon_{n}\right) \prod\left(\varepsilon_{i} \cdot p_{j}\right)$
sufficient for MHV amplitude: Chen, HJ, Teng, Wang

## Hopf algebra structure and heavy mass EFT

Gauge invariant BCJ numerators from heavy-quark limit
Brandhuber, Chen, HJ, Travaglini, Wen '21

$$
\begin{aligned}
& \begin{array}{l}
F_{i}^{\mu \nu}:=p_{i}^{\mu} \varepsilon_{i}^{\nu}-\varepsilon_{i}^{\mu} p_{i}^{\nu} \\
V_{\tau}^{\mu \nu}:=v^{\mu} \sum_{j \in \tau} p_{j}^{\nu}
\end{array} \\
& \begin{aligned}
\mathcal{N}(1, v) & =v \cdot \varepsilon_{1}, \\
\mathcal{N}(12, v) & =-\frac{v \cdot F_{1} \cdot F_{2} \cdot v}{2 v \cdot p_{1}},
\end{aligned}
\end{aligned}
$$

YM numerators at any multiplicity given by an associative Hopf algebra

$$
\mathcal{N}(12 \ldots n-2, v):=\left\langle T_{(1)} \star T_{(2)} \star \cdots \star T_{(n-2)}\right\rangle
$$

Quasi-shuffle product: $\quad T_{(12)} * T_{(3)}=-T_{(123)}+T_{(12),(3)}+T_{(13),(2)}$

$$
\left.\left\langle T_{\left(1 \tau_{1}\right),\left(\tau_{2}\right), \ldots,\left(\tau_{r}\right)}\right\rangle:=\left.\right|^{1}\right\rangle^{\tau_{1}} /{ }^{\tau_{2}} /=\frac{v \cdot F_{1 \tau_{1}} \cdot V_{\Theta\left(\tau_{2}\right)} \cdot F_{\tau_{2}} \cdots \cdot V_{\Theta\left(\tau_{r}\right)} \cdot F_{\tau_{r}} \cdot v}{(n-2) v \cdot p_{1} v \cdot p_{1 \tau_{1}} \cdots v \cdot p_{1 \tau_{1} \tau_{2} \cdots \tau_{r-1}}}
$$

## Heavy mass numerators for PM calculations

Brandhuber, Chen,
Efficient calculations for Post Minkovskian corrections: Travaglini, Wen [2108.04216]

$$
A_{5}^{\mathrm{YM}-\mathrm{M}}(234, v)=\frac{\mathcal{N}_{5}([[2,3], 4], v)}{s_{234} s_{23}}+\frac{\mathcal{N}_{5}([2,[3,4]], v)}{s_{234} s_{34}}
$$



Double copy for massive scalar (Schwarzschild BH). $v$

$$
A_{5}^{\mathrm{GR}-\mathrm{M}}(234, v)=\frac{\left[\mathcal{N}_{5}([[2,3], 4], v)\right]^{2}}{s_{234} s_{23}}+\frac{\left[\mathcal{N}_{5}([[2,4], 3], v)\right]^{2}}{s_{234} s_{24}}+\frac{\left[\mathcal{N}_{5}([[3,4], 2], v)\right]^{2}}{s_{234} s_{34}}
$$

2PM:


+ more


Reproduces 3PM calculations of Bern, Cheung, Roiban, Shen, Solon, Zeng ('20) and Kälin, Liu, Porto ('20)

## Progress on the Kinematic Algebra?

Recent surprise:
Ben-Shahar, HJ
A complete QFT with straightforward kinematic algebra at tree and loop level.

Generators

$$
L^{\mu}(p)=e^{i p \cdot x} \Delta^{\mu \nu} \partial_{\nu}
$$

3D transversality "projector" $\quad \Delta^{\mu \nu}(p)=i \epsilon^{\rho \mu \nu} p_{\rho}$
Infinite-dimensional kinematic Lie algebra

$$
\left[L^{\mu}\left(p_{1}\right), L^{\nu}\left(p_{2}\right)\right]=F_{\rho}^{\mu \nu} L^{\rho}\left(p_{1}+p_{2}\right)
$$

Kinematic structure constants $F_{\nu}^{\mu_{1} \mu_{2}}\left(p_{1}, p_{2}\right)=\Delta^{\rho \mu_{1}}\left(p_{1}\right) \epsilon_{\rho \nu \sigma} \Delta^{\sigma \mu_{2}}\left(p_{2}\right)$
$B C J$ numerators

$$
\begin{aligned}
1{\left.\xrightarrow[|c|]{|c|}\right|^{4}}_{5}^{4} & =\operatorname{tr}\left(\left[\left[\left[L^{\mu_{1}}\left(p_{1}\right), L^{\mu_{2}}\left(p_{2}\right)\right], L^{\mu_{3}}\left(p_{3}\right)\right], L^{\mu_{4}}\left(p_{4}\right)\right], L_{\mathrm{amp}}^{\mu_{5}}\left(p_{5}\right)\right) \\
& =F^{\mu_{1} \mu_{2}}{ }_{\nu} F^{\nu \mu_{3}}{ }_{\rho} F^{\rho \mu_{4} \mu_{5}} \delta^{3}\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right),
\end{aligned}
$$

Lie algebra of 3D volume-preserving diffeomorphisms!

## Chern-Simons theory - off-shell C/K duality

Pure Chern-Simons theory (tree-level action)

$$
S=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A \wedge d A+\frac{2 i}{3} A \wedge A \wedge A\right)
$$

cubic Feynman rules: $\quad A_{\mu} \leadsto A_{\rho}=-\frac{\epsilon_{\mu \nu \rho} p^{\nu}}{p^{2}} \quad \mathcal{\rho}_{\rho}=-\frac{\epsilon^{\mu \nu \rho}}{\sqrt{2}}$
in Lorenz gauge these obeys color-kinematics duality off shell!
Chern-Simons is toplogical $\rightarrow$ amplitudes vanish, but off-shell correlation fn's are non-zero

Quantum CS action includes Faddeev-Popor ghosts. Can be packaged into superfield: $\Psi=c+\theta_{\mu} A^{\mu}+\theta_{\mu} \theta_{\nu} C^{\mu \nu}+\theta_{1} \theta_{2} \theta_{3} a$
Feynman rules: $\quad \theta \xrightarrow{\vec{p}} \tilde{\theta}=\frac{p \cdot \vartheta}{p^{2}} \delta^{3}(\theta-\tilde{\theta})$

$$
\widehat{\theta}=i \int d^{3} \theta
$$

again obeys color-kinematics duality!

## Double Copy Theories

## Example: pure GR

Pure 4D Einstein gravity: $\mathcal{S}=\frac{1}{2} \int d^{4} x \sqrt{g} R \quad$ HJ, Ochirov
Does not match $\mathrm{YM}^{2}$ spectrum: $\mathrm{YM} \otimes \mathrm{YM}=\mathrm{GR}+\phi+a$
Deform YM theories with massless fundamental quarks

$$
(\mathrm{YM}+\text { quark }) \otimes\left(\mathrm{YM}+n_{f} \text { quarks }\right)
$$

$$
=\mathrm{GR}+2\left(n_{f}+1\right) \text { scalars }
$$

Anti-align the spins of the quarks $\rightarrow$ gives scalars in GR

$$
\begin{array}{lc}
\text { e.g. } & \phi=q \otimes \bar{q}+\bar{q} \otimes \bar{q} \\
& a=q \otimes \bar{q}-\bar{q} \otimes \bar{q}
\end{array} \quad n_{f}=-1
$$



## Example: YM-Einstein theory

GR+YM amplitudes are "heterotic" double copies


$$
\begin{aligned}
h^{\mu \nu} & \sim A^{\mu} \otimes A^{\nu} \\
A^{\mu a} & \sim A^{\mu} \otimes \phi^{a}
\end{aligned}
$$


$\mathcal{N}=\mathbf{0 , 1 , 2 , 4} \mathrm{YM}-\mathrm{E} \quad \mathcal{N}=\mathbf{0 , 1 , 2 , 4} \mathbf{S Y M} \quad \mathrm{YM}+\phi^{3}$
supergravity
$-\mathscr{N}=0,1,2$ YM-E all have axion-dilaton states $\rightarrow g, \theta$ parameters

- Construction extends to SSB (Coulomb branch) Chiodaroli, Gunaydin, HJ, Roiban ('15)


## Web of double-copy constructible theories



See reviews [1909.01358], [2203.13013] - Bern, Carrasco, Chiodaroli, HJ, Roiban

## Generalizations of C/K \& double copy

Trees $\rightarrow$ loops:

 Bern, Carrasco, HJ ('10)
$\rightarrow$ Theories that are not truncations of $N=8$ SG HJ, Ochirov; Chiodaroli, Gunaydin, Roiban,...
$\rightarrow$ Theories with fundamental matter HJ, Ochirov; Chiodaroli, Gunaydin, Roiban,...
$\rightarrow$ Spontaneously broken theories (gauge/susy) Chiodaroli, Gunaydin, HJ, Roiban
$\rightarrow$ Form factors Boels, Kniehl, Tarasov, Yang \& CFT correlators Farrow, Lipstein, McFadden
$\rightarrow$ Gravity off-shell symmetries from YM Anastasiou, Borsten, Duff, Hughes, Nagy,...
$\rightarrow$ Classical (black hole) solutions Luna, Monteiro, o'Connell, White; Ridgway, Wise; Goldberger,...
$\rightarrow$ Gravitational radiation/potential $\begin{aligned} & \text { Luna, Monteiro, Nicholson, O'Connell, White; Goldb } \\ & \text { Bern, Cheung, Roiban, Solon; Bjerrum-Bohr et al... }\end{aligned}$
$\rightarrow$ Amplitudes in curved background Adamo, Casali, Mason, Nekovar
$\rightarrow$ CHY scattering eqs, twistor strings Cachazo, He, Yuan, Skinner, Mason, Geyer, Adamo, Monteiro,..
$\rightarrow$ Scalar EFTs: NLSM, DBI, Galileon Cachazo, He, Yuan; Du, Chen; Cheung, Shen; Elvang et al.
$\rightarrow$ New double copies for string theory
Mafra, Schlotterer, Stieberger, Taylor, Broedel, Carrasco...
... Azevedo, Marco Chiodaroli, HJ, Schlotterer
$\rightarrow$ Conformal gravity HJ, Nohle; Mogull, Teng
$\rightarrow$ Celestial amplitudes Casali, Puhm

## Exception that proves the rule...

Not all gauge theories obey color-kinematics duality
Imagine the double copy:
$\mathrm{YM} \otimes(\mathrm{YM}+\mathcal{N}$ adjoint fermions $) \stackrel{?}{=} \mathrm{GR}+\mathcal{N} \Psi_{3 / 2}$
According to conventional wisdom $\Psi_{3 / 2}$ must be a gravitino and $\mathcal{N} \leq 8$ is the number of supersymmetries

What goes wrong? The theory

$$
\mathrm{YM}+\mathcal{N} \text { adjoint fermions }+\ldots
$$

only obeys color-kinematics duality if supersymmetric $\rightarrow \mathcal{N} \leq 4$
Kinematic Jacobi Id. $\rightarrow$ Fierz Id. that enforces SUSY

## Multiloop calculations w/ duality and double copy

## Example: 2-loop 5-pts $\mathcal{N}=4$ SYM $\& \mathcal{N}=8$ SG



Carrasco, HJ 1106.4711
color-kinematics duality + unitarity method $\rightarrow$ simple numerators

| $\mathcal{I}^{(x)}$ | $\mathcal{N}=4$ Super-Yang-Mills $(\sqrt{\mathcal{N}}=8$ supergravity $)$ numerator |
| :---: | :---: |
| (a),(b) | $\frac{1}{4}\left(\gamma_{12}\left(2 s_{45}-s_{12}+\tau_{2 p}-\tau_{1 p}\right)+\gamma_{23}\left(s_{45}+2 s_{12}-\tau_{2 p}+\tau_{3 p}\right)\right.$ |
| $\left.+2 \gamma_{45}\left(\tau_{5 p}-\tau_{4 p}\right)+\gamma_{13}\left(s_{12}+s_{45}-\tau_{1 p}+\tau_{3 p}\right)\right)$ |  |
| (c) | $\frac{1}{4}\left(\gamma_{15}\left(\tau_{5 p}-\tau_{1 p}\right)+\gamma_{25}\left(s_{12}-\tau_{2 p}+\tau_{5 p}\right)+\gamma_{12}\left(s_{34}+\tau_{2 p}-\tau_{1 p}+2 s_{15}+2 \tau_{1 q}-2 \tau_{2 q}\right)\right.$ <br> $\left.+\gamma_{45}\left(\tau_{4 q}-\tau_{5 q}\right)-\gamma_{35}\left(s_{34}-\tau_{3 q}+\tau_{5 q}\right)+\gamma_{34}\left(s_{12}+\tau_{3 q}-\tau_{4 q}+2 s_{45}+2 \tau_{4 p}-2 \tau_{3 p}\right)\right)$ |
| (d)-(f) | $\gamma_{12} s_{45}-\frac{1}{4}\left(2 \gamma_{12}+\gamma_{13}-\gamma_{23}\right) s_{12}$ |

direct calculation in GR would naively give $\sim 10^{18}$ terms

$$
\tau_{i p}=2 k_{i} \cdot p
$$

## 3-loop $\mathcal{N}=8$ SG $\& \mathcal{N}=4$ SYM

## Color-kinematics dual form:

Bern, Carrasco, HJ

$$
N^{(\mathrm{e})}=s\left(\tau_{45}+\tau_{15}\right)+\frac{1}{3}(t-s)\left(s+\tau_{15}-\tau_{25}\right)
$$

$$
\tau_{i j}=2 k_{i} \cdot l_{j}
$$




(j)



Bern, Carrasco, Dixon, HJ, Roiban

$$
\left.\mathcal{A}^{(3)}\right|_{\text {pole }}=2 g^{8} s t A^{\text {tree }}\left(N_{c}^{3} V^{(\mathrm{A})}+12 N_{c}\left(V^{(\mathrm{A})}+3 V^{(\mathrm{B})}\right)\right) \times\left(u \operatorname{Tr}\left[T^{a_{1}} T^{a_{2}} T^{a_{3}} T^{a_{4}}\right]+\text { perms }\right)
$$

$$
\left.\mathcal{M}^{(3)}\right|_{\text {pole }}=10\left(\frac{\kappa}{2}\right)^{8}(s t u)^{2} M^{\text {tree }}\left(V^{(\mathrm{A})}+3 V^{(\mathrm{B})}\right)
$$

naïve calculation $\rightarrow \quad \sim 10^{21}$ terms


## 4-loops: 85 diagrams, 2 masters



## E.g. Complete $N=2$ SQCD 2-Ioop calculation

Integrand computed using color-kinematics duality HJ, Kälin, Mogull ('17) and supersymmetric decomposition

- two-loop SQCD amplitude - color-kinematics manifest
- planar + non-planar






- $N_{f}$ massless quarks - integrand valid in $D \leq 6$

e.g. simple SQCD numerators

$$
\begin{aligned}
& n\left(\begin{array}{c}
4^{+} \\
\ell_{2} \downarrow \underset{n^{-}}{r_{2}} \downarrow 1^{-} \downarrow \ell_{1} \\
3^{-}
\end{array}\right)=\frac{\kappa_{13}}{u^{2}} \operatorname{tr}_{-}\left(1 \ell_{1} 24 \ell_{2} 3\right) \\
& n\left(\begin{array}{c}
4^{-} \\
\ell_{2} \downarrow \underset{3^{+}}{2}+1^{-} \downarrow \ell_{1} \\
3^{+}
\end{array}\right)=\frac{\kappa_{14}}{t^{2}} \operatorname{tr}_{-}\left(1 \ell_{1} 23 \ell_{2} 4\right)
\end{aligned}
$$

trace-rep. from 1811.09604 Kälin, Mogull, Ochirov

## N=2 SUGRA double copies

Recall that double copy works if one side obeys C-K duality

HJ, Ochirov;
Chiodaroli, Gunaydin, HJ, Roiban;
Ben-Shahar, Chiodaroli; Mogull, Kälin, HJ
(2-loop $\mathcal{N}=2$ SQCD $) \otimes$ ( $D$-dim. QCD Feynman rules)
$\mathrm{N}=2$ SQCD $\times 4 \mathrm{D}$ Feynman

$\rightarrow \mathrm{N}=2$ Luciani Model (1978)
$N=2$ SQCD $\times 5 \mathrm{D}$ Feynman

$\rightarrow \mathrm{N}=2$ Generic non-Jordan family Günaydin, Sierra, Townsend (1986)
$N=2$ SQCD $\times 6 D$ Feynman

$\rightarrow N=2$ Generic Jordan family Günaydin, Sierra, Townsend (1984) (self-dual tensors in 6D)

Double copy and black hole amplitudes

## Double copy and gravitational waves



Explicit PM calculations done using double copy:
Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove ('18)
Bern, Cheung, Roiban, Shen, Solon, Zeng ('19)+ Ruf, Parra-Martinez ('21)
Brandhuber, Chen, Travaglini, Wen (21)
Some methods developed for PM calc. using double copy:
Bjerrum-Bohr, Cristofoli, Damgaard, Gomez+Brown;
Cristofoli, Gonzo, Kosower, O'Connell;
Maybee, O'Connell, Vines; Luna, Nicholson, O'Connell, White; ...

## AHH amplitudes $\leftrightarrow$ Kerr BH?

Arkani-Hamed, Huang, Huang ('17) wrote down natural higher-spin ampl's:
Gauge th 3pt:

$$
A\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 A^{+}\right)=m x \frac{\langle\mathbf{1 2}\rangle^{2 s}}{m^{2 s}}, \quad A\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 A^{-}\right)=\frac{m}{x} \frac{[\mathbf{1 2}]^{2 s}}{m^{2 s}}
$$

Gravity 3pt:

$$
M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h^{+}\right)=i m^{2} x^{2} \frac{\langle\mathbf{1 2}\rangle^{2 s}}{m^{2 s}}, \quad M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h^{-}\right)=i \frac{m^{2}}{x^{2}} \frac{\mathbf{[ 1 2}]^{2 s}}{m^{2 s}}
$$

Shown to reproduce Kerr by: Guevara, Ochirov, Vines ('18)
Gravity Compton ampl. $\quad M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h^{+}, 4 h^{+}\right)=i \frac{\langle\mathbf{1 2}\rangle^{2 s}[34]^{4}}{m^{2 s-4} s_{12} t_{13} t_{14}}$
via BCFW recursion?

$$
M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h^{-}, 4 h^{+}\right)=i \frac{\left[4\left|p_{1}\right| 3\right\rangle^{4-2 s}([4 \mathbf{1}]\langle 32\rangle+[4 \mathbf{2}]\langle 3 \mathbf{1}\rangle)^{2 s}}{s_{12} t_{13} t_{14}}
$$

spurious pole for $s>2$

## What EFTs give the AHH amplitudes ?

Rewrite the 3 pt AHH amplitudes on covariant form $\rightarrow$ identify theory

1) introduce generating series, e.g.

Chiodaroli, HJ, Pichini; HJ, Ochirov

$$
\sum_{s=0}^{\infty} A\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 A^{+}\right)=\frac{m x}{1-\frac{\langle\mathbf{1 2}\rangle^{2}}{m^{2}}}
$$

2) rewrite covariantly (for both helicity sectors):

$$
\begin{aligned}
& \sum_{s=0}^{\infty} A\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 A\right)=A_{\phi \phi A}+\frac{A_{W W A}-\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)^{2} A_{\phi \phi A}}{\left(1+\varepsilon_{1} \cdot \varepsilon_{2}\right)^{2}+\frac{2}{m^{2}} \varepsilon_{1} \cdot p_{2} \varepsilon_{2} \cdot p_{1}} \\
& A_{\phi \phi A} \equiv i \sqrt{2} \varepsilon_{3} \cdot p_{1}, \quad A_{W W A} \equiv i \sqrt{2}\left(\varepsilon_{1} \cdot \varepsilon_{2} \varepsilon_{3} \cdot p_{2}+\varepsilon_{2} \cdot \varepsilon_{3} \varepsilon_{1} \cdot p_{3}+\varepsilon_{3} \cdot \varepsilon_{1} \varepsilon_{2} \cdot p_{1}\right)
\end{aligned}
$$

$s=0 \quad \& \quad s=1 / 2 \quad$ minimally coupled scalar \& fermion
$s=1 \quad$ W-boson $\quad s=3 / 2$ charged/massive gravitino

## EFTs for AHH 3pt gravity amplitudes?

Are related to the gauge th. ones via KLT
$M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h^{ \pm}\right)=i A\left(1 \phi^{s_{\mathrm{L}}}, 2 \bar{\phi}^{s_{\mathrm{L}}}, 3 A^{ \pm}\right) A\left(1 \phi^{s_{\mathrm{R}}}, 2 \bar{\phi}^{s_{\mathrm{R}}}, 3 A^{ \pm}\right)$
Works for any decomposition: $s=s_{\mathrm{L}}+s_{\mathrm{R}}$
Preferred decomposition $s=1+(s-1)$ give fewest derivatives:
$\sum_{2 s=0}^{\infty} M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h\right)=M_{0 \oplus 1 / 2}+A_{W W A}\left(A_{0 \oplus 1 / 2}+\frac{A_{1 \oplus 3 / 2}-\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)^{2} A_{0 \oplus 1 / 2}}{\left(1+\varepsilon_{1} \cdot \varepsilon_{2}\right)^{2}+\frac{2}{m^{2}} \varepsilon_{1} \cdot p_{2} \varepsilon_{2} \cdot p_{1}}\right)$
From double-copy structure, we can infer:
$s=0, s=1 / 2, s=1, s=3 / 2$ minimally-coupled matter
$s=2 \quad$ Kaluza-Klein graviton
(Proca th, massive gravitino)

Also works for Compton, and higher-point amplitudes (Lagrangians known)

## Summary of EFTs

The AHH ampl's for $s \leq 2$ admit double copies to any multiplicity
$(\mathrm{YM}+$ scalar $) \otimes(\mathrm{YM}+$ scalar $)=(\mathrm{GR}+$ scalar $)$
$(\mathrm{YM}+$ scalar $) \otimes(\mathrm{YM}+$ fermion $)=(\mathrm{GR}+$ fermion $)$
$(\mathrm{YM}+$ scalar $) \otimes(\mathrm{YM}+\mathrm{W}$-boson $)=(\mathrm{GR}+$ Proca $)$
$(\mathrm{YM}+\mathrm{W}$-boson $) \otimes(\mathrm{YM}+$ fermion $)=(\mathrm{GR}+$ massive gravitino $)$
$(\mathrm{YM}+\mathrm{W}$-boson $) \otimes(\mathrm{YM}+\mathrm{W}$-boson $)=(\mathrm{GR}+$ massive KK graviton $)$
Lagrangians unique: have no non-minimal terms beyond cubic order in fields
Can be used for $\left(S^{\mu}\right)^{\leq 4}$ PM/PN calculations.
Compton $\left(S^{\mu}\right)^{4}$ yet to be confirmed via other methods (BHPT, worldline).

## What special about the EFTs ?

The $s \leq 1$ gauge theories and $s \leq 2$ gravities admit a massless limit and all states that carries vector indices acquires a gauge symmetry
$s=1 \quad(\mathrm{YM}+\mathrm{W}$-boson $) \rightarrow$ non-abelian gauge symmetry
$s=3 / 2 \quad(\mathrm{GR}+$ massive gravitino) $\rightarrow$ supersymmetry
$s=2 \quad(\mathrm{GR}+$ massive KK graviton $) \rightarrow$ General covariance
(Note: we only study amplitudes with 2 massive states, and $n-2$ massless in which case the enlarged theories consistently truncate)

## Summary \& Outlook

- Color-kinematics duality lies at the root of gravity:
$\rightarrow$ makes perturbative GR more manageable!
$\rightarrow$ allows for simpler classification of gravity theories
$\rightarrow$ kinematic algebra is a well-hidden gem of YM (and GR)
$\rightarrow$ useful for PM calculations
- Explored amplitudes for massive spinning matter $\rightarrow$ Kerr BH ?
$\rightarrow$ Double copy works well up to spin-2 (KK graviton)
$\rightarrow$ AHH amplitudes seems to be originating from theories with SSB ?
$\rightarrow$ Paolo Pichini can give more details on higher-spin results
- Not discussed: String theories exhibit novel double copy structures. string tree ampl $=$ String $\otimes$ QFT $\quad$ Azevedo, Chiodaroli, HJ, Schlotterer ('18)
- Not discussed: C/K duality in AdS space (Herderschee, Roiban, Teng; [...])
- Not discussed: Classical double copies of BH solutions (0'Connell et al. [...])

The topic of double copy \& CK duality has grown significantly in the last few years, you will likely hear more about it in this KITP program!

