Why are gaseous halos often multiphase?

Drummond Fielding

Multiphase CGM

volume-filling phase hot T ~ T_{vir} ~ 10⁶ K

intermediate phase warm T ~ 10⁵ K

dense phase cold T ~ T_{UVB} ~ 104 K

multiphase gaseous halos

multiphase gaseous halos

multiphase gaseous halos

satellite galaxies

cosmic accretion

Dulen Nelson

multiphase gaseous halos

satellite galaxies

cosmic accretion

multiphase gaseous halos

Iryna Butsky

Dylan Nelsor

satellite galaxies

thermal instabilities

galactic winds *direct launching*

How much cold gas is carried by winds?

What is the fate of cold gas in winds?

-0.5

galactic winds what leaves the ISM

Resolving the wind launching process informs expected phase structure

1.5

0.5

0.0

0.5

Similar behavior in FIRE-2 cosmo. zoom

Dong Zhang+ 2017

 $\rho_{\rm cl} r_{\rm cl}$ ^rcl taccel \mathcal{V} $\rho_{\rm hot}$ V

 $t/t_{cc} = 8.3125$

 $t_{\rm destroy} \approx t_{\rm cc} = \chi^{1/2} \underline{/cl}$ \mathcal{V}

tdestroy

If the mixed gas radiatively cools rapidly then clouds can survive!

v t_{cool,mixed} TC. v1/2

Max Gronke and Peng Oh (2018)

$t/t_{\rm cc} = 15.5625$

See also: Max Gronke & Peng Oh 18,20; Zhihui Li+ 20; Martin Sparre + 19,20; Vijit Kanjilal+ 20; Wladimir Banda-Barragán+ 20a,b; and many more

$t_{\rm cool,mixed} < t_{\rm destroy}$

Turbulent Radiative Mixing Layers Taming the Turmoil

Turbulent Radiative Mixing Layers Taming the Turmoil

DF+ 20

Turbulent Radiative Mixing Layers the answer is in Damix

 S^{-1})

-2

Brent Tan+ 20

Grow as ya go Seeds in the wind

Cold clouds may grow instead of being destroyed while accelerated

multiphase gaseous halos

multiphase gaseous halos

satellite galaxies

satellite galaxies ram pressure stripping

satellite galaxies ram pressure stripping

ram pressure stripped tails can cool and grow like clouds in a wind

now with self gravity and star formation!

Stephanie Tonnesen+ 21

satellite winds contribute to host CGM

multiphase gaseous halos

satellite galaxies

cosmic accretion

Dulen Nelson

multiphase gaseous halos

satellite galaxies

IGM accretion cosmological view

IGM accretion cold streams

streams are shredded while moving through the CGM

IGM accretion

cooling stabilizes the stream if $r_{\text{stream}} \gtrsim v_{\text{turb}} t_{\text{cool}}$

IGM accretion building the hot halo

If accretion shock heated gas cools Slowly

hot outer CGM grows

IGM accretion building the hot halo

If accretion shock heated gas cools rapidly

> t_{cool} $t_{\rm ff}$ shock

feedback and turbulence dominate

galactic winds

cosmic accretion

Dulen Nelson

multiphase gaseous halos

satellite galaxies

galactic winds

cosmic accretion

multiphase gaseous halos

Iryna Butsky

Dylan Nelsor

satellite galaxies

thermal instabilities

cooling flow

thermal instability thermal balance

 $\mathcal{L} \approx \mathcal{H}$

compression compensates for cooling

faster cooling leads to more rapid inflows

faster cooling leads to more rapid inflows

until ...

faster cooling leads to more rapid inflows

until M > 1and $\frac{t_{cool}}{t_{ff}} < 1$

thermally unstable cooling flows

 $t_{
m cool}^{
m (s)}/t_{
m ff}\,{=}\,0.25$

 $0.2 R_{\rm vir}$

 $t_{
m cool}^{\,
m (s)}/t_{
m ff}\,{=}\,1$

 $0.2 R_{\rm vir}$

supersonic +

$$t_{\rm cool}^{\rm (s)}/t_{\rm ff}=4$$

 $0.2\,R_{
m vir}$

 $t_{\rm cool}^{({\rm s})}/t_{\rm ff} = 16$

 $0.2\,R_{
m vir}$

Jonathan Stern+ 20b

see also: Balbus & Soker 89; DF+17; Jonathan Stern+ 19, 20a; and many more

$t_{cool}/t_{ff} = 0.1$

$t_{cool}/t_{ff} = 0.3$

 $t_{cool}/t_{ff} = 1.0$

Iryna Butsky+ 20 (with cosmic rays) see also: McCourt+ 12 (hydro), Prateek Sharma+ 12 (spherical), Yuan Li+ 14 (jet heating), Suoqing Ji+ 18 (MHD), and many more

thermally instability precipitation

 $t_{cool}/t_{ff} = 3.0$

galactic winds

cosmic accretion

multiphase gaseous halos

Iryna Butsky

satellite galaxies

thermal instabilities

because

because

^LCC

because

rps

because

because

K

because

ff

S S S

because

mix

Are the phases in pressure equilibrium? Yes, unless they are:

-moving too fast

-cooling too fast

 $t_{\rm cool} < \Delta x/c_{\rm s}$ -too low resolution

-large non-thermal pressure (week 3)

 $t_{\rm flow} < r/c_s$

 $t_{\rm cool} < r/c_{\rm s}$

out of pressure equilibrium supersonic motion

$V \leftarrow C_S V$

out of pressure equilibrium 10^{1}

 $10^0 \frac{d}{d}$

out of pressure equilibrium supersonic cooling flow

out of pressure equilibrium supersonic cooling flow

supersonic -

→ subsonic

see also: Balbus & Soker 89; DF+17; Jonathan Stern+ 19, 20a; and many more

DF+ 21

DF+ 21

A theorists perspective on the observational tracers of the multiphase CGM

-10

0 kpc

10

-10

0 kpc

10

Multiphase CGM

a result of the rich interplay of galactic winds satellite galaxies IGM accretion thermal instabilities

