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Figure 9. Intersection where traffic noise recording was carried out.

Figure 10. Example spectrograms of typical events in recorded scenes: chair scratching on the floor of the

cafeteria (left panel) and accelerating motorbike at a green traffic light (right panel). Abscissa represents

time, ordinate frequency, light colours high spectro-temporal signal power, dark colours low power.
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3.5 Downtown pedestrian area

This recording was conducted using the mobile setup on a Saturday around noon time in the city

centre of Oldenburg with many pedestrians in the area as seen in Fig. 11. The whole recording

covers about one hour and contains a round tour through the pedestrian area with two stops of

about five minutes each for recordings from fixed positions. Ambient noise mainly consists of

pieces of conversation and babbling in the background, music from stores and from outside

presentations.

Figure 11. City centre of Oldenburg where recordings were performed.

3.6 Audio-visual pilot recordings

At the DIRAC project meeting in Leuven (September 5/6, 2006) audio-visual test recordings

were done in cooperation with the research group from the Center for Machine Perception at the

Czech Technical University (CTU) in Prague. Together with the mobile visual recording setup

from CTU the recordings were performed in an office room at the building of the Katholike

Universiteit Leuven and outside in a parking lot. Different setups of the visual equipment were

tested, e.g., the frame rate for image acquisition was varied and pictures were taken in colour and

black and white. Overall six audio-visual recordings with a total duration of about seven minutes

were captured.

At the same venue, about 80 minutes of audio-only recordings were performed, capturing a

meeting in a large conference room using the HATS with 6-channel hearing aid microphones (no

inner ear microphone channels).
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Statistical approach of neural characterization

• Goal: infer response properties from stimulus and evoked response

Sensory stimulus s p(r|s) = ? Response r



Simple cell linear receptive field model

(Kandel et al., 2000)
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Stimuli: White noise

Optimizing Sound Features for Cortical Neurons
R. Christopher deCharms, David T. Blake,

Michael M. Merzenich*

The brain’s cerebral cortex decomposes visual images into information about oriented
edges, direction and velocity information, and color. How does the cortex decompose
perceived sounds? A reverse correlation technique demonstrates that neurons in the
primary auditory cortex of the awake primate have complex patterns of sound-feature
selectivity that indicate sensitivity to stimulus edges in frequency or in time, stimulus
transitions in frequency or intensity, and feature conjunctions. This allows the creation
of classes of stimuli matched to the processing characteristics of auditory cortical
neurons. Stimuli designed for a particular neuron’s preferred feature pattern can drive
that neuron with higher sustained firing rates than have typically been recorded with
simple stimuli. These data suggest that the cortex decomposes an auditory scene into
component parts using a feature-processing system reminiscent of that used for the
cortical decomposition of visual images.

Feature processing by neurons in the pri-
mary visual cortex has been studied exten-
sively since the discovery by Hubel and Wie-
sel that the “right” kinds of stimuli for visual
cortical neurons are moving, oriented bars
within a spatial receptive field (1)—a find-
ing later confirmed and extended in detail by
reverse-correlation methods (2). The funda-
mental feature-processing characteristics
within the spectral receptive fields of neu-
rons in the awake primary auditory cortex
are less completely resolved, except in spe-
cies with particularly well understood audi-
tory behavior, such as bats (3), owls (4), and
song-birds (5), where stimuli have been se-

lected on the basis of ethological principles
(6). Our understanding of auditory cortex
physiology in other mammalian species re-
sults largely from studies of anesthetized an-
imals (7), which has demonstrated that au-
ditory neurons are tuned for a number of
independent feature parameters of simple
stimuli including frequency (8), intensity
(9), amplitude modulation (10), frequency
modulation (11), and binaural structure
(12). However, auditory responses to multi-
ple stimuli can also enhance or suppress one
another in a time-dependent manner (13),
and auditory cortical neurons can be highly
selective for species-specific vocalizations
(14), indicating complex acoustic processing
by these cells. It is not yet known if or how
these many independent selectivities of au-
ditory cortical neurons reflect an underlying
pattern of feature decomposition, as has been

suggested (15). Further, because sustained
firing-rate responses in the auditory cortex to
tonal stimuli are typically much lower than
visual responses to drifting bars (16), it has
been suggested that the preferred type of
auditory stimulus may still not be known
(17). For these reasons, we investigated
whether a reverse-correlation method simi-
lar to that used in the visual cortex would
discern the full spectral and temporal fea-
ture-response profile of auditory cortical
neurons in the awake animal.

Reverse correlation stimuli used in visual
cortex experiments have consisted of rapid-
ly presented two-dimensional checkerboard
spatial patterns (Fig. 1A). The auditory stim-
uli used here consisted of rapidly presented
random chords or asynchronous random
tone progressions that evenly spanned a por-
tion of the one-dimensional receptor surface
of the cochlea (Fig. 1, B and C). Rather than
measuring tuning for a preselected parame-
ter, this unbiased method constructs the av-
erage full auditory stimulus preceding spikes
from a neuron, whatever form it may take
(18). Alternatively, this can be viewed as the
average response of the neuron driven by
each separate stimulus component, which is
numerically identical (but is reversed in
time, and is expressed in units of mean den-
sity of stimulus components instead of the
mean density of spikes). Neuronal reverse-
correlation techniques were originally devel-
oped for characterizing auditory neurons in
the periphery (19), but while these methods
have been applied to more peripheral struc-
tures and visual cortical cells, researchers
have only recently begun to succeed in ap-
plying this method to auditory cortical neu-
rons (20). Data presented here are taken
from extensive characterizations of 206 iso-
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Fig. 1. Stimuli used for
reverse correlation in (A)
the visual and (B and C)
the auditory cortex. In
the visual system, re-
verse-correlation stimuli
have consisted of flicker-
ing checkerboards. Stim-
uli used here for the audi-
tory domain consisted of
chords created by ran-
domly selecting frequen-
cies from 84 possible val-
ues spanning 7 octaves
from 110 to 14,080 Hz in
even 1⁄12th octave steps.
The density of tones in
each stimulus was one
tone per octave on aver-
age, and seven tones per
chord, but the stimuli were stochastic so that a given chord could be
composed of a variable number of tones of randomly selected frequen-
cies. Rates of 10 to 100 chords/s have been used, as well as stimuli with
random, nonaligned onset times in each frequency band. Data present-
ed here used 50 chords/s or the equivalent number of nonaligned tones.

The complete stimulus set lasted for 10 min, thereby including 30,000
individual chords. The stimuli were 20-ms long pure tones with 5-ms
cosine onset and offset ramps, and were presented at either 70 or 50 dB,
or both. Fewer frequencies are shown in the diagram than were actually
used.
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random, nonaligned onset times in each frequency band. Data present-
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Stimulus = Point in feature space

triggered ensemble are then two clouds of points in this
space. Intuitively, the task of estimating the neural
response function corresponds to describing the ways in
which these two clouds differ. In practice, when the input
stimulus space is of high dimensionality, one cannot
estimate the neural response function without further
assumptions.
Spike-triggered analysis has been employed to estimate

the terms of a Wiener/Volterra expansion (Korenberg,
Sakai, & Naka, 1989; Marmarelis & Marmarelis, 1978;
Volterra, 1959; Wiener, 1958), in which the mapping from
stimuli to firing rate is described using a low-order
polynomial (see Dayan & Abbott, 2001; Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997 for a review).
Although any reasonable function can be approximated as
a polynomial, the firing rate nonlinearities found in the
responses of sensory neurons (e.g., half-wave rectified,
rapidly accelerating and saturating) tend to require a
polynomial with many terms (see, e.g., Rieke et al., 1997).
However, the amount of data needed for accurate
estimation grows rapidly with the number of terms.
Therefore, in an experimental setting where one can
estimate only the first few terms of the expansion, the
polynomial places a strong restriction on the nonlinearity.
As an alternative to the polynomial approximation, one

can assume that the response function operates on a low-
dimensional linear subspace of the full stimulus space
(Bialek & de Ruyter van Steveninck, 2005; de Ruyter van

Steveninck & Bialek, 1988). That is, the response of a
neuron is modeled with a small set of linear filters whose
outputs are combined nonlinearly to generate the instanta-
neous firing rate. This is in contrast to the Wiener/Volterra
approach, which in general does not restrict the subspace
but places a restriction on the nonlinearity.1 By concen-
trating the data into a space of reduced dimensionality, the
neural response can be fit with less restriction on the form
of the nonlinearity.
A number of techniques have been developed to estimate

the linear subspace and, subsequently, the nonlinearity. In
the most widely used form of this analysis, the linear front
end is limited to a single filter that serves as an explicit
representation of the Breceptive field[ of the neuron, but the
nonlinearity is essentially unrestricted. With the right
choice of stimuli, this linear filter may be estimated by
computing the spike-triggered average (STA) stimulus (i.e.,
the mean stimulus that elicited a spike). The STA has been
widely used in studying auditory neurons (e.g., Eggermont,
Johannesma, & Aertsen, 1983). In the visual system, STA
has been used to characterize retinal ganglion cells
(e.g., Meister, Pine, & Baylor, 1994; Sakai & Naka,
1987), lateral geniculate neurons (e.g., Reid & Alonzo,
1995), and simple cells in primary visual cortex (V1;
e.g., DeAngelis, Ohzawa, & Freeman, 1993; Jones &
Palmer, 1987; McLean & Palmer, 1989). Given the STA
filter, one typically has enough experimental data to
construct a nonparametric estimate of the nonlinearity

Figure 1. The spike-triggered stimulus ensemble. (A) Discretized stimulus sequence and observed neural response (spike train). On each
time step, the stimulus consists of an array of randomly chosen values (eight, for this example). These could represent, for example, the
intensities of a fixed set of individual pixels on the screen or the contrast of each of a set of fixed sinusoidal gratings that are additively
superimposed. The neural response at any particular moment in time is assumed to be completely determined by the stimulus segment
that occurred during a prespecified interval in the past. In this figure, the segment covers six time steps and lags three time steps behind
the current time (to account for response latency). The spike-triggered ensemble consists of the set of segments associated with spikes.
(B) Geometric (vector space) view of the spike-triggered ensemble. Stimuli (here, 48-dimensional) are projected onto two space–time
vectors. In this example, each of the two vectors contained 1 stixel (space–time pixel) set to a value of 1, and the other 47 stixels were set
to 0. For these given vectors, the projection is equivalent to the intensity of the corresponding stixel in the stimulus. More generally, one
can project the stimuli onto any two 48-dimensional vectors. The spike-triggered stimulus segments (white points) constitute a subset of
all stimulus segments presented (black points).

Journal of Vision (2006) 6, 484–507 Schwartz et al. 485
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Spike triggered average (STA)
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2. Compute the filter responses for the stimulus, and
estimate the nonlinear firing rate function based on
these responses. As noted earlier, typical physio-
logical data sets allow nonparametric estimates of
the nonlinearity for one or two filters but require
more model restrictions as the number of filters
increases.

In the following subsections, we describe these steps in
detail. In the Experimental issues section, we also stress
the importance of an additional step: validating the
resulting model by comparing it to neural responses from
other stimuli.

Subspace (filter) estimation

In general, one can search for any deviation between the
raw and spike-triggered stimulus ensembles. This can be
done, for instance, using measures of information theory
(Paninski, 2003; Sharpee et al., 2003, 2004). Another
natural approach is to consider only changes in low-order
moments between the raw and spike-triggered stimulus.
Here, we focus on changes in the first and second
moments, which may be computed efficiently and manip-
ulated using a set of standard linear algebraic techniques.
We also briefly discuss how the analysis relates to the
Wiener/Volterra approach.

Spike-triggered average

The simplest deviation between the spike-triggered and
raw stimulus distributions is a change in the mean.
Assuming that the raw stimuli have zero mean, this can be

estimated by computing the average of the spike-triggered
ensemble (STA):

Â ¼ 1

N
~
N

n¼1

s
Y
tnð Þ; ð2Þ

where tn is the time of the nth spike, s
YðtnÞ is a vector

representing the stimuli presented during the temporal
window preceding that time, and N is the total number of
spikes. In practice, the times tn are binned. If there is more
than one spike in a bin, then the stimulus vector for that
time bin is multiplied by the number of spikes that
occurred. The STA is illustrated in Figure 3A.
For an LNP model with a single linear filter, the STA

provides an unbiased estimate of this filter,2 provided that
the input stimuli are spherically symmetric (Bussgang,
1952; Chichilnisky, 2001; Paninski, 2003), and the non-
linearity of the model is such that it leads to a shift in the
mean of the spike-triggered ensemble relative to the raw
ensemble (see Limitations and potential failures section
and Experimental issues section). This last requirement
rules out, for example, a model with a symmetric
nonlinearity such as full-wave rectification or squaring.
For an LNPmodel with multiple filters, the STA provides

an estimate of a particular linear combination of the model
filters, subject to the same restrictions on input stimuli and
the form of the nonlinearity given above (Paninski, 2003;
Schwartz et al., 2002). That is, the STA lies in the
subspace spanned by the filters, but one cannot assume
that it will exactly represent any particular filter in the
model.

Figure 3. Two alternative illustrations of STA. (A) The STA is constructed by averaging the spike-triggered stimulus segments (red boxes),
and subtracting off the average over the full set of stimulus segments. (B) Geometric (vector space) depiction of spike-triggered averaging
in two dimensions. Black points indicate raw stimuli. White points indicate stimuli eliciting a spike. The STA, indicated by the line in the
diagram, corresponds to the difference between the mean (center of mass) of the spike-triggered ensemble and the mean of the raw
stimulus ensemble.

Journal of Vision (2006) 6, 484–507 Schwartz et al. 487
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Response characteristics in A1
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lated single neurons in the primary auditory
cortex (AI) of two awake owl monkeys (21).

Neurons in the auditory cortex have tra-
ditionally been analyzed by counting spikes
evoked by individual pure-tone stimuli to
compute frequency tuning at differing inten-
sity levels (22). Figure 2A shows the stan-
dard frequency response area of a single AI
neuron at a range of intensities for compar-
ison. The remainder of Fig. 2 shows plots of
the full linear average pattern of feature se-
lectivity in spectral content and in time for
seven representative AI neurons in the form
of spectrotemporal receptive fields, measured
at a 70-dB sound pressure level (SPL), in-
cluding this same neuron from (A) presented
in (B) and (C). The spectrotemporal recep-
tive field (STRF) is effectively a sonogram of
the linear estimate of the optimal stimulus
and is computed during the same amount of
recording time as a traditional tuning curve,
10 min. Figure 2, B to I, shows the effect of
average firing rate on each neuron driven by
each individual component of the complex
stimulus as the pixel’s color (spikes per sec-
ond). The reverse-correlogram is thus pre-
sented as a stimulus-triggered spike rate av-
erage, analogous to a standard peristimulus
time histogram but reversed in time, and is
identical to the estimated optimal stimulus
for the cell (a spike-triggered stimulus aver-
age in units of mean stimulus density). To
demonstrate the typical consistency of the

method to reproduce the complex details of
receptive fields, Fig. 2C presents a second
estimate of the optimal stimulus for the neu-
ron in (B) using an entirely different stimu-
lus set and using asynchronous rather than
synchronous tone onsets. Considerable
structure in the regions of both increased and
decreased firing rate is apparent in the STRF
that is not evident in the traditional tuning
curve.

Only a minority of neurons in AI (5% of
total, n ! 206 neurons) had spectrotemporal
receptive fields with just a single region of
increased rate and no inhibition, which cor-
responds to simple selectivity for a particular
frequency region, with no additional feature-
processing structure. We have found that
cells of this type (23) are less common than
cells with complex multipartite receptive
fields that include regions of both increased
and decreased firing rate as well as temporal
structure. We will refer to these regions as
excitatory and inhibitory, although these are
measures of deviations from mean ongoing
rate during characterization stimuli and are
not necessarily diagnostic of an underlying
synaptic mechanism.

Neurons with multipartite excitatory and
inhibitory receptive fields can serve as detec-
tors of stimulus edges in both sound frequen-
cy and in time. The neuron shown in Fig. 2D
had a receptive field structure within its
frequency-responsive area showing a long,

narrow region of excitation flanked by inhi-
bition, suggesting that this cell would extract
information about sound components con-
taining a continuous-frequency edge at a
precise tonal location, or very spectrally nar-
row sounds at this frequency (observed selec-
tivity is shown in Fig. 3). The neuron shown
in Fig. 2E showed a brief region of excitation,
with its dominant feature being symmetrical
lateral inhibitory components above and be-
low, also suggestive of detecting stimulus
edges and strong tuning for sound-compo-
nent width (24). The neuron shown in Fig.
2F had an STRF that predicted selectivity
for stimuli with little sound energy in the
receptive field, followed by strong energy—
the edge of a stimulus in time rather than in
frequency. This type of neuron would be
predicted to respond to successive stimulus
transients separated by times greater than a
characteristic minimum time (25).

Neurons were also observed that respond-
ed with increased rates to one frequency
range at one time, and to a shifted frequency
range at a later time, with regions of inhibi-
tion showing a similar shift. The neuron
shown in Fig. 2G is an example of this type.
This pattern of response within the receptive
field is strongly analogous to motion energy
detectors (25), which detect a moving stim-
ulus edge, and this cell was indeed selective
for the direction and rate of tones sweeping
in frequency. The red line on the panel
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Fig. 2. The spectrotemporal receptive fields of
neurons in the primary auditory cortex of the
awake primate show the pattern of sound features
selected for by particular neurons. The traditional
tuning curve (A) was computed by counting the
number of spikes elicited from a single auditory
cortical neuron by 100-ms pure-tone pips pre-
sented at 84 frequencies and eight intensities
(scale bar in spikes per stimulus, intensities in
decibel SPL, data convolved with 2-pixel-wide
Gaussian). The spectrotemporal receptive field (B)
shows the full time-frequency structure of the
same neuron’s sound-feature selectivity (note the
different axes), which is proportional to its estimat-
ed optimal stimulus including multiple excitatory
and inhibitory regions, in units of mean spikes per
second. Spectrotemporal receptive fields (B to I)
were computed as described in the text. The
spectrotemporal receptive field in (C) was recom-
puted for the same neuron with a completely dif-
ferent stimulus set. In (B) the stimuli were made up
of random chords with synchronous onset times
for each component in the chord, and in (C) all
individual components were presented at com-
pletely random and asynchronous times. Recep-
tive fields are all from well-isolated single-neuron
recordings. Receptive-field structures correspond
to the average rate of spikes from the neuron at
time zero driven by each stimulus component fre-
quency at the lag time shown; this is the standard peristimulus spike rate value
triggered on each stimulus component but reversed in time. Proportionally
equivalent, the spectrotemporal receptive field is also the average stimulus
preceding each neuronal spike at time zero, an average of the stimulus

components triggered on the spike occurrence. Therefore, scale bars shown
(in spikes per stimulus) are directly proportional to the probability of occur-
rence of each stimulus component (in stimuli per spike). Spectrotemporal
receptive fields were convolved with a 1-pixel-wide Gaussian to reduce noise.
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Stimuli: Dynamic moving ripples (DMR) 
and ripple noise

Escabi, Schreiner (2002)

best stimulus of the neuron, this convention is flipped for the neuron and
its RTF (positive, upward sweep; negative, downward sweep).

Although this approach was successfully applied for many neurons,
other neurons did not show statistically significant STRFs; therefore, it
was impossible to estimate their RTFs directly. We therefore approxi-
mate the probability distribution function of observing a given set of
parameters given a spike at time tn, P(Fm, !!tn), by performing a spike-
triggered average with respect to the time-varying DMR parameters,
!(t) and Fm(t):

Pkl ! "
n"1

N

I#k$Fm " Fm%tn& " %k # 1&$Fm' ! I#l$! " !%tn& " %l # 1&$!',

(15)

where Pkl is the discrete version of P(Fm, !!tn), and I[!] is the identity
function. The identity function takes a value of unity whenever the
condition inside its argument is satisfied. Otherwise, it assumes a value of
0. Thus for any given bin of Pkl, this conditioned response histogram
(CRH) is incremented by (1 if and only if the instantaneous parameters,
Fm(tn) and !(tn), fall within the required intervals, k$Fm " Fm(tn) " (k
( 1)$Fm and l$! " !(tn) " (l ( 1)$!, at the time of the neuronal spike,
tn (see Fig. 5C,D). Bin width resolutions of $Fm " 15–35 Hz and $! "
0.2–0.4 cycles per octave were used. The exact position used to estimate
the parameters relative to the neuronal spike time, tn, did not alter the
resulting histogram (tested for a time lag of 0–50 msec), because
the parameters vary at a slow rate (1.5 and 3 Hz) compared with the
integration time of ICC neurons (usually tens of milliseconds).

As for single units, it was also useful to characterize population
responses in the frequency domain, and we therefore extended these
methods to include population statistics. By averaging the RTFs of
individual neurons, we estimated the population ripple transfer function
(pRTF) for those neurons with significant STRFs. To avoid biasing the
pRTF because of systematic differences in firing strength, the RTFs of
individual neurons were equally weighted so that the cumulative area of
each was exactly 1.

For neurons that did not produce statistically significant STRFs, a
modified approach was applied. We normalized the CRH of each neuron
so that its cumulative sum was exactly 1. An average was then taken over
the entire population, thereby producing the “population” CRH
(pCRH). To facilitate comparisons, the pCRH was interpolated using the
interp2 function (spline option) in MATLAB to identical resolution as
for pRTF.

RESULTS
We studied 81 single neurons with the intent of understanding
how dynamic spectrotemporal signals are processed within the
central nucleus of the inferior colliculus. Specifically, we address
whether single neurons integrate spectrotemporal information
according to a linear integration model and whether dynamic
stimulus aspects significantly affect neuronal encoding. Our com-
plex stimuli constitute an integral part of the experimental pro-
tocol, and we fully characterize several pertinent properties of the
stimulus ensembles. By design, both test sounds have identical
average statistics and, therefore, equally sample the relevant
spectrotemporal stimulus dimensions for this study. As a first-
order test of evaluating spectrotemporal response nonlinearities,
we compute and compare the spectrotemporal receptive field for
each sound type. We also characterize higher-order response
attributes that are not directly accessible with the STRF
descriptor.

Stimulus statistics: average versus dynamic
spectrotemporal characteristics of the dynamic
moving ripple and ripple noise
To test the possibility that individual auditory neurons in the ICC
are selective for structural features prevalent in natural sounds
(Fig. 1A,B), complex broadband stimuli (Fig. 1C,D) were de-
signed that allow us to systematically identify nonlinear process-
ing capabilities of auditory neurons. These stimuli fulfill a num-

ber of theoretical and ecological constraints: first, both sounds
were designed to stringently meet a number of necessary require-
ments for use with the STRF. Second, both sounds incorporate a
number of pertinent acoustic stimulus attributes that are preva-
lent in various natural signals [e.g., spectral energy peaks, fre-
quency modulation (FM) sweeps, and temporal modulations] and
that determine important perceptual qualities (Plomp, 1970,
1983; Van Veen and Houtgast, 1983).

The DMR stimulus (Fig. 1C) is an extension of the rippled
spectrum noise used to characterize spectral and temporal re-
sponse properties in the ferret and cat auditory cortex (Schreiner
and Calhoun, 1994; Kowalski et al., 1996; Klein et al., 2000). This
sound is constructed so that its spectrotemporal envelope is
dynamic and coherently modulated (“structured”) in time and
frequency. As for speech and animal vocalizations (Fig. 1A), the
DMR has strong short-time spectrotemporal correlations. These
are determined by two independent parameters that vary ran-
domly in time: the temporal modulation rate, Fm(t), and ripple
density, !(t) (see Materials and Methods; Figs. 1C, and 2). The
temporal modulation parameter determines the number of onsets
and offsets per unit time (units of hertz) (Fig. 1C, top right). At any
given time, the DMR sound produces a sinusoidal energy excita-
tion pattern along the sensory epithelium, where the number of
peaks per octave frequency is determined by the ripple density at
that instant (Fig. 1C, top right). To efficiently excite neurons in the
range characteristic for vocalizations, these parameters continu-
ously vary at a nominal rate of 3 Hz (ripple density) (Fig. 2A) and
1.5 Hz (temporal modulation rate) (Fig. 2B) (in speech, for
instance, similar features change at a rate of )2–8 Hz; Green-
berg, 1998).

Figure 1. Synthetic sound sequence used for reverse correlation analysis
(C, D) and some corresponding natural sound counterparts (A, kitten
vocalizations; B, babbling brook). The DMR (C) is designed to mimic
spectral profiles created by formants (spectral energy peaks) and temporal
modulations in speech production and animal vocalizations. The ripple
density parameter, !( t), corresponds to the number of energy peaks
(cycles per octave) along the spectral axis at time t. The temporal
modulation rate, Fm( t), describes the repetition rate of the envelope in
hertz. The second stimulus, the RN (D), has noise-like properties that
uniformly cover the ripple dimensions. The DMR and RN are shown for
a maximum temporal modulation rate of 70 Hz, although a value of 350
Hz was used for the experiments.
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STRF estimation with STA
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This essential property, which makes the RN and DMR stimuli
suitable for reverse correlation, also permits the identification of
spectrotemporal response nonlinearities. Given that both stimuli
have identical low-order statistics (matched in intensity, contrast,
and average envelope modulations), it is expected that a linear
integrating neuron would have an average neural response that is
similar for the RN and DMR conditions. That is, because both
the RN and DMR stringently satisfy the necessary requirements
for reverse correlation, we expect that STRFDMR ! STRFRN if
the neuron behaves as a linear integrator (see Materials and
Methods and Appendix B for proof). By comparing DMR and
RN responses, we find that 60% (n ! 49) of the neurons in our
ICC sample met this requirement (Fig. 4). For reference, pure
tone FTCs are shown alongside the RN and DMR STRFs when
available (Fig. 4A,D). A red bar designates the mean sound
pressure level (per one-third octave) for DMR and RN.

Neurons in our sample showed a variety of preference to
stimulus patterns in the DMR and RN, including suppressive side
bands, obliquely oriented excitatory or inhibitory regions, and
distinct temporal response profiles (e.g., on–off, off–on, and
off–on–off). Typically, excitatory and inhibitory STRF features
were consistent between DMR and RN, although in some cases,
inhibitory features were less pronounced for the RN (Fig. 4E,F).
DMR and RN firing rates were generally high (mean spike rate,
11.2 spikes/sec for DMR and 11.8 spikes/sec for RN) and signif-
icantly correlated [correlation coefficient, 0.85 " 0.08 (mean "
SE)] for this subset of neurons. Likewise, all neurons had com-
parable STRF energies. The neuron of Figure 4B,C, for instance,

had a spike rate of 34.0 spikes/sec for the DMR and 36.2 spikes/
sec for the RN (difference, 6%) and comparable STRF energies
(EDMR, 2.6 spikes/sec; ERN, 3.0 spikes/sec; difference, 13%). The
presence of well defined, statistically significant STRFs ( p #
0.002) for both DMR and RN indicates that neurons efficiently
phase locked to the stimulus spectrotemporal envelope. To dis-
tinguish these functional properties from those of other neurons
in our sample, we refer to these as type I responses.

Frequency domain RF analysis
Complementary to the STRF, we also evaluated neuronal data in
the frequency domain to extract physiologically meaningful pa-
rameters from the STRF and to describe neuronal preferences in
terms of low-pass and bandpass filtering (Depireux et al., 2001;
Klein et al., 2000).

First, we converted the STRF to an RTF (Fig. 5A,B). The RTF
maps a the preferences of a neuron as a function of the temporal
(modulation rate) and spectral (ripple density) stimulus parame-
ters (see Materials and Methods). Whether a neuron integrates
spectral or temporal information in a low-pass or bandpass man-
ner depends strongly on the spectrotemporal relationship be-
tween neural excitation and inhibition in its STRF. For instance,
the neuron of Figure 4B,C, has an on–off temporal response
pattern; therefore, its RTF resembles a bandpass filter along the
temporal modulation axis (Fig. 6A) that is centered at a best
temporal modulation rate (bTM) of 45 Hz. Likewise, along the
spectral axis, this neuron has a weak but significant inhibitory
region alongside an excitatory region. Therefore its response as a
function of ripple density also has a bandpass response profile
with the dominant response peak centered at a best ripple density
(bRD) of 0.6 cycles per octave. Neurons that lack interleaved
patterns of excitatory (on) and inhibitory (off) subfields in their
STRFs generally have low-pass response characteristics (Fig.
4I,J) along the spectral and temporal dimensions. The STRF of
this example is marked by an off–on–off temporal response pat-
tern, but its spectral STRF patterns lack interleaved excitatory and
inhibitory subfields. Accordingly, its RTF (Fig. 6B) shows a band-
pass response pattern in time (bTM, 200 Hz) and a low-pass
response pattern along the spectral axis (bRD, 0 cycles per octave).

In a second related approach, a CRH was used to evaluate
neuronal selectivity by tabulating the number of action potentials
as a function of ripple parameters (see Materials and Methods).
Unlike the STRF and RTF, this method accumulates the stimulus
parameters, as opposed to the averaging stimulus waveforms, and
is therefore insensitive to spike timing jitter. Figure 5C,D illus-
trates this approach. Generally, we find that RTF and CRH are in
close agreement (Fig. 6). However, the CRH also reflects non-
specific activity, that is, action potentials that fall outside the
dominant RTF boundaries and presumably do not contribute to
the construction of the STRF (Fig. 6A,B).

Nonlinear spectrotemporal receptive fields for DMR
and RN
One question addressed in this study is whether ICC neurons
require specific acoustic features to be efficiently activated and
whether these features can be identified using the STRF method.
One reason why it may be difficult to identify the preferred
acoustic features of a neuron using a direct approach is because
conventional reverse correlation stimuli (such as the RN or spec-
trotemporal tone pips) seldom contain isolated sound patterns
during a typical recording period. As an example, the DMR
stimulus has pronounced energy peaks and FM sweeps that

Figure 3. Spike-triggered average and the STRF. At each instant of an
action potential, the pre-event sound segment (up to 100 msec before
spiking) is extracted and averaged for the entire stimulus ensemble. Red
regions indicate stimulus patterns that were likely to be present whenever
a neural response occurred at delay of 0. Blue indicates stimulus patterns
that tended to be off at a moment before spike initiation. Functionally,
these are interpreted as excitation (red) and inhibition (blue).
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sound and produced statistically significant STRFs but did not
respond to the RN sound. Therefore, although most neurons had
similar integration areas for RN and DMR, significant differences
in STRF shape were usually attributed to improper activation by
RN. Consequently such neurons were classified as type II
responses.

Although the SI index statistics are consistent with the ob-
served response types of Figures 4 and 7, they do not tell us
anything about the driven and average activity to these stimuli.
The rate and STRF magnitude disparity index corroborate the
results of Figures 4 and 7. Although most neurons (n ! 49; type I)
had RDI and MDI centered about 0 (!RDI! " 500% and !MDI! "
500%; mean MDI, 49.1%; mean, 2.7%), a large subset of neurons
(n ! 11; type II) had values for either of these metrics that
exceeded #500% (mean MDI, 896%; mean RDI, 712%; cluster
verified post hoc, link tree cluster analysis) (Fig. 8A). Thus, the
average activity or phase-locked activity of these neurons tended
to be significantly higher for the DMR stimulus, consistent with
type II response characteristics and the examples of Figure 7.
Five of these neurons had MDI values between 500 and 1000%.
For three neurons, the RDI values were "500%, and observable
response differences manifested themselves only as a significant
change in driven activity (MDI $ 500%) (Fig. 7B,C). An addi-
tional six neurons had very large values of RDI and MDI, because
they responded to the DMR stimulus but produced zero spikes
for the RN sound (Fig. 7G,H,J,K). These are shown collectively
as a single point centered about MDI of #1000% and RDI of
#1000%.

STRF construction and the effects of phase locking
A basic requirement for computing the STRF is that the action
potential linearly time lock or phase lock to the stimulus spectro-
temporal envelope. Sinusoidal amplitude modulation studies have
demonstrated that many ICC neurons phase lock to the stimulus

modulation waveform (Rees and Møller, 1983, 1987; Møller and
Rees, 1986; Langner and Schreiner, 1988; Krishna and Semple,
2000). Accordingly, a large percentage of neurons in this study
phase locked to the spectrotemporal envelope and consistently
produced statistically reliable STRFs (n ! 61 of 81).

The remaining neurons (n ! 20 of 81), failed to produce
statistically reliable STRFs ( p " 0.002) with a distinct spectro-
temporal patterning (Fig. 9), despite a significant overall firing
rate (mean firing rate, 7.5 spikes/sec). We labeled these neurons
type III. One possible explanation is that these neurons were
spontaneously firing and did not respond in a time-dependent
manner to the DMR and RN. One of a number of possible
alternatives is that these neurons responded selectively to energy
fluctuations of the DMR and RN but did not linearly phase lock
to their spectrotemporal envelope. Therefore, waveform averag-
ing to estimate neuronal receptive fields would be of little use.

To test this possibility, we computed the CRH for these neu-
rons. This procedure allows us to test whether type III neurons
respond selectively to complex sound attributes even if they do
not posses the necessary timing precision in their stimulus–
response alignment for producing STRFs. The CRH of all of
these neurons revealed strong responses to particular stimulus
parameter combinations (Fig. 9C,F,H) despite the lack of linear
time locking to the spectrotemporal envelope (resulting in no
STRF in Fig. 9B,E or a very weak STRF in Fig. 9G). Thus, the
responses of these neurons do not linearly follow the fast spec-
trotemporal modulations of the stimulus envelope (up to 350 Hz)
but were able to track very slow changes of the stimulus param-
eters (1.5 Hz for the temporal modulation rate and 3 Hz for the
ripple density) with changes in firing rate. On the basis of the
STRF and mean firing rate alone, one would conclude that these
neurons are only spontaneously firing without functional conse-
quences for encoding stimulus information. However, the cumu-

Figure 7. Spectrotemporal receptive fields
of neurons that responded specifically to
the DMR sound (B, D, G, J, middle col-
umn) but responded weakly or had no re-
sponse to the RN (C, E, H, K, right column).
Frequency-tuning curves derived with pure
tones are shown for reference (A, F, I, lef t
column). Red lines designate the mean
stimulus level (per one-third octave) used
for DMR and RN. Significant STRF pat-
terns are denoted by red contours. All neu-
rons are shown at distinct spectral and tem-
poral scales.
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STRF for natural stimuli
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0.45 (range, 0.12–0.66) for the song ensemble (Fig. 10E, “CC-
matched”). These two distributions of correlation coefficients
were very similar (p ! 0.07, Wilcoxon signed rank test). In both
cases, there was a wide range of fits showing that the linear model
is a good approximation for some neurons and a much poorer
approximation for others. However, both the response to tone
pips and songs could be modeled with similar effectiveness as long

as the STRF used in the fitting was obtained with the same type
of stimulus ensemble.

The picture changed radically when the STRFs were switched,
so that the predicted response to a stimulus from one type of
ensemble was generated with the STRF obtained using the other
ensemble. Figure 10A–C contrast the actual data with the pre-
dicted responses obtained with the matched STRF and with the

Figure 8. STRF calculation for a real neuron. The figure illustrates the STRF calculation explained in Results and in Figure 7 for the neuronal site of
Figure 3. The calculation is based on all the responses that were obtained for the song ensemble and tone ensemble (10 trials for each of the 21 songs
and 20 random tone sequences). As shown in A, for this particular neuron, the STRFs obtained from both ensembles are similar in that they exhibit
similar areas of excitation. On the other hand, the spike-triggered average spectrograms were remarkably dissimilar. Most of the differences in the
spike-triggered average were therefore attributable only to the statistical properties of the stimulus and not to the stimulus–response properties of this
neuronal site. B shows examples of three song-based STRFs for this same neuron obtained with different noise tolerance levels, as explained in Materials
and Methods. The time axis (x-axis) has been expanded from A. The normalized coherence between predicted response and actual response as a function
of the tolerance level is plotted in the rightmost panel. The best predictions were obtained with a tolerance value of 0.0005.
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STA not optimal for correlated stimuli

dix). That is, it should be possible to recover the original sound from the
spectrogram, except for a single absolute phase. Noninvertible represen-
tations could be used if a priori knowledge of the neural response
properties tells us that any two different stimuli that are not separately
recoverable from the noninvertible representation of sound yield the
same neural responses. In such cases the invariant STRF can still be
recovered from the spectrographic STRF.

An invertible spectrographic representation of sound requires the use
of overlapping frequency bands, as explained in this paragraph and in
more mathematical detail in the Appendix. The fine temporal structure
of a sound is given by the relative phase of the narrow-band signals
obtained in the decomposition of the sound into frequency bands. The
phase of these narrow-band signals is thrown away in a spectrographic
representation, where only the amplitude envelopes of the narrow-band
signals are preserved. However, the relative phase of the narrow-band
signals can be recovered from the joint consideration of the amplitude
envelopes, as long as there is sufficient overlap among the frequency
bands (Cohen, 1995; Theunissen and Doupe, 1998). It is for this reason
that, in a complete spectrographic representation, where frequency filters
overlap, the spike-triggered average of even a white noise stimulus will
only be an approximation of the spectrographic STRF. In a spectro-
graphic representation with nonoverlapping frequency bands, the spike-
triggered average spectrogram would be equal to the spectrographic
STRF but, in general, because such a spectrographic representation is
noninvertible, one might not be able to obtain the invariant STRF.

An invertible spectrographic representation of sound. In this study, we
used the spectrographic definition of the STRF (from here on called the
STRF) and an invertible spectrographic representation that is illustrated
schematically in Figure 1. The sounds are represented by a set of
functions of time s{i}(t), where si(t) is taken to be the log of the amplitude
envelope of the signal in the frequency band i (the brackets indicate that
we refer to the entire set of time-varying functions). The frequency
bands were obtained with Gaussian filters of 250 Hz width (SD). We used
31 frequency bands spanning center frequencies between 250 and 8000
Hz. In this manner, the center frequencies of neighboring bands are
separated by exactly 250 Hz or the equivalent of 1 SD. It is this large
amount of overlap that allows this representation to be invertible. We

extracted the amplitude envelope of each frequency band using the
analytical signal as explained in Theunissen and Doupe (1998) and
characterized the sound by the difference between the log value of the
amplitude and the mean log amplitude for that band. We have shown that
the particular time-frequency scale used in our spectrographic represen-
tation of sounds is the most efficient at representing the spectral and
temporal structure of songs that is essential in eliciting the response of
song-selective neurons in the zebra finch (Theunissen and Doupe, 1998).
The additional log transformation was used because it improved our
results significantly, as we will discuss in Results. Note that, in the
auditory domain, the STRF is a linear transformation between a non-
linear representation of the stimulus and the PSTH. The calculation of
the amplitude envelopes that make up the spectrogram is a nonlinear
operation (although in our case it is invertible), and additional nonlin-
earities such as the log transform are often used. This model, therefore,
includes known or determined static nonlinearities between the stimulus
and the response.

Calculation of the STRF for any stimulus ensemble. In this section we
elaborate on the details of the analytical solution of the STRF for any
sound ensemble, which involves correcting for the correlations in the
stimulus ensemble. The STRF is defined as the multidimensional linear
Volterra filter h{i}(t), such that:

rpre!t" ! !
i#1

nf " hi!""si!t # ""d",

where rpre(t) is the predicted firing rate, s{i}(t) is the multidimensional
representation of the time-varying stimulus, and nf is the total number of
spatial dimensions or frequency bands in our case. h{i}(t) is found by
requiring that rpre(t) be as close as possible to rest(t), the estimated firing
rate obtained from a PSTH, in the mean square error sense. One finds
that in the frequency domain, the set of h{i} can be obtained by solving
a set of linear equations for each frequency w. This set of equations is
written in vector notation as:

Aw ! H! w ! C! w .

Figure 1. Schematic illustrating the spectrographic decomposition and the calculation of the stimulus autocorrelation matrix. The sound is decomposed
into frequency bands by a bank of Gaussian filters. The result is a set of narrowband signals with time-varying amplitude and phase. Our representation
of sound is based on the time-varying amplitude envelopes. Although the time-varying phase is discarded, the relative phase across frequency bands is
preserved because of the large overlap between adjoining filters. The time-varying amplitude envelope or its log is what is usually represented in a
spectrogram. Our representation of sound and the spectrograms shown in this paper are based on the log of the amplitude envelopes. The stimulus
autocorrelation function is then found by cross-correlating the log-amplitude envelope of a particular band with the log-amplitude envelope of all the
other bands, including itself. The autocorrelation for the entire ensemble is done by averaging the correlation at each time point for all stimuli in a given
ensemble. Here we show the results of two of such pairwise correlations: the correlation of band 4 (centered at 1250 Hz) with band 2 (centered at 500
Hz) and of band 4 with itself, for the song ensemble.
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Correcting for stimulus correlations

• Normalized reverse correlation (NRC)


• Ridge Regression 
Regularize CSS  with additive diagonal term 
(Often done on spike rate)

Machens, Wehr, Zador (2004); David, Mesgarani, 
Shamma (2007); Park, Pillow (2011)

The response, a vector of length T, is simply the product of the stimulus and STRF,
plus a vector of residuals, e,

r ¼ Shþ e ð4Þ

STRF estimation by boosting. STRFs were estimated from the responses to the
speech stimuli by boosting (Zhang and Yu 2005). Boosting converges on an
unbiased estimate of the linear mapping between stimulus and response, regardless
of autocorrelation in the stimulus. Several versions of boosting algorithms exist that
can be used to estimate STRFs. In this study, we used forward stagewise fitting,
which employs a simple iterative algorithm (Friedman et al. 2000).

Initially, the STRF is set to zero, h0¼ 0. During each iteration, i, the mean-
squared error is calculated for the prediction after incrementing or decrementing
each STRF parameter by a small amount, ". All possible increments are specified by
two parameters, an index, !¼ 1, . . . , Y, and a sign, "¼%1 or 1, such that,

!h!, "ðyÞ ¼ "", y ¼ !
¼ 0, otherwise

ð5Þ

The best increment is the one that produces the largest decrease in the
mean-squared error,

ðyi, ziÞ ¼ arg min
!, "

XT

t¼1

r % S hi%1 þ!h!, "
! "! "2 ð6Þ

The increment is added to the STRF,

hi ¼ hi%1 þ!hyi, zi ð7Þ

and this procedure is repeated until an additional increment/decrement only adds
noise to the STRF estimate.

Implementing boosting requires two hyperparameters, i.e., parameters that affect
the final STRF estimate but that are not contained explicitly in the stimulus/
response data. These are (1) the step size, ", and (2) the number of iterations to
complete before stopping. Generally, step size can be made arbitrarily small for the
best fits. Extremely small step sizes are computationally inefficient, as they require
many iterations to converge. We fixed " to be a small fraction of the ratio between
stimulus and response variance,

" ¼ 1

50

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðrðtÞÞ

varðsðx, tÞÞ

s

ð8Þ

Here, stimulus variance is averaged across all spectral channels. Despite differences
in variance across spectral channels, this heuristic produced accurate estimates and
required relatively little computation time. Increasing or decreasing " by a factor of
two had no effect on STRFs. Of course, different values of " are likely to be optimal
for different data sets.

To optimize the second hyperparameter, the number of iterations to complete
before stopping, we used cross validation and early stopping. We reserved a small
part (5%) of the fit data from the main boosting procedure. After each iteration, we
tested the ability of the STRF to predict responses in the reserved set. The optimal
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stopping point was determined as the iteration when the STRF failed to improve
predictions. Note that this reserved set was distinct from the validation data used
finally to evaluate each STRF (see further).

STRF estimation by NRC. We also estimated STRFs from the same data using
NRC, a variant of classical linear regression that has been used to estimate STRFs
from natural stimuli in the visual and auditory systems (Theunissen et al. 2000;
David et al. 2004). Like boosting, NRC fits a linear STRF that minimizes the mean-
squared error between predicted and observed neuronal response. A detailed
description of a computationally efficient NRC algorithm is described in
(Theunissen et al. 2001). Here, we provide a brief description of NRC for
comparison to boosting.

In a system with no noise, the minimum mean-squared error estimate of the
STRF for response vector, r, and stimulus matrix, S, is,

hideal ¼
1

T
C"1

ss ST r ð9Þ

The matrix C"1
ss is the inverse of the Y%Y stimulus autocorrelation matrix,

Css¼STS/T, and the superscript T indicates the transpose operation. This estimate
is theoretically optimal, but, in practice, estimating the STRF by Equation 9 for
stimuli with strong autocorrelations can amplify noise excessively (Figure 6B). In
a correlated stimulus, some dimensions have higher variance than others. Low
variance dimensions provide very little modulating energy and thus make it difficult
to measure correlations between those dimensions and the response. The inverse
autocorrelation matrix normalizes the variance along each dimension to be the
same. When variance is low, normalization requires dividing by a small number and
often amplifies noise in parameter estimates. To minimize these effects, NRC uses
a pseudoinverse to approximate the inverse of the stimulus autocorrelation matrix.
Dimensions that are below some noise threshold are forced to be zero.

To compute the pseudoinverse, a singular value decomposition is applied to the
autocorrelation matrix,

Css ¼ UT !U ð10Þ

The columns of U contain the unit-norm eigenvectors of Css, and the diagonal
matrix !¼diag(!1, !2, . . . , !Y) contains the corresponding eigenvalues ordered
from largest to smallest. A tolerance value, ", specifies the fraction of stimulus
variance to preserve in the pseudoinverse. The number of stimulus dimensions to
preserve, m, is computed,
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stopping point was determined as the iteration when the STRF failed to improve
predictions. Note that this reserved set was distinct from the validation data used
finally to evaluate each STRF (see further).

STRF estimation by NRC. We also estimated STRFs from the same data using
NRC, a variant of classical linear regression that has been used to estimate STRFs
from natural stimuli in the visual and auditory systems (Theunissen et al. 2000;
David et al. 2004). Like boosting, NRC fits a linear STRF that minimizes the mean-
squared error between predicted and observed neuronal response. A detailed
description of a computationally efficient NRC algorithm is described in
(Theunissen et al. 2001). Here, we provide a brief description of NRC for
comparison to boosting.

In a system with no noise, the minimum mean-squared error estimate of the
STRF for response vector, r, and stimulus matrix, S, is,
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The matrix C"1
ss is the inverse of the Y%Y stimulus autocorrelation matrix,

Css¼STS/T, and the superscript T indicates the transpose operation. This estimate
is theoretically optimal, but, in practice, estimating the STRF by Equation 9 for
stimuli with strong autocorrelations can amplify noise excessively (Figure 6B). In
a correlated stimulus, some dimensions have higher variance than others. Low
variance dimensions provide very little modulating energy and thus make it difficult
to measure correlations between those dimensions and the response. The inverse
autocorrelation matrix normalizes the variance along each dimension to be the
same. When variance is low, normalization requires dividing by a small number and
often amplifies noise in parameter estimates. To minimize these effects, NRC uses
a pseudoinverse to approximate the inverse of the stimulus autocorrelation matrix.
Dimensions that are below some noise threshold are forced to be zero.

To compute the pseudoinverse, a singular value decomposition is applied to the
autocorrelation matrix,

Css ¼ UT !U ð10Þ

The columns of U contain the unit-norm eigenvectors of Css, and the diagonal
matrix !¼diag(!1, !2, . . . , !Y) contains the corresponding eigenvalues ordered
from largest to smallest. A tolerance value, ", specifies the fraction of stimulus
variance to preserve in the pseudoinverse. The number of stimulus dimensions to
preserve, m, is computed,

m ¼ arg max
!1 þ !2 þ ' ' ' þ !m
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Linear-nonlinear Poission (LNP) model

Chichilniski, 2001; Schwartz, Pillow, Rust, Simoncelli (2006)
Filter estimation accuracy

Assuming that the recovered STA and STC filters are
significant, we would also like to understand how accurate
they are. The accuracy of our estimated filters depends on
three quantities: (1) the dimensionality of the stimulus
space, d; (2) the number of spikes collected, N; and (3) the
strength of the response signal, relative to the standard
deviation of the raw stimulus ensemble, A.
Asymptotically, the errors decrease as:

MAE k
Y! "

¼ A

BðkYÞ

ffiffiffiffi
d

N

r
; ð8Þ

where MAE indicates the mean of the angular error (the
arccosine of the normalized dot product) between the
estimated filter and the true filter and BðkYÞ is a
proportionality factor that depends inversely on the
strength of the response signal (Paninski, 2003). The
strength of response signal is the length of the STA vector
in the limit of infinite data, and is not available in an
experimental situation. However, the number of spikes
and number of stimulus dimensions are known, and thus,
the function of Equation 8 may be used to extrapolate the
error behavior based on bootstrap estimates. To demon-
strate this, we simulate an experiment on the model
divisive normalization neuron.
We describe a bootstrapping methodology for estimating

the MAE, and show that it is reasonably matched to the
theoretical prediction of the error in Equation 8, when the
ratio of number of spikes to number of stimulus
dimensions is sufficiently high. We run a pilot experiment
on the model divisive normalization neuron and collect
409,600 input samples. We consider how the ratio of
stimulus dimensionality to number of spikes affects
accuracy. Specifically, we hold the stimulus dimension-
ality fixed and vary the number of input samples (and thus
spikes). For a given number of input samples, we boot-
strap, drawing (with replacement) random subsets of
stimuli equal to the number of input samples. We consider

the spike-triggered stimuli from this subset and compute
the STA and STC. We repeat this many times (here,
1,000) and derive an estimate of the mean angular error
for a given STC filter. This is achieved by computing the
mean of the 1,000 estimated filters from the boot-
strappingVwe will denote this the mean estimated filter;
and then, for each of the 1,000 estimated filters, by
computing its mean angular error with the mean estimated
filter and taking an average over these computations. This
analysis assumes that there is no systematic bias in the
estimates (such as those shown in Figure 15).
In Figure 9, we plot the error estimates for the filter

corresponding to the lowest eigenvalue. As the number of
spikes to number of stimulus dimensions increases, the
error is reduced. We also show, for three example ratios,
the eigenvalues and the filter estimate corresponding to the
lowest eigenvalue. For a low ratio of spike counts to
stimulus dimensions, the eigenvalues descend gradually,
and the smallest one is not separated from the rest; for a
high ratio of spike counts to stimulus dimensions, the
eigenvalues take on a pattern similar to Figure 7. Finally,
we return to Equation 8: We fit this equation (and
corresponding proportionality factor) to the errors derived
from bootstrapping and obtain a rather good match for the
low error regime. Such an analysis could be used in an
experimental situation to determine data requirements for
a given error level, by extrapolating the curve from values
estimated from a pilot experiment. In the Experimental
issues section, we elaborate on running a pilot experiment
to choose a reasonable tradeoff between number of spikes
and stimulus dimensionality.

Characterizing the nonlinearity

According to the LNPmodel, the firing rate of a neuron is
given by a nonlinear transformation of the linear filter
responses (Figure 2). Using the same set of stimuli and
spike data as for the linear filter estimation, we seek to
estimate the nonlinearity and, thus, characterize a neural
model that specifies the full transformation from stimulus
to neural firing rate. We therefore need to estimate the

Figure 10. Nonlinearity for an LNP model with a single linear filter followed by a point nonlinearity. Left: Raw (black) and spike-triggered
(white) histograms of the linear (STA) responses. Right: The quotient of the spike-triggered and raw histograms gives an estimate of the
nonlinearity that generates the firing rate.
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Filter estimation accuracy

Assuming that the recovered STA and STC filters are
significant, we would also like to understand how accurate
they are. The accuracy of our estimated filters depends on
three quantities: (1) the dimensionality of the stimulus
space, d; (2) the number of spikes collected, N; and (3) the
strength of the response signal, relative to the standard
deviation of the raw stimulus ensemble, A.
Asymptotically, the errors decrease as:

MAE k
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¼ A

BðkYÞ

ffiffiffiffi
d

N

r
; ð8Þ

where MAE indicates the mean of the angular error (the
arccosine of the normalized dot product) between the
estimated filter and the true filter and BðkYÞ is a
proportionality factor that depends inversely on the
strength of the response signal (Paninski, 2003). The
strength of response signal is the length of the STA vector
in the limit of infinite data, and is not available in an
experimental situation. However, the number of spikes
and number of stimulus dimensions are known, and thus,
the function of Equation 8 may be used to extrapolate the
error behavior based on bootstrap estimates. To demon-
strate this, we simulate an experiment on the model
divisive normalization neuron.
We describe a bootstrapping methodology for estimating

the MAE, and show that it is reasonably matched to the
theoretical prediction of the error in Equation 8, when the
ratio of number of spikes to number of stimulus
dimensions is sufficiently high. We run a pilot experiment
on the model divisive normalization neuron and collect
409,600 input samples. We consider how the ratio of
stimulus dimensionality to number of spikes affects
accuracy. Specifically, we hold the stimulus dimension-
ality fixed and vary the number of input samples (and thus
spikes). For a given number of input samples, we boot-
strap, drawing (with replacement) random subsets of
stimuli equal to the number of input samples. We consider

the spike-triggered stimuli from this subset and compute
the STA and STC. We repeat this many times (here,
1,000) and derive an estimate of the mean angular error
for a given STC filter. This is achieved by computing the
mean of the 1,000 estimated filters from the boot-
strappingVwe will denote this the mean estimated filter;
and then, for each of the 1,000 estimated filters, by
computing its mean angular error with the mean estimated
filter and taking an average over these computations. This
analysis assumes that there is no systematic bias in the
estimates (such as those shown in Figure 15).
In Figure 9, we plot the error estimates for the filter

corresponding to the lowest eigenvalue. As the number of
spikes to number of stimulus dimensions increases, the
error is reduced. We also show, for three example ratios,
the eigenvalues and the filter estimate corresponding to the
lowest eigenvalue. For a low ratio of spike counts to
stimulus dimensions, the eigenvalues descend gradually,
and the smallest one is not separated from the rest; for a
high ratio of spike counts to stimulus dimensions, the
eigenvalues take on a pattern similar to Figure 7. Finally,
we return to Equation 8: We fit this equation (and
corresponding proportionality factor) to the errors derived
from bootstrapping and obtain a rather good match for the
low error regime. Such an analysis could be used in an
experimental situation to determine data requirements for
a given error level, by extrapolating the curve from values
estimated from a pilot experiment. In the Experimental
issues section, we elaborate on running a pilot experiment
to choose a reasonable tradeoff between number of spikes
and stimulus dimensionality.

Characterizing the nonlinearity

According to the LNPmodel, the firing rate of a neuron is
given by a nonlinear transformation of the linear filter
responses (Figure 2). Using the same set of stimuli and
spike data as for the linear filter estimation, we seek to
estimate the nonlinearity and, thus, characterize a neural
model that specifies the full transformation from stimulus
to neural firing rate. We therefore need to estimate the

Figure 10. Nonlinearity for an LNP model with a single linear filter followed by a point nonlinearity. Left: Raw (black) and spike-triggered
(white) histograms of the linear (STA) responses. Right: The quotient of the spike-triggered and raw histograms gives an estimate of the
nonlinearity that generates the firing rate.
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triggered ensemble are then two clouds of points in this
space. Intuitively, the task of estimating the neural
response function corresponds to describing the ways in
which these two clouds differ. In practice, when the input
stimulus space is of high dimensionality, one cannot
estimate the neural response function without further
assumptions.
Spike-triggered analysis has been employed to estimate

the terms of a Wiener/Volterra expansion (Korenberg,
Sakai, & Naka, 1989; Marmarelis & Marmarelis, 1978;
Volterra, 1959; Wiener, 1958), in which the mapping from
stimuli to firing rate is described using a low-order
polynomial (see Dayan & Abbott, 2001; Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997 for a review).
Although any reasonable function can be approximated as
a polynomial, the firing rate nonlinearities found in the
responses of sensory neurons (e.g., half-wave rectified,
rapidly accelerating and saturating) tend to require a
polynomial with many terms (see, e.g., Rieke et al., 1997).
However, the amount of data needed for accurate
estimation grows rapidly with the number of terms.
Therefore, in an experimental setting where one can
estimate only the first few terms of the expansion, the
polynomial places a strong restriction on the nonlinearity.
As an alternative to the polynomial approximation, one

can assume that the response function operates on a low-
dimensional linear subspace of the full stimulus space
(Bialek & de Ruyter van Steveninck, 2005; de Ruyter van

Steveninck & Bialek, 1988). That is, the response of a
neuron is modeled with a small set of linear filters whose
outputs are combined nonlinearly to generate the instanta-
neous firing rate. This is in contrast to the Wiener/Volterra
approach, which in general does not restrict the subspace
but places a restriction on the nonlinearity.1 By concen-
trating the data into a space of reduced dimensionality, the
neural response can be fit with less restriction on the form
of the nonlinearity.
A number of techniques have been developed to estimate

the linear subspace and, subsequently, the nonlinearity. In
the most widely used form of this analysis, the linear front
end is limited to a single filter that serves as an explicit
representation of the Breceptive field[ of the neuron, but the
nonlinearity is essentially unrestricted. With the right
choice of stimuli, this linear filter may be estimated by
computing the spike-triggered average (STA) stimulus (i.e.,
the mean stimulus that elicited a spike). The STA has been
widely used in studying auditory neurons (e.g., Eggermont,
Johannesma, & Aertsen, 1983). In the visual system, STA
has been used to characterize retinal ganglion cells
(e.g., Meister, Pine, & Baylor, 1994; Sakai & Naka,
1987), lateral geniculate neurons (e.g., Reid & Alonzo,
1995), and simple cells in primary visual cortex (V1;
e.g., DeAngelis, Ohzawa, & Freeman, 1993; Jones &
Palmer, 1987; McLean & Palmer, 1989). Given the STA
filter, one typically has enough experimental data to
construct a nonparametric estimate of the nonlinearity

Figure 1. The spike-triggered stimulus ensemble. (A) Discretized stimulus sequence and observed neural response (spike train). On each
time step, the stimulus consists of an array of randomly chosen values (eight, for this example). These could represent, for example, the
intensities of a fixed set of individual pixels on the screen or the contrast of each of a set of fixed sinusoidal gratings that are additively
superimposed. The neural response at any particular moment in time is assumed to be completely determined by the stimulus segment
that occurred during a prespecified interval in the past. In this figure, the segment covers six time steps and lags three time steps behind
the current time (to account for response latency). The spike-triggered ensemble consists of the set of segments associated with spikes.
(B) Geometric (vector space) view of the spike-triggered ensemble. Stimuli (here, 48-dimensional) are projected onto two space–time
vectors. In this example, each of the two vectors contained 1 stixel (space–time pixel) set to a value of 1, and the other 47 stixels were set
to 0. For these given vectors, the projection is equivalent to the intensity of the corresponding stixel in the stimulus. More generally, one
can project the stimuli onto any two 48-dimensional vectors. The spike-triggered stimulus segments (white points) constitute a subset of
all stimulus segments presented (black points).

Journal of Vision (2006) 6, 484–507 Schwartz et al. 485

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933516/ on 04/06/2016



Linear-nonlinear Poission (LNP) model

Chichilniski, 2001; Schwartz, Pillow, Rust, Simoncelli (2006)
Filter estimation accuracy

Assuming that the recovered STA and STC filters are
significant, we would also like to understand how accurate
they are. The accuracy of our estimated filters depends on
three quantities: (1) the dimensionality of the stimulus
space, d; (2) the number of spikes collected, N; and (3) the
strength of the response signal, relative to the standard
deviation of the raw stimulus ensemble, A.
Asymptotically, the errors decrease as:

MAE k
Y! "

¼ A

BðkYÞ

ffiffiffiffi
d

N

r
; ð8Þ

where MAE indicates the mean of the angular error (the
arccosine of the normalized dot product) between the
estimated filter and the true filter and BðkYÞ is a
proportionality factor that depends inversely on the
strength of the response signal (Paninski, 2003). The
strength of response signal is the length of the STA vector
in the limit of infinite data, and is not available in an
experimental situation. However, the number of spikes
and number of stimulus dimensions are known, and thus,
the function of Equation 8 may be used to extrapolate the
error behavior based on bootstrap estimates. To demon-
strate this, we simulate an experiment on the model
divisive normalization neuron.
We describe a bootstrapping methodology for estimating

the MAE, and show that it is reasonably matched to the
theoretical prediction of the error in Equation 8, when the
ratio of number of spikes to number of stimulus
dimensions is sufficiently high. We run a pilot experiment
on the model divisive normalization neuron and collect
409,600 input samples. We consider how the ratio of
stimulus dimensionality to number of spikes affects
accuracy. Specifically, we hold the stimulus dimension-
ality fixed and vary the number of input samples (and thus
spikes). For a given number of input samples, we boot-
strap, drawing (with replacement) random subsets of
stimuli equal to the number of input samples. We consider

the spike-triggered stimuli from this subset and compute
the STA and STC. We repeat this many times (here,
1,000) and derive an estimate of the mean angular error
for a given STC filter. This is achieved by computing the
mean of the 1,000 estimated filters from the boot-
strappingVwe will denote this the mean estimated filter;
and then, for each of the 1,000 estimated filters, by
computing its mean angular error with the mean estimated
filter and taking an average over these computations. This
analysis assumes that there is no systematic bias in the
estimates (such as those shown in Figure 15).
In Figure 9, we plot the error estimates for the filter

corresponding to the lowest eigenvalue. As the number of
spikes to number of stimulus dimensions increases, the
error is reduced. We also show, for three example ratios,
the eigenvalues and the filter estimate corresponding to the
lowest eigenvalue. For a low ratio of spike counts to
stimulus dimensions, the eigenvalues descend gradually,
and the smallest one is not separated from the rest; for a
high ratio of spike counts to stimulus dimensions, the
eigenvalues take on a pattern similar to Figure 7. Finally,
we return to Equation 8: We fit this equation (and
corresponding proportionality factor) to the errors derived
from bootstrapping and obtain a rather good match for the
low error regime. Such an analysis could be used in an
experimental situation to determine data requirements for
a given error level, by extrapolating the curve from values
estimated from a pilot experiment. In the Experimental
issues section, we elaborate on running a pilot experiment
to choose a reasonable tradeoff between number of spikes
and stimulus dimensionality.

Characterizing the nonlinearity

According to the LNPmodel, the firing rate of a neuron is
given by a nonlinear transformation of the linear filter
responses (Figure 2). Using the same set of stimuli and
spike data as for the linear filter estimation, we seek to
estimate the nonlinearity and, thus, characterize a neural
model that specifies the full transformation from stimulus
to neural firing rate. We therefore need to estimate the

Figure 10. Nonlinearity for an LNP model with a single linear filter followed by a point nonlinearity. Left: Raw (black) and spike-triggered
(white) histograms of the linear (STA) responses. Right: The quotient of the spike-triggered and raw histograms gives an estimate of the
nonlinearity that generates the firing rate.
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Filter estimation accuracy

Assuming that the recovered STA and STC filters are
significant, we would also like to understand how accurate
they are. The accuracy of our estimated filters depends on
three quantities: (1) the dimensionality of the stimulus
space, d; (2) the number of spikes collected, N; and (3) the
strength of the response signal, relative to the standard
deviation of the raw stimulus ensemble, A.
Asymptotically, the errors decrease as:
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where MAE indicates the mean of the angular error (the
arccosine of the normalized dot product) between the
estimated filter and the true filter and BðkYÞ is a
proportionality factor that depends inversely on the
strength of the response signal (Paninski, 2003). The
strength of response signal is the length of the STA vector
in the limit of infinite data, and is not available in an
experimental situation. However, the number of spikes
and number of stimulus dimensions are known, and thus,
the function of Equation 8 may be used to extrapolate the
error behavior based on bootstrap estimates. To demon-
strate this, we simulate an experiment on the model
divisive normalization neuron.
We describe a bootstrapping methodology for estimating

the MAE, and show that it is reasonably matched to the
theoretical prediction of the error in Equation 8, when the
ratio of number of spikes to number of stimulus
dimensions is sufficiently high. We run a pilot experiment
on the model divisive normalization neuron and collect
409,600 input samples. We consider how the ratio of
stimulus dimensionality to number of spikes affects
accuracy. Specifically, we hold the stimulus dimension-
ality fixed and vary the number of input samples (and thus
spikes). For a given number of input samples, we boot-
strap, drawing (with replacement) random subsets of
stimuli equal to the number of input samples. We consider

the spike-triggered stimuli from this subset and compute
the STA and STC. We repeat this many times (here,
1,000) and derive an estimate of the mean angular error
for a given STC filter. This is achieved by computing the
mean of the 1,000 estimated filters from the boot-
strappingVwe will denote this the mean estimated filter;
and then, for each of the 1,000 estimated filters, by
computing its mean angular error with the mean estimated
filter and taking an average over these computations. This
analysis assumes that there is no systematic bias in the
estimates (such as those shown in Figure 15).
In Figure 9, we plot the error estimates for the filter

corresponding to the lowest eigenvalue. As the number of
spikes to number of stimulus dimensions increases, the
error is reduced. We also show, for three example ratios,
the eigenvalues and the filter estimate corresponding to the
lowest eigenvalue. For a low ratio of spike counts to
stimulus dimensions, the eigenvalues descend gradually,
and the smallest one is not separated from the rest; for a
high ratio of spike counts to stimulus dimensions, the
eigenvalues take on a pattern similar to Figure 7. Finally,
we return to Equation 8: We fit this equation (and
corresponding proportionality factor) to the errors derived
from bootstrapping and obtain a rather good match for the
low error regime. Such an analysis could be used in an
experimental situation to determine data requirements for
a given error level, by extrapolating the curve from values
estimated from a pilot experiment. In the Experimental
issues section, we elaborate on running a pilot experiment
to choose a reasonable tradeoff between number of spikes
and stimulus dimensionality.

Characterizing the nonlinearity

According to the LNPmodel, the firing rate of a neuron is
given by a nonlinear transformation of the linear filter
responses (Figure 2). Using the same set of stimuli and
spike data as for the linear filter estimation, we seek to
estimate the nonlinearity and, thus, characterize a neural
model that specifies the full transformation from stimulus
to neural firing rate. We therefore need to estimate the

Figure 10. Nonlinearity for an LNP model with a single linear filter followed by a point nonlinearity. Left: Raw (black) and spike-triggered
(white) histograms of the linear (STA) responses. Right: The quotient of the spike-triggered and raw histograms gives an estimate of the
nonlinearity that generates the firing rate.
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triggered ensemble are then two clouds of points in this
space. Intuitively, the task of estimating the neural
response function corresponds to describing the ways in
which these two clouds differ. In practice, when the input
stimulus space is of high dimensionality, one cannot
estimate the neural response function without further
assumptions.
Spike-triggered analysis has been employed to estimate

the terms of a Wiener/Volterra expansion (Korenberg,
Sakai, & Naka, 1989; Marmarelis & Marmarelis, 1978;
Volterra, 1959; Wiener, 1958), in which the mapping from
stimuli to firing rate is described using a low-order
polynomial (see Dayan & Abbott, 2001; Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997 for a review).
Although any reasonable function can be approximated as
a polynomial, the firing rate nonlinearities found in the
responses of sensory neurons (e.g., half-wave rectified,
rapidly accelerating and saturating) tend to require a
polynomial with many terms (see, e.g., Rieke et al., 1997).
However, the amount of data needed for accurate
estimation grows rapidly with the number of terms.
Therefore, in an experimental setting where one can
estimate only the first few terms of the expansion, the
polynomial places a strong restriction on the nonlinearity.
As an alternative to the polynomial approximation, one

can assume that the response function operates on a low-
dimensional linear subspace of the full stimulus space
(Bialek & de Ruyter van Steveninck, 2005; de Ruyter van

Steveninck & Bialek, 1988). That is, the response of a
neuron is modeled with a small set of linear filters whose
outputs are combined nonlinearly to generate the instanta-
neous firing rate. This is in contrast to the Wiener/Volterra
approach, which in general does not restrict the subspace
but places a restriction on the nonlinearity.1 By concen-
trating the data into a space of reduced dimensionality, the
neural response can be fit with less restriction on the form
of the nonlinearity.
A number of techniques have been developed to estimate

the linear subspace and, subsequently, the nonlinearity. In
the most widely used form of this analysis, the linear front
end is limited to a single filter that serves as an explicit
representation of the Breceptive field[ of the neuron, but the
nonlinearity is essentially unrestricted. With the right
choice of stimuli, this linear filter may be estimated by
computing the spike-triggered average (STA) stimulus (i.e.,
the mean stimulus that elicited a spike). The STA has been
widely used in studying auditory neurons (e.g., Eggermont,
Johannesma, & Aertsen, 1983). In the visual system, STA
has been used to characterize retinal ganglion cells
(e.g., Meister, Pine, & Baylor, 1994; Sakai & Naka,
1987), lateral geniculate neurons (e.g., Reid & Alonzo,
1995), and simple cells in primary visual cortex (V1;
e.g., DeAngelis, Ohzawa, & Freeman, 1993; Jones &
Palmer, 1987; McLean & Palmer, 1989). Given the STA
filter, one typically has enough experimental data to
construct a nonparametric estimate of the nonlinearity

Figure 1. The spike-triggered stimulus ensemble. (A) Discretized stimulus sequence and observed neural response (spike train). On each
time step, the stimulus consists of an array of randomly chosen values (eight, for this example). These could represent, for example, the
intensities of a fixed set of individual pixels on the screen or the contrast of each of a set of fixed sinusoidal gratings that are additively
superimposed. The neural response at any particular moment in time is assumed to be completely determined by the stimulus segment
that occurred during a prespecified interval in the past. In this figure, the segment covers six time steps and lags three time steps behind
the current time (to account for response latency). The spike-triggered ensemble consists of the set of segments associated with spikes.
(B) Geometric (vector space) view of the spike-triggered ensemble. Stimuli (here, 48-dimensional) are projected onto two space–time
vectors. In this example, each of the two vectors contained 1 stixel (space–time pixel) set to a value of 1, and the other 47 stixels were set
to 0. For these given vectors, the projection is equivalent to the intensity of the corresponding stixel in the stimulus. More generally, one
can project the stimuli onto any two 48-dimensional vectors. The spike-triggered stimulus segments (white points) constitute a subset of
all stimulus segments presented (black points).
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(i.e., a lookup table; Anzai, Ohzawa, & Freeman, 1999;
Chichilnisky, 2001; deBoer & Kuyper, 1968; Eggermont
et al., 1983). For some classes of nonlinearity, it has also
been shown that one can write down a closed-form
solution for the estimates of the linear filter and non-
linearity in a single step (Nykamp & Ringach, 2002).
This methodology may be extended to the recovery of

multiple filters (i.e., a low-dimensional subspace) and the
nonlinear combination rule. One approach to finding a low-
dimensional subspace is the spike-triggered covariance
(STC; Bialek & de Ruyter van Steveninck, 2005; de Ruyter
van Steveninck & Bialek, 1988). STC has been used to
characterize multidimensional models and a nonlinear
combination rule in systems ranging from the invertebrate
motion system (Bialek & de Ruyter van Steveninck, 2005;
Brenner, Bialek & de Ruyter van Steveninck, 2000; de
Ruyter van Steveninck & Bialek, 1988) to songbird
forebrain auditory neurons (Sen, Wright, Doupe, & Bialek,
2000) to vertabrate retina cells (Pillow, Simoncelli, &
Chichilnisky, 2003; Schwartz, Chichilnisky, & Simoncelli,
2002) and mammalian cortex (Horwitz, Chichilnisky, &
Albright, 2005; Rust, Schwartz, Movshon, & Simoncelli,
2004, 2005; Touryan, Lau, & Dan, 2002). In addition,
several authors have recently developed subspace estima-
tion methods that use higher order statistical measures
(Paninski, 2003; Sharpee, Rust, & Bialek, 2003, 2004). A
review of spike-triggered subspace approaches may also be
found in Ringach (2004) and Simoncelli, Pillow, Paninski,
& Schwartz (2004).
Despite the theoretical elegance and experimental

applicability of the subspace methods, there are a host of
issues that an experimentalist is likely to confront when
attempting to use them: How should one choose the
stimulus space? Howmany spikes does one need to collect?
How does one know if the recovered filters are significant?
How should one interpret the filters? How do the filter

responses relate to the nonlinear firing rate function? and so
on. In this article, we describe the family of spike-triggered
subspace methods in some detail, placing emphasis on
practical experimental issues, and demonstrating these
(where possible) with simulations. We focus our discussion
on the STA and STC analyses, which have become quite
widely used experimentally. A software implementation of
the methods described is available on the Internet at http://

The linear–nonlinear Poisson
(LNP) model

Experimental approaches to characterizing neurons are
generally based on an underlying response model. Here, we
assume a model constructed from a cascade of three
operations:

1. a set of linear filters, fk
Y

1Ik
Y

mg,
2. a nonlinear transformation that maps the instanta-

neous responses of these filters to a scalar firing rate,
and

3. a Poisson spike generation process, whose instanta-
neous firing rate is determined by the output of the
nonlinear stage.

This LNP cascade is illustrated in Figure 2. The third
stage, which essentially amounts to an assumption that the
generation of spikes depends only on the recent stimulus
(and not on the history of previous spike times), is often
not stated explicitly but is critical to the analysis.
If we assume a discretized stimulus space, we can

express the instantaneous firing rate of the model as:

rðtÞ ¼ NðkY1 $ s
YðtÞ; kY2 $ s

YðtÞ;Ik
Y

m $ s
YðtÞÞ; ð1Þ

where s
YðtÞ is a vector containing the stimuli over an

appropriate temporal window preceding the time t. Here,
the linear response of filter i (i.e., the projection or dot
product of the filter k

Y

i with the stimuli s
YðtÞ) is given by

k
Y

i I s
YðtÞ. The nonlinear transformation N(I) operates over

the linear filter responses.

Spike-triggered analysis

We aim to characterize the LNP model by analyzing the
spike-triggered stimulus ensemble. The spike-triggered
analysis techniques proceed as follows:

1. Estimate the low-dimensional linear subspace (set of
filters). This effectively projects the high-dimension
stimulus into a low-dimensional subspace that the
neuron cares about.

Figure 2. Block diagram of the LNP model. On each time step, the
components of the stimulus vector are linearly filtered by k

Y

0Ik
Y

m.
The responses of the linear filters are then passed through a
nonlinear function N(I), whose output determines the instanta-
neous firing rate of a Poisson spike generator.
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and maximally informative dimensions (MID)
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Figure 1
Geometric interpretation of the receptive field (RF) in the context of the linear and linear-nonlinear (LN) models. An example stimulus
is a natural image taken from a van Hateren data set (van Hateren & van der Schaaf 1998). The stimulus has d pixels in the horizontal
and vertical dimensions, which yields a stimulus of D = d2 dimensions. The RF taken to mimic properties of V1 neurons is also defined
in this space. The linear model predicts the spike probability as taking a projection between the stimulus and the RF. The LN model
adds a nonlinear gain function to account for such properties as rectification and saturation in the neural response.

intensities that, when presented on a screen,
would elicit the maximal firing rate from this
neuron. If the neuron is modeled as a linear
system, then the two ways of measuring the RF
are equivalent. However, because the neuronal
firing rate inevitably exhibits at least some non-
linear effects, for example, because it cannot
be negative, the two interpretations of the RF
concept will differ. Research has shown that the
second formulation, whereby the RF is inter-
preted as the optimal stimulus for the neuron,
is much more amenable to the generalizations
necessary to capture a rich variety of nonlinear
and contextual effects observed for sensory
neurons.

LINEAR MODEL
To predict the firing rate of a neuron to a
novel stimulus using a linear model, one can
compare how similar that stimulus is to the
optimal pattern, i.e., the RF. Mathematically,
this corresponds to multiplying stimulus values
pixel by pixel by the RF values and summing
across all pixels. In this interpretation, the RF
becomes the weighting function according to

which stimulus values are combined to obtain
the firing rate (Figure 1). The linear model also
includes the coefficient of proportionality be-
tween the stimulus similarity to the RF and the
neural firing rate. This coefficient of propor-
tionality, referred to as the “gain,” is the same
for all stimuli.

Before discussing various ways for build-
ing nonlinear models of neural responses, it is
useful to explore other ways of thinking about
the RF concept. If the RF has D pixels (which
could include temporal profiles), then it can also
be represented as a vector in a D-dimensional
space. To compare each new stimulus to the
RF, stimuli should be defined on the same grid
of pixel values as the RF. Then, each stimu-
lus can be considered as a vector in the same
D-dimensional space. The mathematical pro-
cedure described above of weighting each stim-
ulus value by the RF profile corresponds to the
computation of a dot product between the RF
and the stimulus for which we would like to
obtain the firing rate prediction. In geometri-
cal terms, this corresponds to taking a projec-
tion of a vector that describes the stimulus onto
the vector that describes the RF (Figure 1). In
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Subspace approach: 
Spike-triggered covariance (STC)

Schwartz, Pillow, Rust, Simoncelli (2006)

Now, consider an example model neuron, for which there
is more than a single filter. We simulate an ideal V1
complex cell model (see also simulations in Sakai &
Tanaka, 2000). The model is constructed from two space–
time-oriented linear receptive fields, one symmetric and
the other antisymmetric (Adelson & Bergen, 1985). The
linear responses of these two filters are squared and

summed, and the resulting signal then determines the
instantaneous firing rate:

gðsYÞ ¼ r ðkY1 $ s
YÞ2 þ ðkY2 $ s

YÞ2
h i

: ð6Þ

Spike-triggered analysis on the model neuron is shown in
Figure 6. The STA is close to zero. This occurs because
for every stimulus, there is a stimulus of opposite polarity
(corresponding to a vector on opposite sides of the origin)
that is equally likely to elicit a spike, and thus, the average
stimulus eliciting a spike will be zero. The recovered
eigenvalues indicate that two directions within this space
have substantially higher variance than the others. The
eigenvectors associated with these two eigenvalues corre-
spond to the two filters in the model (formally, they span
the same subspace). In contrast, eigenvectors correspond-
ing to eigenvalues in the gradually descending region
appear arbitrary in their structure.
Finally, we consider a version of a divisive gain control

model (e.g., Geisler, 1992; Heeger, 1992):

g s
Yð Þ ¼ r

1þ )k
Y

1 $ s
Y

22

1þ ðkY2 $ s
YÞ2 þ :4ðkY3 $ s

YÞ2
: ð7Þ

The analysis results are shown in Figure 7. First, we
recover the STA filter, which is nonzero due to the
half squaring in the numerator. A nonsymmetrical non-
linearity of this sort is captured by changes in the mean.
Next, we examine the sorted eigenvalues obtained from
the STC analysis. Most of the eigenvalues descend
gradually, but the last two eigenvalues lie significantly
below the rest, and their associated eigenvalues span
approximately the same subspace as the actual simulation
filters.

Significance testing

How do we know if the recovered STA and STC filters
are significant? In some cases, such as a prototypical
complex cell in primary visual cortex, there is essentially
no difference between the mean of the raw and spike-
triggered stimuli (Rust, Schwartz, et al., 2005; Touryan
et al., 2002), which leads to a weak STA. To quantify this,
we test the hypothesis that the difference between the
mean of the raw and spike-triggered stimulus is no
different than what one would expect by chance. We
specifically test whether the magnitude of the true spike-
triggered stimulus STA is smaller or equal to what would
be expected by chance. More specifically, we generate a
distribution of random STA filters by bootstrapping: We
randomly time-shift the spike train relative to the raw
stimulus sequence, gather the resulting spike-triggered
stimulus ensemble, and perform the STA analysis. The

Figure 6. Eigenvalues and eigenvectors for an LNP ideal complex
cell model. In this model, the Poisson spike generator is driven by
the sum of squares of two oriented linear filter responses. As in
Figure 1, filters are 6 $ 8 and, thus, live in a 48-dimensional
space. The simulation is based on a sequence of 50,000 raw
stimuli, with a response containing 4,298 spikes. Top: Model,
including two input filters, nonlinearities, and Poisson spiking.
Bottom: STA filter is unstructured for the ideal complex cell. The
plot also shows the eigenvalues, sorted in descending order. We
plot the first 47 eigenvalues and omit the last eigenvalue which is
zero due to projecting out the STA (see Equation 4). Two of the
eigenvalues are substantially larger than the others and indicate
the presence of two directions in the stimulus space along which
the model responds. The others correspond to stimulus directions
that the model ignores. Also shown are three example eigenvec-
tors (6 $ 8 linear filters), two of which are structured while one is
unstructured.
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Tanaka, 2000). The model is constructed from two space–
time-oriented linear receptive fields, one symmetric and
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linear responses of these two filters are squared and
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Spike-triggered analysis on the model neuron is shown in
Figure 6. The STA is close to zero. This occurs because
for every stimulus, there is a stimulus of opposite polarity
(corresponding to a vector on opposite sides of the origin)
that is equally likely to elicit a spike, and thus, the average
stimulus eliciting a spike will be zero. The recovered
eigenvalues indicate that two directions within this space
have substantially higher variance than the others. The
eigenvectors associated with these two eigenvalues corre-
spond to the two filters in the model (formally, they span
the same subspace). In contrast, eigenvectors correspond-
ing to eigenvalues in the gradually descending region
appear arbitrary in their structure.
Finally, we consider a version of a divisive gain control

model (e.g., Geisler, 1992; Heeger, 1992):

g s
Yð Þ ¼ r

1þ )k
Y

1 $ s
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The analysis results are shown in Figure 7. First, we
recover the STA filter, which is nonzero due to the
half squaring in the numerator. A nonsymmetrical non-
linearity of this sort is captured by changes in the mean.
Next, we examine the sorted eigenvalues obtained from
the STC analysis. Most of the eigenvalues descend
gradually, but the last two eigenvalues lie significantly
below the rest, and their associated eigenvalues span
approximately the same subspace as the actual simulation
filters.

Significance testing

How do we know if the recovered STA and STC filters
are significant? In some cases, such as a prototypical
complex cell in primary visual cortex, there is essentially
no difference between the mean of the raw and spike-
triggered stimuli (Rust, Schwartz, et al., 2005; Touryan
et al., 2002), which leads to a weak STA. To quantify this,
we test the hypothesis that the difference between the
mean of the raw and spike-triggered stimulus is no
different than what one would expect by chance. We
specifically test whether the magnitude of the true spike-
triggered stimulus STA is smaller or equal to what would
be expected by chance. More specifically, we generate a
distribution of random STA filters by bootstrapping: We
randomly time-shift the spike train relative to the raw
stimulus sequence, gather the resulting spike-triggered
stimulus ensemble, and perform the STA analysis. The

Figure 6. Eigenvalues and eigenvectors for an LNP ideal complex
cell model. In this model, the Poisson spike generator is driven by
the sum of squares of two oriented linear filter responses. As in
Figure 1, filters are 6 $ 8 and, thus, live in a 48-dimensional
space. The simulation is based on a sequence of 50,000 raw
stimuli, with a response containing 4,298 spikes. Top: Model,
including two input filters, nonlinearities, and Poisson spiking.
Bottom: STA filter is unstructured for the ideal complex cell. The
plot also shows the eigenvalues, sorted in descending order. We
plot the first 47 eigenvalues and omit the last eigenvalue which is
zero due to projecting out the STA (see Equation 4). Two of the
eigenvalues are substantially larger than the others and indicate
the presence of two directions in the stimulus space along which
the model responds. The others correspond to stimulus directions
that the model ignores. Also shown are three example eigenvec-
tors (6 $ 8 linear filters), two of which are structured while one is
unstructured.
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Spike-triggered covariance

The STA only recovers a single filter. Additional filters
may be recovered seeking directions in the stimulus space
in which the variance of the spike-triggered ensemble
differs from that of the raw ensemble. Assuming that the
raw stimuli have spherical covariance, this is achieved by
computing the STC matrix:

Ĉ ¼ 1

Nj1
~
N

n¼1

s
Y
tnð Þj Â

! "
s
Y
tnð Þj Â

! "
T; ð3Þ

where the [I]T indicates the transpose of the vector. Again,
the tn are binned in practice, and this means that each term
should be multiplied by the number of spikes occurring in
the associated time bin.
The STCmatrix embodies the multidimensional variance

structure of the spike-triggered ensemble. Specifically, the
variance of the ensemble in any direction specified by a unit
vector, û, is simply ûTĈû. The surface swept out by all
such unit vectors scaled by the square root of their
associated variance is a multidimensional ellipsoid. The
principle axes of this ellipsoid, along with the associated
variances, may be recovered as the eigenvectors and
associated eigenvalues of the STC matrix. This is

illustrated in Figure 4. The consistency of the STC
estimate is guaranteed, provided that the input stimuli are
Gaussian (Paninski, 2003) and the nonlinearity of the
model is such that it leads to a change in the variance of
the spike-triggered ensemble relative to the raw ensem-
ble. Note that the Gaussianity is a more severe require-
ment than the spherical symmetry required for STA
analysis (see Limitations and potential failures section
and Experimental issues section).
The STA and STC filters together form a low-

dimensional linear subspace in which neural responses
are generated. A number of groups have presented
different approaches for combining the STA and STC
analyses; in practice, these variants all converge to the
same estimated subspace.3 Usually, the STA is sub-
tracted prior to computing the STC filters (Brenner,
Bialek & de Ruyter van Steveninck, 2000; de Ruyter
van Steveninck & Bialek, 1988). It is often (but not
always) the case that the STA will lie within the
subspace spanned by the significant STC axes. Depend-
ing on the nonlinear properties of the response, it could
coincide with either high- or low-variance STC axes.
To simplify visualization and interpretation of the axes,
we have chosen for all of our examples to perform the
STC analysis in a subspace orthogonal to the STA.

Figure 4. Two alternative illustrations of STC. (A) The STC is determined by constructing the covariance of the spike-triggered stimuli
(relative to the raw stimuli), followed by an eigenvector analysis of the covariance matrix. This can result in multiple filters that represent
directions in stimulus space for which the spike-triggered stimuli have lower or higher variance than the raw stimuli. (B) Geometric
depiction of STC. Black points indicate raw stimuli. White points indicate stimuli eliciting a spike. Ellipses represent the covariance of each
ensemble. Specifically, the distance from the origin to the ellipse along any particular direction is the standard deviation of the ensemble in
that direction. Raw stimuli are distributed in a circular (Gaussian) fashion. Spike-triggered stimuli are elliptically distributed, with a reduced
variance (relative to the raw stimuli) along the minor axis. The minor axis of the ellipse corresponds to a suppressive direction: Stimuli that
have a large component along this direction (either positive or negative) are less likely to elicit a spike. The variance of the major axis of
the ellipse matches that of the raw stimuli and, thus, corresponds to a direction in stimulus space that does not affect the neuron’s firing
rate.

Journal of Vision (2006) 6, 484–507 Schwartz et al. 488
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For discrete time signals the δ-function has to be replaced by the Kronecker delta

ρ(tj) =
N

∑

i=1

δtj ,ti , j = 1, 2, ..., M (2.7)

where tj is a discrete variable and M is the length of the sequence. In this thesis,

a single spike represents the basic neural event and is usually considered to be a

discrete and binary variable (spike/no spike).

2.3.3 Estimation of the Spike Rate
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Figure 5: An ensemble of spike trains obtained for five repetitions of human speech in anesthesized
gerbils.

The linear STRF model in Eq. (2.3) describes the linear relationship between stim-

ulus and spike rate. Since a neuron can be regarded as stochastic process we have

to repeat our measurements to obtain an ensemble of realizations of the process and

every realization is a spike train of single spikes. For an infinite number of trials the

spike rate of a neuron is simply given by the ensemble average

r∞(t) = ⟨ρ(t)⟩ . (2.8)

In practise, we only have a small ensemble of realizations and the spike rate has to

be estimated from these realizations, e.g. from 5 repetitions of the same stimulus as

From sounds to spikes

Classic STRF model:
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Figure 3.1.: The linear-nonlinear encoding model. The model of response generation
assumes that stimulus features (represented here by a spectrogram) are in-
tegrated by a linear filter, the spectro-temporal receptive field (STRF). The
output of the linear filter is passed through a noisy threshold stage and pro-
duces a spike if the filter output exceeds the spiking threshold. The average
nonlinear response can be described by the cumulative distribution function
of the noise around the threshold as indicated by the dashed line.

3.2. Methods

3.2.1. A Binary Model of Neural Coding

In a typical recording situation, we present a sensory stimulus s(t) while recording

the response r(t) 2 {0, 1} to that stimulus from a specific neuron. To simplify

matters, we assume that the response is already binary and r = 1 denotes that a

spike has been elicited and r = 0 indicates the absence of a spike. In the auditory

system, s(t) usually contains the spectro-temporal density preceding the response

in a specific time window as illustrated by the window in Fig. 3.1.

When a spike is observed, it is assumed that there is some pattern in the spectro-

temporal patch that gave rise to the spike and, thus, is characteristic for the neu-

ron. Presence of this pattern in the stimulus should increase the probability of

generating a spike. In a simplified model, this may be formalized by the projec-

tion x(t) = hs(t),hi of the stimulus onto the linear filter h, resembling the STRF,

that characterizes spectro-temporal sensitivity of that neuron. To obtain a binary

response, we have to consider a threshold operation that produces a spike if the

stimulus example is very close to h and x assumes high values. In addition, non-

deterministic response properties, induced by neuronal noise, need to be taken into

account.

The resulting linear noisy threshold model with spiking threshold ⌘ and neural

noise term ✏ can be written as

r(t) = ⇥ (x(t)� ⌘ + ✏(t)) , (3.1)

where ⇥(·) is the Heaviside step function. For ✏ = 0 we obtain a hard threshold

model and the knowledge of h and ⌘ is su�cient to accurately predict the response to

a given stimulus. With increasing noise, the model becomes less deterministic, and

the knowledge of h and ⌘ does not lead to a reliable description of when the neuron
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Figure 3.1.: The linear-nonlinear encoding model. The model of response generation
assumes that stimulus features (represented here by a spectrogram) are in-
tegrated by a linear filter, the spectro-temporal receptive field (STRF). The
output of the linear filter is passed through a noisy threshold stage and pro-
duces a spike if the filter output exceeds the spiking threshold. The average
nonlinear response can be described by the cumulative distribution function
of the noise around the threshold as indicated by the dashed line.

3.2. Methods

3.2.1. A Binary Model of Neural Coding

In a typical recording situation, we present a sensory stimulus s(t) while recording

the response r(t) 2 {0, 1} to that stimulus from a specific neuron. To simplify

matters, we assume that the response is already binary and r = 1 denotes that a

spike has been elicited and r = 0 indicates the absence of a spike. In the auditory

system, s(t) usually contains the spectro-temporal density preceding the response

in a specific time window as illustrated by the window in Fig. 3.1.

When a spike is observed, it is assumed that there is some pattern in the spectro-

temporal patch that gave rise to the spike and, thus, is characteristic for the neu-

ron. Presence of this pattern in the stimulus should increase the probability of

generating a spike. In a simplified model, this may be formalized by the projec-

tion x(t) = hs(t),hi of the stimulus onto the linear filter h, resembling the STRF,

that characterizes spectro-temporal sensitivity of that neuron. To obtain a binary

response, we have to consider a threshold operation that produces a spike if the

stimulus example is very close to h and x assumes high values. In addition, non-

deterministic response properties, induced by neuronal noise, need to be taken into

account.

The resulting linear noisy threshold model with spiking threshold ⌘ and neural

noise term ✏ can be written as

r(t) = ⇥ (x(t)� ⌘ + ✏(t)) , (3.1)

where ⇥(·) is the Heaviside step function. For ✏ = 0 we obtain a hard threshold

model and the knowledge of h and ⌘ is su�cient to accurately predict the response to

a given stimulus. With increasing noise, the model becomes less deterministic, and

the knowledge of h and ⌘ does not lead to a reliable description of when the neuron

! Separation into linear part (= receptive field or kernel k) and static 
memoryless nonlinearity (Chichilnisky 2001) 

! Once we know k estimation of the nonlinearity is quite simple! 
! White noise approach: Estimation of linear part using 
(normalized) reverse correlation method (Bussgang Theorem 1952) 
! BUT: need Gaussian (symmetric) stimuli!
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16 2 SOME THEORY

For discrete time signals the δ-function has to be replaced by the Kronecker delta

ρ(tj) =
N

∑

i=1

δtj ,ti , j = 1, 2, ..., M (2.7)

where tj is a discrete variable and M is the length of the sequence. In this thesis,

a single spike represents the basic neural event and is usually considered to be a

discrete and binary variable (spike/no spike).

2.3.3 Estimation of the Spike Rate

0 0.5 1 1.5

1

2

3

4

5

Time [s]

Tr
ia

l i
nd

ex

Figure 5: An ensemble of spike trains obtained for five repetitions of human speech in anesthesized
gerbils.

The linear STRF model in Eq. (2.3) describes the linear relationship between stim-

ulus and spike rate. Since a neuron can be regarded as stochastic process we have

to repeat our measurements to obtain an ensemble of realizations of the process and

every realization is a spike train of single spikes. For an infinite number of trials the

spike rate of a neuron is simply given by the ensemble average

r∞(t) = ⟨ρ(t)⟩ . (2.8)

In practise, we only have a small ensemble of realizations and the spike rate has to

be estimated from these realizations, e.g. from 5 repetitions of the same stimulus as

Spike ? 
yes / no

Black Box 
SVM Classifier

6.1 STRF Estimation 65

(a) (b)

Figure 33: STRF for FM-banks stimuli estimated using (a) linear regression and (b) a linear SVM
classifier. About 5% of the feature dimensons has been used which results in smooth STRFs. The
values have been rescaled for plotting where blue corresponds to maximal inhibitive regions and red
indicates maximal exitatory regions.

template for certain sweeps. Thus, to obtain more stimulus-invariant STRFs we

have to reduce the amount of variance used for the estimation or use different types

of stimli for cross-validation.

In Figure 45 in the appendix STRFs are shown that were estimated using SVM

classification with data from the same electrode but assigned to different units. Due

to the tonotopic organization of the auditory system we assume that neighbouring

neurons are tuned to a similar frequency range. The linear STRFs for the neigh-

bouring reveal nearly identical structures as the unit presented here. Especially the

last unit (unit 4) that contains all spikes that were not assigned to the first three

units produced a STRF with very distinct exitatory region.

STRFs estimated using SVM classification for the main units of the different elec-

trodes are presented in Figure 43 in the appendix. As expected, the neurons at

different positions in the auditory cortex have different best frequencies and differ-

ent latencies.

6.1.2 DMR

The STRFs estimated using DMR stimuli shown in Figure 34 are quite similar to

the STRFs obtained for FM-bank stimuli. The STA-based STRF does not show the

STRF

Classification-based receptive field (CbRF) estimation 
Training a classifier to predict spike trains

Cooperation with F. Ohl 
• Experiments 
• Statistical modeling 
• Experimental paradigma for 

influence of stimulus changes
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STRF estimation from gerbil neurons
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STRF estimation from gerbil neurons
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Christianson, Sahani, Linden, J. Neurosci., 2008

the lateral-inhibition-like function of the
model selects for those ripples that have a
frequency modulation pattern matching
the spacing of the surrounds, and the re-
sulting dominance of ripples with this fre-
quency modulation causes additional
banding to emerge in the STRF.

Thresholding
Multiplicative nonlinearities are not re-
quired to produce this sort of effect. Even a
thresholding output nonlinearity (Fig.
5a), fundamental to the spiking response,
can lead to an overestimation of support in
the STRF when the stimulus is not spectro-
temporally independent (Fig. 5c). The
STRF for the rectified bimodal linear RF in
Figure 5c is very similar to the STRF for the
multiplicative nonlinearity of Figure 2f and for essentially the
same reason; the rectification ensures that the majority of spec-
trograms that actually elicit responses are those that have power
corresponding to both peaks in the linear RF. In addition to the
side bands, another feature of the ripple-estimated STRF shared
between the two cases, but more obvious in Figure 5c, is the
increased size of the STRF elements corresponding to the true RF
components. This again arises from structure in the ripple stim-
ulus. A high threshold requires that the majority of the receptive
field be stimulated to elicit a response. Because individual ripples
are continuous, any stimulus that elicits a response and hence has
power throughout the extent of the receptive field will also have
power immediately outside the border of the receptive field.
Thus, the set of all response-eliciting ripples have power extend-
ing beyond the support of the RF, and this is reflected in the
STRF.

General effects of nonlinearities
In all Figures 2–5, other patterns can be seen in the STRFs, in
addition to the specific features we have described. (This is true
not only for the ripple-estimated STRFs but also for the DRC-
estimated STRFs, which show an apparently noisy background.)
Such effects are not entirely attributable to noise in the simulated
responses; they remain present even when noise is excluded from
the simulations. Rather, these patterns, like the specific features
described previously for each model, arise from an interaction
between the RF nonlinearity and the statistics of the stimulus
used to estimate the STRF. (In the case of the DRC-estimated
STRFs, some part of the noisy-looking background derives from
non-zero moments in the stimulus that occur because the stim-
ulus is finite in length.) These patterns are generally sensitive to
minor changes in the model parameters, and their origin is diffi-
cult to describe more intuitively than with reference to the inter-
action between nonlinearities and stimulus statistics (e.g., see the
analytic form of the STRF for the multiplicative RF in Materials
and Methods).

Non-intuitive consequences of linear regression in
high-dimensional spaces
The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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independent stimuli and the neuronal response can reflect statis-
tical properties of the stimuli used in the fit rather than properties
of the RF. This fact is well known in theory; in practice, its con-
sequences for STRF analysis are not always fully appreciated. In
particular, it is often assumed that STRFs always provide a reli-
able estimate of the receptive field of a neuron, but this is not
necessarily the case.

We show here in simulation that simple, biologically plausible
nonlinearities can interact with higher-order central moments in
non-independent stimuli to produce STRFs with spurious recep-
tive field elements. Moreover, we illustrate the fact that even
STRFs estimated with spectrotemporally independent stimuli are
dependent on the power of the stimulus. Finally, we demonstrate
using natural sounds that these effects can lead to STRFs that
appear to adapt to reflect stimulus structure, without any actual
change in the underlying response function. Thus, the STRF of a
nonlinear neuron does not necessarily reflect excitatory and in-
hibitory components of the underlying RF, and the structure and
extent of the STRF may be stimulus dependent even when the
true response function of the neuron is not.

Materials and Methods
Stimuli. All stimuli were created in “frames” of spectrograms consisting
of 80 frequency bins and 30 time bins. For each type of stimulus, 75,000
spectrograms were created.

Dynamic random chord stimuli. As an example of spectrotemporally
independent (and therefore also uncorrelated) stimuli, we used a DRC
stimulus, one frame of which is shown in Figure 1a. DRC frames were
generated directly in spectrotemporal space by randomly selecting 20%
of the bins of the spectrogram to have zero intensity and assigning the
non-zero bins to have one of five evenly distributed intensities with uni-
form probability. A DRC stimulus is spectrotemporally independent, in
that the mean power in any given bin of the spectrogram is independent
of the mean power in the other bins. In other words, knowing the power
in any number of the spectrogram bins does not allow prediction of the
power in any other spectrogram bin.

Ripple stimuli. As an example of uncorrelated but not independent
stimuli, we used an ensemble of ripples. Each ripple spectrogram in the
ensemble was assigned 1 of 128 temporal modulations (with frequencies
evenly distributed from 0 through to the maximum possible), and 1 of
255 frequency modulations (again evenly sampled between 0 and the
maximum possible), multiplied by a randomly assigned sign; an example
of one such spectrogram is shown in Figure 1b. Such ensembles of ripples
are spectrotemporally uncorrelated; that is, the power in any given spec-
trogram bin cannot be predicted from the power in any other single bin.
However, these stimuli are not independent; because ripples are periodic,

the power in a given spectrogram bin can be predicted from the power in
two other bins along the same line through the spectrogram.

Natural stimuli. Four classes of natural sounds were used in this study:
environmental sounds from the Pittsburgh database (Smith and Lewicki,
2006), speech sounds from the TIMIT (for Texas Instruments and Mas-
sachusetts Institute of Technology) speech database (Garofolo et al.,
1993), a selection of tamarin vocalizations (all either contact calls or
combination long calls) provided by R. Egnor and M. Hauser (Harvard
University, Cambridge, MA), and Bengalese finch songs provided by C.
Hampton and M. Brainard (University of California at San Francisco,
San Francisco, CA). All sounds were resampled to a sampling rate of 16
kHz and passed through a filter bank consisting of 80 gamma-tone band-
pass filters with center frequencies linearly distributed between 100 and
7000 Hz. The spectrogram was then given by the Hilbert envelopes of the
filter-bank output, decimated to a sampling rate of 1 kHz. The stimuli
were subdivided into spectrogram elements, each 80 frequency bins by 30
time bins, and then a random subset of 75,000 were chosen for use in the
study.

Natural stimuli, unlike DRC stimuli and ensembles of ripple stimuli,
may have (second-order) correlations. The problem of robustly compen-
sating for the effects of these correlations on STRF estimation has been
addressed in previous studies (Theunissen et al., 2000; Woolley et al.,
2006). Because our primary interest was in the effects of higher-order
statistics on STRF analysis, we chose to avoid the issues associated with
second-order structure by numerically whitening natural stimuli before
use. After this process, the off-diagonal elements of the autocorrelation
matrix were all five or more orders of magnitude smaller than the diag-
onal elements, although any higher-order statistical structure was
preserved.

Simulation of response. Spectrograms were each recast into a vector and
became rows in a 75,000 ! 2400 stimulus matrix S. This was then mul-
tiplied by one or more similarly vector-recast RF matrices w! (2400 ! 1),
and the results were combined according to the rules below to give a
75,000 ! 1 response vector r!. In Figures 9 and 10, this was taken to be the
response of the neuron. In other simulations, a final response !! (75,000 !
1) was obtained by drawing 20 samples from an inhomogeneous Poisson
distribution with mean parameter r! and then averaging across the
samples:

!! "
1

20!i"1

20 !! i; !! i " Poisson#r!$.

For simulation of a linear RF neuron, S was multiplied by a single RF w!
(2400 ! 1):

r! " Sw! .

For the linear model in Figure 9, r! was taken to represent the response,
even if some entries were negative, thus preserving true linearity. In
simulations with noise, the stimuli were offset so that r! was never nega-
tive, and Poisson noise was added, as above.

Three basic nonlinear RFs were modeled. A “multiplicative RF” was
modeled using the linear responses to two distinct Gaussian receptive
fields in spectrotemporal space. The outputs of the linear projections
were rectified and multiplied pointwise (indicated by the Schur product
!) to give the response vector r!:

r! " #Sw! 1#%!#Sw! 2#%.

A “divisive inhibition RF” was modeled using the linear response to two
distinct receptive fields. Both receptive fields were Gaussian in temporal
extent. The excitatory receptive field was a squared Gaussian in spectral
extent, whereas the inhibitory receptive field was quadratic (see Fig. 4a).
As with the multiplicative model, the output of each projection was
rectified and then combined pointwise (with pointwise division indi-
cated by the symbol &):

r! " #Sw! 1#% # #1 $ a#Sw! 2#%$.

Figure 1. a, b, Examples of single frames of both the DRC stimulus (a) and the ripple stim-
ulus (b). For STRF estimations, 75,000 frames of each stimulus were used. In the case of the DRC
stimulus, each of these frames was randomly generated; in the case of the ripple stimulus, each
frame had different modulation patterns along the time and frequency axes.
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Figure 1.1.: The neural encoding model used in this thesis. The sound waveform of the
stimulus is transformed into an internal representation, e.g., the auditory spec-
trogram. The neural encoding model performs linear filtering of stimulus
features, represented here by the spectro-temporal stimulus history preced-
ing the response. The linear filter, the receptive field (RF), signals stimulus
feature preference of the neuron under test. The RF-filtered stimulus is trans-
formed into a spike rate by a static, memoryless nonlinearity. A probabilistic
spike train is generated by a subsequent Poisson process. The first part of
this thesis proposes a method for reliable estimation of the linear part in the
combined linear-nonlinear model. The second part addresses whether alterna-
tive stimulus representations or accounting for modulation of the response by
bottom-up or top-down processes yields a better understanding of how stimuli
are processed at di↵erent levels along the auditory pathway.

1.2. Towards robust estimation of RF parameters from

responses to natural stimuli

One complication with the LN approach is that estimating the linear part in a

combined linear-nonlinear model is not trivial and there is a large diversity of es-

timation methods, each making di↵erent assumptions about the underlying nature

of the system (for a review see Wu et al. (2006); Schwartz et al. (2006); Sharpee

(2013)). Below, we will disentangle the arsenal of existing RF estimation methods

and describe how a novel method to LN parameter estimation developed in this the-

sis compares to existing methods. Such methods are at the heart of sensory systems

neuroscience and advances in computational modeling methods have direct influence

on experimental paradigms (and vice versa, Stevenson et al. (2008); Stevenson and

Kording (2011)).

A common approach to RF estimation is the spike-triggered average (STA, deBoer

and Kuyper (1968)), a linear estimator based on the reverse correlation technique

(Bussgang, 1952). The STA allows to estimate the linear part in the LN model if

the employed stimulus ensemble exhibits a Gaussian (or at least a spherically sym-

metric) distribution (Chichilnisky, 2001; Paninski, 2003a). The STA and derived

variants (Theunissen et al., 2000; Klein et al., 2000; Machens et al., 2004) have suc-

cessfully been applied to study sensory processing at di↵erent levels of the auditory

system, e.g., probing cortical neurons for optimal spectro-temporal stimulus features
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the lateral-inhibition-like function of the
model selects for those ripples that have a
frequency modulation pattern matching
the spacing of the surrounds, and the re-
sulting dominance of ripples with this fre-
quency modulation causes additional
banding to emerge in the STRF.

Thresholding
Multiplicative nonlinearities are not re-
quired to produce this sort of effect. Even a
thresholding output nonlinearity (Fig.
5a), fundamental to the spiking response,
can lead to an overestimation of support in
the STRF when the stimulus is not spectro-
temporally independent (Fig. 5c). The
STRF for the rectified bimodal linear RF in
Figure 5c is very similar to the STRF for the
multiplicative nonlinearity of Figure 2f and for essentially the
same reason; the rectification ensures that the majority of spec-
trograms that actually elicit responses are those that have power
corresponding to both peaks in the linear RF. In addition to the
side bands, another feature of the ripple-estimated STRF shared
between the two cases, but more obvious in Figure 5c, is the
increased size of the STRF elements corresponding to the true RF
components. This again arises from structure in the ripple stim-
ulus. A high threshold requires that the majority of the receptive
field be stimulated to elicit a response. Because individual ripples
are continuous, any stimulus that elicits a response and hence has
power throughout the extent of the receptive field will also have
power immediately outside the border of the receptive field.
Thus, the set of all response-eliciting ripples have power extend-
ing beyond the support of the RF, and this is reflected in the
STRF.

General effects of nonlinearities
In all Figures 2–5, other patterns can be seen in the STRFs, in
addition to the specific features we have described. (This is true
not only for the ripple-estimated STRFs but also for the DRC-
estimated STRFs, which show an apparently noisy background.)
Such effects are not entirely attributable to noise in the simulated
responses; they remain present even when noise is excluded from
the simulations. Rather, these patterns, like the specific features
described previously for each model, arise from an interaction
between the RF nonlinearity and the statistics of the stimulus
used to estimate the STRF. (In the case of the DRC-estimated
STRFs, some part of the noisy-looking background derives from
non-zero moments in the stimulus that occur because the stim-
ulus is finite in length.) These patterns are generally sensitive to
minor changes in the model parameters, and their origin is diffi-
cult to describe more intuitively than with reference to the inter-
action between nonlinearities and stimulus statistics (e.g., see the
analytic form of the STRF for the multiplicative RF in Materials
and Methods).

Non-intuitive consequences of linear regression in
high-dimensional spaces
The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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independent stimuli and the neuronal response can reflect statis-
tical properties of the stimuli used in the fit rather than properties
of the RF. This fact is well known in theory; in practice, its con-
sequences for STRF analysis are not always fully appreciated. In
particular, it is often assumed that STRFs always provide a reli-
able estimate of the receptive field of a neuron, but this is not
necessarily the case.

We show here in simulation that simple, biologically plausible
nonlinearities can interact with higher-order central moments in
non-independent stimuli to produce STRFs with spurious recep-
tive field elements. Moreover, we illustrate the fact that even
STRFs estimated with spectrotemporally independent stimuli are
dependent on the power of the stimulus. Finally, we demonstrate
using natural sounds that these effects can lead to STRFs that
appear to adapt to reflect stimulus structure, without any actual
change in the underlying response function. Thus, the STRF of a
nonlinear neuron does not necessarily reflect excitatory and in-
hibitory components of the underlying RF, and the structure and
extent of the STRF may be stimulus dependent even when the
true response function of the neuron is not.

Materials and Methods
Stimuli. All stimuli were created in “frames” of spectrograms consisting
of 80 frequency bins and 30 time bins. For each type of stimulus, 75,000
spectrograms were created.

Dynamic random chord stimuli. As an example of spectrotemporally
independent (and therefore also uncorrelated) stimuli, we used a DRC
stimulus, one frame of which is shown in Figure 1a. DRC frames were
generated directly in spectrotemporal space by randomly selecting 20%
of the bins of the spectrogram to have zero intensity and assigning the
non-zero bins to have one of five evenly distributed intensities with uni-
form probability. A DRC stimulus is spectrotemporally independent, in
that the mean power in any given bin of the spectrogram is independent
of the mean power in the other bins. In other words, knowing the power
in any number of the spectrogram bins does not allow prediction of the
power in any other spectrogram bin.

Ripple stimuli. As an example of uncorrelated but not independent
stimuli, we used an ensemble of ripples. Each ripple spectrogram in the
ensemble was assigned 1 of 128 temporal modulations (with frequencies
evenly distributed from 0 through to the maximum possible), and 1 of
255 frequency modulations (again evenly sampled between 0 and the
maximum possible), multiplied by a randomly assigned sign; an example
of one such spectrogram is shown in Figure 1b. Such ensembles of ripples
are spectrotemporally uncorrelated; that is, the power in any given spec-
trogram bin cannot be predicted from the power in any other single bin.
However, these stimuli are not independent; because ripples are periodic,

the power in a given spectrogram bin can be predicted from the power in
two other bins along the same line through the spectrogram.

Natural stimuli. Four classes of natural sounds were used in this study:
environmental sounds from the Pittsburgh database (Smith and Lewicki,
2006), speech sounds from the TIMIT (for Texas Instruments and Mas-
sachusetts Institute of Technology) speech database (Garofolo et al.,
1993), a selection of tamarin vocalizations (all either contact calls or
combination long calls) provided by R. Egnor and M. Hauser (Harvard
University, Cambridge, MA), and Bengalese finch songs provided by C.
Hampton and M. Brainard (University of California at San Francisco,
San Francisco, CA). All sounds were resampled to a sampling rate of 16
kHz and passed through a filter bank consisting of 80 gamma-tone band-
pass filters with center frequencies linearly distributed between 100 and
7000 Hz. The spectrogram was then given by the Hilbert envelopes of the
filter-bank output, decimated to a sampling rate of 1 kHz. The stimuli
were subdivided into spectrogram elements, each 80 frequency bins by 30
time bins, and then a random subset of 75,000 were chosen for use in the
study.

Natural stimuli, unlike DRC stimuli and ensembles of ripple stimuli,
may have (second-order) correlations. The problem of robustly compen-
sating for the effects of these correlations on STRF estimation has been
addressed in previous studies (Theunissen et al., 2000; Woolley et al.,
2006). Because our primary interest was in the effects of higher-order
statistics on STRF analysis, we chose to avoid the issues associated with
second-order structure by numerically whitening natural stimuli before
use. After this process, the off-diagonal elements of the autocorrelation
matrix were all five or more orders of magnitude smaller than the diag-
onal elements, although any higher-order statistical structure was
preserved.

Simulation of response. Spectrograms were each recast into a vector and
became rows in a 75,000 ! 2400 stimulus matrix S. This was then mul-
tiplied by one or more similarly vector-recast RF matrices w! (2400 ! 1),
and the results were combined according to the rules below to give a
75,000 ! 1 response vector r!. In Figures 9 and 10, this was taken to be the
response of the neuron. In other simulations, a final response !! (75,000 !
1) was obtained by drawing 20 samples from an inhomogeneous Poisson
distribution with mean parameter r! and then averaging across the
samples:

!! "
1

20!i"1

20 !! i; !! i " Poisson#r!$.

For simulation of a linear RF neuron, S was multiplied by a single RF w!
(2400 ! 1):

r! " Sw! .

For the linear model in Figure 9, r! was taken to represent the response,
even if some entries were negative, thus preserving true linearity. In
simulations with noise, the stimuli were offset so that r! was never nega-
tive, and Poisson noise was added, as above.

Three basic nonlinear RFs were modeled. A “multiplicative RF” was
modeled using the linear responses to two distinct Gaussian receptive
fields in spectrotemporal space. The outputs of the linear projections
were rectified and multiplied pointwise (indicated by the Schur product
!) to give the response vector r!:

r! " #Sw! 1#%!#Sw! 2#%.

A “divisive inhibition RF” was modeled using the linear response to two
distinct receptive fields. Both receptive fields were Gaussian in temporal
extent. The excitatory receptive field was a squared Gaussian in spectral
extent, whereas the inhibitory receptive field was quadratic (see Fig. 4a).
As with the multiplicative model, the output of each projection was
rectified and then combined pointwise (with pointwise division indi-
cated by the symbol &):

r! " #Sw! 1#% # #1 $ a#Sw! 2#%$.

Figure 1. a, b, Examples of single frames of both the DRC stimulus (a) and the ripple stim-
ulus (b). For STRF estimations, 75,000 frames of each stimulus were used. In the case of the DRC
stimulus, each of these frames was randomly generated; in the case of the ripple stimulus, each
frame had different modulation patterns along the time and frequency axes.
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Figure 1.1.: The neural encoding model used in this thesis. The sound waveform of the
stimulus is transformed into an internal representation, e.g., the auditory spec-
trogram. The neural encoding model performs linear filtering of stimulus
features, represented here by the spectro-temporal stimulus history preced-
ing the response. The linear filter, the receptive field (RF), signals stimulus
feature preference of the neuron under test. The RF-filtered stimulus is trans-
formed into a spike rate by a static, memoryless nonlinearity. A probabilistic
spike train is generated by a subsequent Poisson process. The first part of
this thesis proposes a method for reliable estimation of the linear part in the
combined linear-nonlinear model. The second part addresses whether alterna-
tive stimulus representations or accounting for modulation of the response by
bottom-up or top-down processes yields a better understanding of how stimuli
are processed at di↵erent levels along the auditory pathway.

1.2. Towards robust estimation of RF parameters from

responses to natural stimuli

One complication with the LN approach is that estimating the linear part in a

combined linear-nonlinear model is not trivial and there is a large diversity of es-

timation methods, each making di↵erent assumptions about the underlying nature

of the system (for a review see Wu et al. (2006); Schwartz et al. (2006); Sharpee

(2013)). Below, we will disentangle the arsenal of existing RF estimation methods

and describe how a novel method to LN parameter estimation developed in this the-

sis compares to existing methods. Such methods are at the heart of sensory systems

neuroscience and advances in computational modeling methods have direct influence

on experimental paradigms (and vice versa, Stevenson et al. (2008); Stevenson and

Kording (2011)).

A common approach to RF estimation is the spike-triggered average (STA, deBoer

and Kuyper (1968)), a linear estimator based on the reverse correlation technique

(Bussgang, 1952). The STA allows to estimate the linear part in the LN model if

the employed stimulus ensemble exhibits a Gaussian (or at least a spherically sym-

metric) distribution (Chichilnisky, 2001; Paninski, 2003a). The STA and derived

variants (Theunissen et al., 2000; Klein et al., 2000; Machens et al., 2004) have suc-

cessfully been applied to study sensory processing at di↵erent levels of the auditory

system, e.g., probing cortical neurons for optimal spectro-temporal stimulus features

the lateral-inhibition-like function of the
model selects for those ripples that have a
frequency modulation pattern matching
the spacing of the surrounds, and the re-
sulting dominance of ripples with this fre-
quency modulation causes additional
banding to emerge in the STRF.

Thresholding
Multiplicative nonlinearities are not re-
quired to produce this sort of effect. Even a
thresholding output nonlinearity (Fig.
5a), fundamental to the spiking response,
can lead to an overestimation of support in
the STRF when the stimulus is not spectro-
temporally independent (Fig. 5c). The
STRF for the rectified bimodal linear RF in
Figure 5c is very similar to the STRF for the
multiplicative nonlinearity of Figure 2f and for essentially the
same reason; the rectification ensures that the majority of spec-
trograms that actually elicit responses are those that have power
corresponding to both peaks in the linear RF. In addition to the
side bands, another feature of the ripple-estimated STRF shared
between the two cases, but more obvious in Figure 5c, is the
increased size of the STRF elements corresponding to the true RF
components. This again arises from structure in the ripple stim-
ulus. A high threshold requires that the majority of the receptive
field be stimulated to elicit a response. Because individual ripples
are continuous, any stimulus that elicits a response and hence has
power throughout the extent of the receptive field will also have
power immediately outside the border of the receptive field.
Thus, the set of all response-eliciting ripples have power extend-
ing beyond the support of the RF, and this is reflected in the
STRF.

General effects of nonlinearities
In all Figures 2–5, other patterns can be seen in the STRFs, in
addition to the specific features we have described. (This is true
not only for the ripple-estimated STRFs but also for the DRC-
estimated STRFs, which show an apparently noisy background.)
Such effects are not entirely attributable to noise in the simulated
responses; they remain present even when noise is excluded from
the simulations. Rather, these patterns, like the specific features
described previously for each model, arise from an interaction
between the RF nonlinearity and the statistics of the stimulus
used to estimate the STRF. (In the case of the DRC-estimated
STRFs, some part of the noisy-looking background derives from
non-zero moments in the stimulus that occur because the stim-
ulus is finite in length.) These patterns are generally sensitive to
minor changes in the model parameters, and their origin is diffi-
cult to describe more intuitively than with reference to the inter-
action between nonlinearities and stimulus statistics (e.g., see the
analytic form of the STRF for the multiplicative RF in Materials
and Methods).

Non-intuitive consequences of linear regression in
high-dimensional spaces
The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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the lateral-inhibition-like function of the
model selects for those ripples that have a
frequency modulation pattern matching
the spacing of the surrounds, and the re-
sulting dominance of ripples with this fre-
quency modulation causes additional
banding to emerge in the STRF.

Thresholding
Multiplicative nonlinearities are not re-
quired to produce this sort of effect. Even a
thresholding output nonlinearity (Fig.
5a), fundamental to the spiking response,
can lead to an overestimation of support in
the STRF when the stimulus is not spectro-
temporally independent (Fig. 5c). The
STRF for the rectified bimodal linear RF in
Figure 5c is very similar to the STRF for the
multiplicative nonlinearity of Figure 2f and for essentially the
same reason; the rectification ensures that the majority of spec-
trograms that actually elicit responses are those that have power
corresponding to both peaks in the linear RF. In addition to the
side bands, another feature of the ripple-estimated STRF shared
between the two cases, but more obvious in Figure 5c, is the
increased size of the STRF elements corresponding to the true RF
components. This again arises from structure in the ripple stim-
ulus. A high threshold requires that the majority of the receptive
field be stimulated to elicit a response. Because individual ripples
are continuous, any stimulus that elicits a response and hence has
power throughout the extent of the receptive field will also have
power immediately outside the border of the receptive field.
Thus, the set of all response-eliciting ripples have power extend-
ing beyond the support of the RF, and this is reflected in the
STRF.

General effects of nonlinearities
In all Figures 2–5, other patterns can be seen in the STRFs, in
addition to the specific features we have described. (This is true
not only for the ripple-estimated STRFs but also for the DRC-
estimated STRFs, which show an apparently noisy background.)
Such effects are not entirely attributable to noise in the simulated
responses; they remain present even when noise is excluded from
the simulations. Rather, these patterns, like the specific features
described previously for each model, arise from an interaction
between the RF nonlinearity and the statistics of the stimulus
used to estimate the STRF. (In the case of the DRC-estimated
STRFs, some part of the noisy-looking background derives from
non-zero moments in the stimulus that occur because the stim-
ulus is finite in length.) These patterns are generally sensitive to
minor changes in the model parameters, and their origin is diffi-
cult to describe more intuitively than with reference to the inter-
action between nonlinearities and stimulus statistics (e.g., see the
analytic form of the STRF for the multiplicative RF in Materials
and Methods).

Non-intuitive consequences of linear regression in
high-dimensional spaces
The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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independent stimuli and the neuronal response can reflect statis-
tical properties of the stimuli used in the fit rather than properties
of the RF. This fact is well known in theory; in practice, its con-
sequences for STRF analysis are not always fully appreciated. In
particular, it is often assumed that STRFs always provide a reli-
able estimate of the receptive field of a neuron, but this is not
necessarily the case.

We show here in simulation that simple, biologically plausible
nonlinearities can interact with higher-order central moments in
non-independent stimuli to produce STRFs with spurious recep-
tive field elements. Moreover, we illustrate the fact that even
STRFs estimated with spectrotemporally independent stimuli are
dependent on the power of the stimulus. Finally, we demonstrate
using natural sounds that these effects can lead to STRFs that
appear to adapt to reflect stimulus structure, without any actual
change in the underlying response function. Thus, the STRF of a
nonlinear neuron does not necessarily reflect excitatory and in-
hibitory components of the underlying RF, and the structure and
extent of the STRF may be stimulus dependent even when the
true response function of the neuron is not.

Materials and Methods
Stimuli. All stimuli were created in “frames” of spectrograms consisting
of 80 frequency bins and 30 time bins. For each type of stimulus, 75,000
spectrograms were created.

Dynamic random chord stimuli. As an example of spectrotemporally
independent (and therefore also uncorrelated) stimuli, we used a DRC
stimulus, one frame of which is shown in Figure 1a. DRC frames were
generated directly in spectrotemporal space by randomly selecting 20%
of the bins of the spectrogram to have zero intensity and assigning the
non-zero bins to have one of five evenly distributed intensities with uni-
form probability. A DRC stimulus is spectrotemporally independent, in
that the mean power in any given bin of the spectrogram is independent
of the mean power in the other bins. In other words, knowing the power
in any number of the spectrogram bins does not allow prediction of the
power in any other spectrogram bin.

Ripple stimuli. As an example of uncorrelated but not independent
stimuli, we used an ensemble of ripples. Each ripple spectrogram in the
ensemble was assigned 1 of 128 temporal modulations (with frequencies
evenly distributed from 0 through to the maximum possible), and 1 of
255 frequency modulations (again evenly sampled between 0 and the
maximum possible), multiplied by a randomly assigned sign; an example
of one such spectrogram is shown in Figure 1b. Such ensembles of ripples
are spectrotemporally uncorrelated; that is, the power in any given spec-
trogram bin cannot be predicted from the power in any other single bin.
However, these stimuli are not independent; because ripples are periodic,

the power in a given spectrogram bin can be predicted from the power in
two other bins along the same line through the spectrogram.

Natural stimuli. Four classes of natural sounds were used in this study:
environmental sounds from the Pittsburgh database (Smith and Lewicki,
2006), speech sounds from the TIMIT (for Texas Instruments and Mas-
sachusetts Institute of Technology) speech database (Garofolo et al.,
1993), a selection of tamarin vocalizations (all either contact calls or
combination long calls) provided by R. Egnor and M. Hauser (Harvard
University, Cambridge, MA), and Bengalese finch songs provided by C.
Hampton and M. Brainard (University of California at San Francisco,
San Francisco, CA). All sounds were resampled to a sampling rate of 16
kHz and passed through a filter bank consisting of 80 gamma-tone band-
pass filters with center frequencies linearly distributed between 100 and
7000 Hz. The spectrogram was then given by the Hilbert envelopes of the
filter-bank output, decimated to a sampling rate of 1 kHz. The stimuli
were subdivided into spectrogram elements, each 80 frequency bins by 30
time bins, and then a random subset of 75,000 were chosen for use in the
study.

Natural stimuli, unlike DRC stimuli and ensembles of ripple stimuli,
may have (second-order) correlations. The problem of robustly compen-
sating for the effects of these correlations on STRF estimation has been
addressed in previous studies (Theunissen et al., 2000; Woolley et al.,
2006). Because our primary interest was in the effects of higher-order
statistics on STRF analysis, we chose to avoid the issues associated with
second-order structure by numerically whitening natural stimuli before
use. After this process, the off-diagonal elements of the autocorrelation
matrix were all five or more orders of magnitude smaller than the diag-
onal elements, although any higher-order statistical structure was
preserved.

Simulation of response. Spectrograms were each recast into a vector and
became rows in a 75,000 ! 2400 stimulus matrix S. This was then mul-
tiplied by one or more similarly vector-recast RF matrices w! (2400 ! 1),
and the results were combined according to the rules below to give a
75,000 ! 1 response vector r!. In Figures 9 and 10, this was taken to be the
response of the neuron. In other simulations, a final response !! (75,000 !
1) was obtained by drawing 20 samples from an inhomogeneous Poisson
distribution with mean parameter r! and then averaging across the
samples:

!! "
1

20!i"1

20 !! i; !! i " Poisson#r!$.

For simulation of a linear RF neuron, S was multiplied by a single RF w!
(2400 ! 1):

r! " Sw! .

For the linear model in Figure 9, r! was taken to represent the response,
even if some entries were negative, thus preserving true linearity. In
simulations with noise, the stimuli were offset so that r! was never nega-
tive, and Poisson noise was added, as above.

Three basic nonlinear RFs were modeled. A “multiplicative RF” was
modeled using the linear responses to two distinct Gaussian receptive
fields in spectrotemporal space. The outputs of the linear projections
were rectified and multiplied pointwise (indicated by the Schur product
!) to give the response vector r!:

r! " #Sw! 1#%!#Sw! 2#%.

A “divisive inhibition RF” was modeled using the linear response to two
distinct receptive fields. Both receptive fields were Gaussian in temporal
extent. The excitatory receptive field was a squared Gaussian in spectral
extent, whereas the inhibitory receptive field was quadratic (see Fig. 4a).
As with the multiplicative model, the output of each projection was
rectified and then combined pointwise (with pointwise division indi-
cated by the symbol &):

r! " #Sw! 1#% # #1 $ a#Sw! 2#%$.

Figure 1. a, b, Examples of single frames of both the DRC stimulus (a) and the ripple stim-
ulus (b). For STRF estimations, 75,000 frames of each stimulus were used. In the case of the DRC
stimulus, each of these frames was randomly generated; in the case of the ripple stimulus, each
frame had different modulation patterns along the time and frequency axes.
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Figure 1.1.: The neural encoding model used in this thesis. The sound waveform of the
stimulus is transformed into an internal representation, e.g., the auditory spec-
trogram. The neural encoding model performs linear filtering of stimulus
features, represented here by the spectro-temporal stimulus history preced-
ing the response. The linear filter, the receptive field (RF), signals stimulus
feature preference of the neuron under test. The RF-filtered stimulus is trans-
formed into a spike rate by a static, memoryless nonlinearity. A probabilistic
spike train is generated by a subsequent Poisson process. The first part of
this thesis proposes a method for reliable estimation of the linear part in the
combined linear-nonlinear model. The second part addresses whether alterna-
tive stimulus representations or accounting for modulation of the response by
bottom-up or top-down processes yields a better understanding of how stimuli
are processed at di↵erent levels along the auditory pathway.

1.2. Towards robust estimation of RF parameters from

responses to natural stimuli

One complication with the LN approach is that estimating the linear part in a

combined linear-nonlinear model is not trivial and there is a large diversity of es-

timation methods, each making di↵erent assumptions about the underlying nature

of the system (for a review see Wu et al. (2006); Schwartz et al. (2006); Sharpee

(2013)). Below, we will disentangle the arsenal of existing RF estimation methods

and describe how a novel method to LN parameter estimation developed in this the-

sis compares to existing methods. Such methods are at the heart of sensory systems

neuroscience and advances in computational modeling methods have direct influence

on experimental paradigms (and vice versa, Stevenson et al. (2008); Stevenson and

Kording (2011)).

A common approach to RF estimation is the spike-triggered average (STA, deBoer

and Kuyper (1968)), a linear estimator based on the reverse correlation technique

(Bussgang, 1952). The STA allows to estimate the linear part in the LN model if

the employed stimulus ensemble exhibits a Gaussian (or at least a spherically sym-

metric) distribution (Chichilnisky, 2001; Paninski, 2003a). The STA and derived

variants (Theunissen et al., 2000; Klein et al., 2000; Machens et al., 2004) have suc-

cessfully been applied to study sensory processing at di↵erent levels of the auditory

system, e.g., probing cortical neurons for optimal spectro-temporal stimulus features

the lateral-inhibition-like function of the
model selects for those ripples that have a
frequency modulation pattern matching
the spacing of the surrounds, and the re-
sulting dominance of ripples with this fre-
quency modulation causes additional
banding to emerge in the STRF.

Thresholding
Multiplicative nonlinearities are not re-
quired to produce this sort of effect. Even a
thresholding output nonlinearity (Fig.
5a), fundamental to the spiking response,
can lead to an overestimation of support in
the STRF when the stimulus is not spectro-
temporally independent (Fig. 5c). The
STRF for the rectified bimodal linear RF in
Figure 5c is very similar to the STRF for the
multiplicative nonlinearity of Figure 2f and for essentially the
same reason; the rectification ensures that the majority of spec-
trograms that actually elicit responses are those that have power
corresponding to both peaks in the linear RF. In addition to the
side bands, another feature of the ripple-estimated STRF shared
between the two cases, but more obvious in Figure 5c, is the
increased size of the STRF elements corresponding to the true RF
components. This again arises from structure in the ripple stim-
ulus. A high threshold requires that the majority of the receptive
field be stimulated to elicit a response. Because individual ripples
are continuous, any stimulus that elicits a response and hence has
power throughout the extent of the receptive field will also have
power immediately outside the border of the receptive field.
Thus, the set of all response-eliciting ripples have power extend-
ing beyond the support of the RF, and this is reflected in the
STRF.

General effects of nonlinearities
In all Figures 2–5, other patterns can be seen in the STRFs, in
addition to the specific features we have described. (This is true
not only for the ripple-estimated STRFs but also for the DRC-
estimated STRFs, which show an apparently noisy background.)
Such effects are not entirely attributable to noise in the simulated
responses; they remain present even when noise is excluded from
the simulations. Rather, these patterns, like the specific features
described previously for each model, arise from an interaction
between the RF nonlinearity and the statistics of the stimulus
used to estimate the STRF. (In the case of the DRC-estimated
STRFs, some part of the noisy-looking background derives from
non-zero moments in the stimulus that occur because the stim-
ulus is finite in length.) These patterns are generally sensitive to
minor changes in the model parameters, and their origin is diffi-
cult to describe more intuitively than with reference to the inter-
action between nonlinearities and stimulus statistics (e.g., see the
analytic form of the STRF for the multiplicative RF in Materials
and Methods).

Non-intuitive consequences of linear regression in
high-dimensional spaces
The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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independent stimuli and the neuronal response can reflect statis-
tical properties of the stimuli used in the fit rather than properties
of the RF. This fact is well known in theory; in practice, its con-
sequences for STRF analysis are not always fully appreciated. In
particular, it is often assumed that STRFs always provide a reli-
able estimate of the receptive field of a neuron, but this is not
necessarily the case.

We show here in simulation that simple, biologically plausible
nonlinearities can interact with higher-order central moments in
non-independent stimuli to produce STRFs with spurious recep-
tive field elements. Moreover, we illustrate the fact that even
STRFs estimated with spectrotemporally independent stimuli are
dependent on the power of the stimulus. Finally, we demonstrate
using natural sounds that these effects can lead to STRFs that
appear to adapt to reflect stimulus structure, without any actual
change in the underlying response function. Thus, the STRF of a
nonlinear neuron does not necessarily reflect excitatory and in-
hibitory components of the underlying RF, and the structure and
extent of the STRF may be stimulus dependent even when the
true response function of the neuron is not.

Materials and Methods
Stimuli. All stimuli were created in “frames” of spectrograms consisting
of 80 frequency bins and 30 time bins. For each type of stimulus, 75,000
spectrograms were created.

Dynamic random chord stimuli. As an example of spectrotemporally
independent (and therefore also uncorrelated) stimuli, we used a DRC
stimulus, one frame of which is shown in Figure 1a. DRC frames were
generated directly in spectrotemporal space by randomly selecting 20%
of the bins of the spectrogram to have zero intensity and assigning the
non-zero bins to have one of five evenly distributed intensities with uni-
form probability. A DRC stimulus is spectrotemporally independent, in
that the mean power in any given bin of the spectrogram is independent
of the mean power in the other bins. In other words, knowing the power
in any number of the spectrogram bins does not allow prediction of the
power in any other spectrogram bin.

Ripple stimuli. As an example of uncorrelated but not independent
stimuli, we used an ensemble of ripples. Each ripple spectrogram in the
ensemble was assigned 1 of 128 temporal modulations (with frequencies
evenly distributed from 0 through to the maximum possible), and 1 of
255 frequency modulations (again evenly sampled between 0 and the
maximum possible), multiplied by a randomly assigned sign; an example
of one such spectrogram is shown in Figure 1b. Such ensembles of ripples
are spectrotemporally uncorrelated; that is, the power in any given spec-
trogram bin cannot be predicted from the power in any other single bin.
However, these stimuli are not independent; because ripples are periodic,

the power in a given spectrogram bin can be predicted from the power in
two other bins along the same line through the spectrogram.

Natural stimuli. Four classes of natural sounds were used in this study:
environmental sounds from the Pittsburgh database (Smith and Lewicki,
2006), speech sounds from the TIMIT (for Texas Instruments and Mas-
sachusetts Institute of Technology) speech database (Garofolo et al.,
1993), a selection of tamarin vocalizations (all either contact calls or
combination long calls) provided by R. Egnor and M. Hauser (Harvard
University, Cambridge, MA), and Bengalese finch songs provided by C.
Hampton and M. Brainard (University of California at San Francisco,
San Francisco, CA). All sounds were resampled to a sampling rate of 16
kHz and passed through a filter bank consisting of 80 gamma-tone band-
pass filters with center frequencies linearly distributed between 100 and
7000 Hz. The spectrogram was then given by the Hilbert envelopes of the
filter-bank output, decimated to a sampling rate of 1 kHz. The stimuli
were subdivided into spectrogram elements, each 80 frequency bins by 30
time bins, and then a random subset of 75,000 were chosen for use in the
study.

Natural stimuli, unlike DRC stimuli and ensembles of ripple stimuli,
may have (second-order) correlations. The problem of robustly compen-
sating for the effects of these correlations on STRF estimation has been
addressed in previous studies (Theunissen et al., 2000; Woolley et al.,
2006). Because our primary interest was in the effects of higher-order
statistics on STRF analysis, we chose to avoid the issues associated with
second-order structure by numerically whitening natural stimuli before
use. After this process, the off-diagonal elements of the autocorrelation
matrix were all five or more orders of magnitude smaller than the diag-
onal elements, although any higher-order statistical structure was
preserved.

Simulation of response. Spectrograms were each recast into a vector and
became rows in a 75,000 ! 2400 stimulus matrix S. This was then mul-
tiplied by one or more similarly vector-recast RF matrices w! (2400 ! 1),
and the results were combined according to the rules below to give a
75,000 ! 1 response vector r!. In Figures 9 and 10, this was taken to be the
response of the neuron. In other simulations, a final response !! (75,000 !
1) was obtained by drawing 20 samples from an inhomogeneous Poisson
distribution with mean parameter r! and then averaging across the
samples:

!! "
1

20!i"1

20 !! i; !! i " Poisson#r!$.

For simulation of a linear RF neuron, S was multiplied by a single RF w!
(2400 ! 1):

r! " Sw! .

For the linear model in Figure 9, r! was taken to represent the response,
even if some entries were negative, thus preserving true linearity. In
simulations with noise, the stimuli were offset so that r! was never nega-
tive, and Poisson noise was added, as above.

Three basic nonlinear RFs were modeled. A “multiplicative RF” was
modeled using the linear responses to two distinct Gaussian receptive
fields in spectrotemporal space. The outputs of the linear projections
were rectified and multiplied pointwise (indicated by the Schur product
!) to give the response vector r!:

r! " #Sw! 1#%!#Sw! 2#%.

A “divisive inhibition RF” was modeled using the linear response to two
distinct receptive fields. Both receptive fields were Gaussian in temporal
extent. The excitatory receptive field was a squared Gaussian in spectral
extent, whereas the inhibitory receptive field was quadratic (see Fig. 4a).
As with the multiplicative model, the output of each projection was
rectified and then combined pointwise (with pointwise division indi-
cated by the symbol &):

r! " #Sw! 1#% # #1 $ a#Sw! 2#%$.

Figure 1. a, b, Examples of single frames of both the DRC stimulus (a) and the ripple stim-
ulus (b). For STRF estimations, 75,000 frames of each stimulus were used. In the case of the DRC
stimulus, each of these frames was randomly generated; in the case of the ripple stimulus, each
frame had different modulation patterns along the time and frequency axes.
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Figure 1.1.: The neural encoding model used in this thesis. The sound waveform of the
stimulus is transformed into an internal representation, e.g., the auditory spec-
trogram. The neural encoding model performs linear filtering of stimulus
features, represented here by the spectro-temporal stimulus history preced-
ing the response. The linear filter, the receptive field (RF), signals stimulus
feature preference of the neuron under test. The RF-filtered stimulus is trans-
formed into a spike rate by a static, memoryless nonlinearity. A probabilistic
spike train is generated by a subsequent Poisson process. The first part of
this thesis proposes a method for reliable estimation of the linear part in the
combined linear-nonlinear model. The second part addresses whether alterna-
tive stimulus representations or accounting for modulation of the response by
bottom-up or top-down processes yields a better understanding of how stimuli
are processed at di↵erent levels along the auditory pathway.

1.2. Towards robust estimation of RF parameters from

responses to natural stimuli

One complication with the LN approach is that estimating the linear part in a

combined linear-nonlinear model is not trivial and there is a large diversity of es-

timation methods, each making di↵erent assumptions about the underlying nature

of the system (for a review see Wu et al. (2006); Schwartz et al. (2006); Sharpee

(2013)). Below, we will disentangle the arsenal of existing RF estimation methods

and describe how a novel method to LN parameter estimation developed in this the-

sis compares to existing methods. Such methods are at the heart of sensory systems

neuroscience and advances in computational modeling methods have direct influence

on experimental paradigms (and vice versa, Stevenson et al. (2008); Stevenson and

Kording (2011)).

A common approach to RF estimation is the spike-triggered average (STA, deBoer

and Kuyper (1968)), a linear estimator based on the reverse correlation technique

(Bussgang, 1952). The STA allows to estimate the linear part in the LN model if

the employed stimulus ensemble exhibits a Gaussian (or at least a spherically sym-

metric) distribution (Chichilnisky, 2001; Paninski, 2003a). The STA and derived

variants (Theunissen et al., 2000; Klein et al., 2000; Machens et al., 2004) have suc-

cessfully been applied to study sensory processing at di↵erent levels of the auditory

system, e.g., probing cortical neurons for optimal spectro-temporal stimulus features

independent stimuli and the neuronal response can reflect statis-
tical properties of the stimuli used in the fit rather than properties
of the RF. This fact is well known in theory; in practice, its con-
sequences for STRF analysis are not always fully appreciated. In
particular, it is often assumed that STRFs always provide a reli-
able estimate of the receptive field of a neuron, but this is not
necessarily the case.

We show here in simulation that simple, biologically plausible
nonlinearities can interact with higher-order central moments in
non-independent stimuli to produce STRFs with spurious recep-
tive field elements. Moreover, we illustrate the fact that even
STRFs estimated with spectrotemporally independent stimuli are
dependent on the power of the stimulus. Finally, we demonstrate
using natural sounds that these effects can lead to STRFs that
appear to adapt to reflect stimulus structure, without any actual
change in the underlying response function. Thus, the STRF of a
nonlinear neuron does not necessarily reflect excitatory and in-
hibitory components of the underlying RF, and the structure and
extent of the STRF may be stimulus dependent even when the
true response function of the neuron is not.

Materials and Methods
Stimuli. All stimuli were created in “frames” of spectrograms consisting
of 80 frequency bins and 30 time bins. For each type of stimulus, 75,000
spectrograms were created.

Dynamic random chord stimuli. As an example of spectrotemporally
independent (and therefore also uncorrelated) stimuli, we used a DRC
stimulus, one frame of which is shown in Figure 1a. DRC frames were
generated directly in spectrotemporal space by randomly selecting 20%
of the bins of the spectrogram to have zero intensity and assigning the
non-zero bins to have one of five evenly distributed intensities with uni-
form probability. A DRC stimulus is spectrotemporally independent, in
that the mean power in any given bin of the spectrogram is independent
of the mean power in the other bins. In other words, knowing the power
in any number of the spectrogram bins does not allow prediction of the
power in any other spectrogram bin.

Ripple stimuli. As an example of uncorrelated but not independent
stimuli, we used an ensemble of ripples. Each ripple spectrogram in the
ensemble was assigned 1 of 128 temporal modulations (with frequencies
evenly distributed from 0 through to the maximum possible), and 1 of
255 frequency modulations (again evenly sampled between 0 and the
maximum possible), multiplied by a randomly assigned sign; an example
of one such spectrogram is shown in Figure 1b. Such ensembles of ripples
are spectrotemporally uncorrelated; that is, the power in any given spec-
trogram bin cannot be predicted from the power in any other single bin.
However, these stimuli are not independent; because ripples are periodic,

the power in a given spectrogram bin can be predicted from the power in
two other bins along the same line through the spectrogram.

Natural stimuli. Four classes of natural sounds were used in this study:
environmental sounds from the Pittsburgh database (Smith and Lewicki,
2006), speech sounds from the TIMIT (for Texas Instruments and Mas-
sachusetts Institute of Technology) speech database (Garofolo et al.,
1993), a selection of tamarin vocalizations (all either contact calls or
combination long calls) provided by R. Egnor and M. Hauser (Harvard
University, Cambridge, MA), and Bengalese finch songs provided by C.
Hampton and M. Brainard (University of California at San Francisco,
San Francisco, CA). All sounds were resampled to a sampling rate of 16
kHz and passed through a filter bank consisting of 80 gamma-tone band-
pass filters with center frequencies linearly distributed between 100 and
7000 Hz. The spectrogram was then given by the Hilbert envelopes of the
filter-bank output, decimated to a sampling rate of 1 kHz. The stimuli
were subdivided into spectrogram elements, each 80 frequency bins by 30
time bins, and then a random subset of 75,000 were chosen for use in the
study.

Natural stimuli, unlike DRC stimuli and ensembles of ripple stimuli,
may have (second-order) correlations. The problem of robustly compen-
sating for the effects of these correlations on STRF estimation has been
addressed in previous studies (Theunissen et al., 2000; Woolley et al.,
2006). Because our primary interest was in the effects of higher-order
statistics on STRF analysis, we chose to avoid the issues associated with
second-order structure by numerically whitening natural stimuli before
use. After this process, the off-diagonal elements of the autocorrelation
matrix were all five or more orders of magnitude smaller than the diag-
onal elements, although any higher-order statistical structure was
preserved.

Simulation of response. Spectrograms were each recast into a vector and
became rows in a 75,000 ! 2400 stimulus matrix S. This was then mul-
tiplied by one or more similarly vector-recast RF matrices w! (2400 ! 1),
and the results were combined according to the rules below to give a
75,000 ! 1 response vector r!. In Figures 9 and 10, this was taken to be the
response of the neuron. In other simulations, a final response !! (75,000 !
1) was obtained by drawing 20 samples from an inhomogeneous Poisson
distribution with mean parameter r! and then averaging across the
samples:
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For simulation of a linear RF neuron, S was multiplied by a single RF w!
(2400 ! 1):

r! " Sw! .

For the linear model in Figure 9, r! was taken to represent the response,
even if some entries were negative, thus preserving true linearity. In
simulations with noise, the stimuli were offset so that r! was never nega-
tive, and Poisson noise was added, as above.

Three basic nonlinear RFs were modeled. A “multiplicative RF” was
modeled using the linear responses to two distinct Gaussian receptive
fields in spectrotemporal space. The outputs of the linear projections
were rectified and multiplied pointwise (indicated by the Schur product
!) to give the response vector r!:

r! " #Sw! 1#%!#Sw! 2#%.

A “divisive inhibition RF” was modeled using the linear response to two
distinct receptive fields. Both receptive fields were Gaussian in temporal
extent. The excitatory receptive field was a squared Gaussian in spectral
extent, whereas the inhibitory receptive field was quadratic (see Fig. 4a).
As with the multiplicative model, the output of each projection was
rectified and then combined pointwise (with pointwise division indi-
cated by the symbol &):

r! " #Sw! 1#% # #1 $ a#Sw! 2#%$.

Figure 1. a, b, Examples of single frames of both the DRC stimulus (a) and the ripple stim-
ulus (b). For STRF estimations, 75,000 frames of each stimulus were used. In the case of the DRC
stimulus, each of these frames was randomly generated; in the case of the ripple stimulus, each
frame had different modulation patterns along the time and frequency axes.
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the lateral-inhibition-like function of the
model selects for those ripples that have a
frequency modulation pattern matching
the spacing of the surrounds, and the re-
sulting dominance of ripples with this fre-
quency modulation causes additional
banding to emerge in the STRF.

Thresholding
Multiplicative nonlinearities are not re-
quired to produce this sort of effect. Even a
thresholding output nonlinearity (Fig.
5a), fundamental to the spiking response,
can lead to an overestimation of support in
the STRF when the stimulus is not spectro-
temporally independent (Fig. 5c). The
STRF for the rectified bimodal linear RF in
Figure 5c is very similar to the STRF for the
multiplicative nonlinearity of Figure 2f and for essentially the
same reason; the rectification ensures that the majority of spec-
trograms that actually elicit responses are those that have power
corresponding to both peaks in the linear RF. In addition to the
side bands, another feature of the ripple-estimated STRF shared
between the two cases, but more obvious in Figure 5c, is the
increased size of the STRF elements corresponding to the true RF
components. This again arises from structure in the ripple stim-
ulus. A high threshold requires that the majority of the receptive
field be stimulated to elicit a response. Because individual ripples
are continuous, any stimulus that elicits a response and hence has
power throughout the extent of the receptive field will also have
power immediately outside the border of the receptive field.
Thus, the set of all response-eliciting ripples have power extend-
ing beyond the support of the RF, and this is reflected in the
STRF.

General effects of nonlinearities
In all Figures 2–5, other patterns can be seen in the STRFs, in
addition to the specific features we have described. (This is true
not only for the ripple-estimated STRFs but also for the DRC-
estimated STRFs, which show an apparently noisy background.)
Such effects are not entirely attributable to noise in the simulated
responses; they remain present even when noise is excluded from
the simulations. Rather, these patterns, like the specific features
described previously for each model, arise from an interaction
between the RF nonlinearity and the statistics of the stimulus
used to estimate the STRF. (In the case of the DRC-estimated
STRFs, some part of the noisy-looking background derives from
non-zero moments in the stimulus that occur because the stim-
ulus is finite in length.) These patterns are generally sensitive to
minor changes in the model parameters, and their origin is diffi-
cult to describe more intuitively than with reference to the inter-
action between nonlinearities and stimulus statistics (e.g., see the
analytic form of the STRF for the multiplicative RF in Materials
and Methods).

Non-intuitive consequences of linear regression in
high-dimensional spaces
The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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independent stimuli and the neuronal response can reflect statis-
tical properties of the stimuli used in the fit rather than properties
of the RF. This fact is well known in theory; in practice, its con-
sequences for STRF analysis are not always fully appreciated. In
particular, it is often assumed that STRFs always provide a reli-
able estimate of the receptive field of a neuron, but this is not
necessarily the case.

We show here in simulation that simple, biologically plausible
nonlinearities can interact with higher-order central moments in
non-independent stimuli to produce STRFs with spurious recep-
tive field elements. Moreover, we illustrate the fact that even
STRFs estimated with spectrotemporally independent stimuli are
dependent on the power of the stimulus. Finally, we demonstrate
using natural sounds that these effects can lead to STRFs that
appear to adapt to reflect stimulus structure, without any actual
change in the underlying response function. Thus, the STRF of a
nonlinear neuron does not necessarily reflect excitatory and in-
hibitory components of the underlying RF, and the structure and
extent of the STRF may be stimulus dependent even when the
true response function of the neuron is not.

Materials and Methods
Stimuli. All stimuli were created in “frames” of spectrograms consisting
of 80 frequency bins and 30 time bins. For each type of stimulus, 75,000
spectrograms were created.

Dynamic random chord stimuli. As an example of spectrotemporally
independent (and therefore also uncorrelated) stimuli, we used a DRC
stimulus, one frame of which is shown in Figure 1a. DRC frames were
generated directly in spectrotemporal space by randomly selecting 20%
of the bins of the spectrogram to have zero intensity and assigning the
non-zero bins to have one of five evenly distributed intensities with uni-
form probability. A DRC stimulus is spectrotemporally independent, in
that the mean power in any given bin of the spectrogram is independent
of the mean power in the other bins. In other words, knowing the power
in any number of the spectrogram bins does not allow prediction of the
power in any other spectrogram bin.

Ripple stimuli. As an example of uncorrelated but not independent
stimuli, we used an ensemble of ripples. Each ripple spectrogram in the
ensemble was assigned 1 of 128 temporal modulations (with frequencies
evenly distributed from 0 through to the maximum possible), and 1 of
255 frequency modulations (again evenly sampled between 0 and the
maximum possible), multiplied by a randomly assigned sign; an example
of one such spectrogram is shown in Figure 1b. Such ensembles of ripples
are spectrotemporally uncorrelated; that is, the power in any given spec-
trogram bin cannot be predicted from the power in any other single bin.
However, these stimuli are not independent; because ripples are periodic,

the power in a given spectrogram bin can be predicted from the power in
two other bins along the same line through the spectrogram.

Natural stimuli. Four classes of natural sounds were used in this study:
environmental sounds from the Pittsburgh database (Smith and Lewicki,
2006), speech sounds from the TIMIT (for Texas Instruments and Mas-
sachusetts Institute of Technology) speech database (Garofolo et al.,
1993), a selection of tamarin vocalizations (all either contact calls or
combination long calls) provided by R. Egnor and M. Hauser (Harvard
University, Cambridge, MA), and Bengalese finch songs provided by C.
Hampton and M. Brainard (University of California at San Francisco,
San Francisco, CA). All sounds were resampled to a sampling rate of 16
kHz and passed through a filter bank consisting of 80 gamma-tone band-
pass filters with center frequencies linearly distributed between 100 and
7000 Hz. The spectrogram was then given by the Hilbert envelopes of the
filter-bank output, decimated to a sampling rate of 1 kHz. The stimuli
were subdivided into spectrogram elements, each 80 frequency bins by 30
time bins, and then a random subset of 75,000 were chosen for use in the
study.

Natural stimuli, unlike DRC stimuli and ensembles of ripple stimuli,
may have (second-order) correlations. The problem of robustly compen-
sating for the effects of these correlations on STRF estimation has been
addressed in previous studies (Theunissen et al., 2000; Woolley et al.,
2006). Because our primary interest was in the effects of higher-order
statistics on STRF analysis, we chose to avoid the issues associated with
second-order structure by numerically whitening natural stimuli before
use. After this process, the off-diagonal elements of the autocorrelation
matrix were all five or more orders of magnitude smaller than the diag-
onal elements, although any higher-order statistical structure was
preserved.

Simulation of response. Spectrograms were each recast into a vector and
became rows in a 75,000 ! 2400 stimulus matrix S. This was then mul-
tiplied by one or more similarly vector-recast RF matrices w! (2400 ! 1),
and the results were combined according to the rules below to give a
75,000 ! 1 response vector r!. In Figures 9 and 10, this was taken to be the
response of the neuron. In other simulations, a final response !! (75,000 !
1) was obtained by drawing 20 samples from an inhomogeneous Poisson
distribution with mean parameter r! and then averaging across the
samples:

!! "
1

20!i"1

20 !! i; !! i " Poisson#r!$.

For simulation of a linear RF neuron, S was multiplied by a single RF w!
(2400 ! 1):

r! " Sw! .

For the linear model in Figure 9, r! was taken to represent the response,
even if some entries were negative, thus preserving true linearity. In
simulations with noise, the stimuli were offset so that r! was never nega-
tive, and Poisson noise was added, as above.

Three basic nonlinear RFs were modeled. A “multiplicative RF” was
modeled using the linear responses to two distinct Gaussian receptive
fields in spectrotemporal space. The outputs of the linear projections
were rectified and multiplied pointwise (indicated by the Schur product
!) to give the response vector r!:

r! " #Sw! 1#%!#Sw! 2#%.

A “divisive inhibition RF” was modeled using the linear response to two
distinct receptive fields. Both receptive fields were Gaussian in temporal
extent. The excitatory receptive field was a squared Gaussian in spectral
extent, whereas the inhibitory receptive field was quadratic (see Fig. 4a).
As with the multiplicative model, the output of each projection was
rectified and then combined pointwise (with pointwise division indi-
cated by the symbol &):

r! " #Sw! 1#% # #1 $ a#Sw! 2#%$.

Figure 1. a, b, Examples of single frames of both the DRC stimulus (a) and the ripple stim-
ulus (b). For STRF estimations, 75,000 frames of each stimulus were used. In the case of the DRC
stimulus, each of these frames was randomly generated; in the case of the ripple stimulus, each
frame had different modulation patterns along the time and frequency axes.
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Figure 1.1.: The neural encoding model used in this thesis. The sound waveform of the
stimulus is transformed into an internal representation, e.g., the auditory spec-
trogram. The neural encoding model performs linear filtering of stimulus
features, represented here by the spectro-temporal stimulus history preced-
ing the response. The linear filter, the receptive field (RF), signals stimulus
feature preference of the neuron under test. The RF-filtered stimulus is trans-
formed into a spike rate by a static, memoryless nonlinearity. A probabilistic
spike train is generated by a subsequent Poisson process. The first part of
this thesis proposes a method for reliable estimation of the linear part in the
combined linear-nonlinear model. The second part addresses whether alterna-
tive stimulus representations or accounting for modulation of the response by
bottom-up or top-down processes yields a better understanding of how stimuli
are processed at di↵erent levels along the auditory pathway.

1.2. Towards robust estimation of RF parameters from

responses to natural stimuli

One complication with the LN approach is that estimating the linear part in a

combined linear-nonlinear model is not trivial and there is a large diversity of es-

timation methods, each making di↵erent assumptions about the underlying nature

of the system (for a review see Wu et al. (2006); Schwartz et al. (2006); Sharpee

(2013)). Below, we will disentangle the arsenal of existing RF estimation methods

and describe how a novel method to LN parameter estimation developed in this the-

sis compares to existing methods. Such methods are at the heart of sensory systems

neuroscience and advances in computational modeling methods have direct influence

on experimental paradigms (and vice versa, Stevenson et al. (2008); Stevenson and

Kording (2011)).

A common approach to RF estimation is the spike-triggered average (STA, deBoer

and Kuyper (1968)), a linear estimator based on the reverse correlation technique

(Bussgang, 1952). The STA allows to estimate the linear part in the LN model if

the employed stimulus ensemble exhibits a Gaussian (or at least a spherically sym-

metric) distribution (Chichilnisky, 2001; Paninski, 2003a). The STA and derived

variants (Theunissen et al., 2000; Klein et al., 2000; Machens et al., 2004) have suc-

cessfully been applied to study sensory processing at di↵erent levels of the auditory

system, e.g., probing cortical neurons for optimal spectro-temporal stimulus features

the lateral-inhibition-like function of the
model selects for those ripples that have a
frequency modulation pattern matching
the spacing of the surrounds, and the re-
sulting dominance of ripples with this fre-
quency modulation causes additional
banding to emerge in the STRF.

Thresholding
Multiplicative nonlinearities are not re-
quired to produce this sort of effect. Even a
thresholding output nonlinearity (Fig.
5a), fundamental to the spiking response,
can lead to an overestimation of support in
the STRF when the stimulus is not spectro-
temporally independent (Fig. 5c). The
STRF for the rectified bimodal linear RF in
Figure 5c is very similar to the STRF for the
multiplicative nonlinearity of Figure 2f and for essentially the
same reason; the rectification ensures that the majority of spec-
trograms that actually elicit responses are those that have power
corresponding to both peaks in the linear RF. In addition to the
side bands, another feature of the ripple-estimated STRF shared
between the two cases, but more obvious in Figure 5c, is the
increased size of the STRF elements corresponding to the true RF
components. This again arises from structure in the ripple stim-
ulus. A high threshold requires that the majority of the receptive
field be stimulated to elicit a response. Because individual ripples
are continuous, any stimulus that elicits a response and hence has
power throughout the extent of the receptive field will also have
power immediately outside the border of the receptive field.
Thus, the set of all response-eliciting ripples have power extend-
ing beyond the support of the RF, and this is reflected in the
STRF.

General effects of nonlinearities
In all Figures 2–5, other patterns can be seen in the STRFs, in
addition to the specific features we have described. (This is true
not only for the ripple-estimated STRFs but also for the DRC-
estimated STRFs, which show an apparently noisy background.)
Such effects are not entirely attributable to noise in the simulated
responses; they remain present even when noise is excluded from
the simulations. Rather, these patterns, like the specific features
described previously for each model, arise from an interaction
between the RF nonlinearity and the statistics of the stimulus
used to estimate the STRF. (In the case of the DRC-estimated
STRFs, some part of the noisy-looking background derives from
non-zero moments in the stimulus that occur because the stim-
ulus is finite in length.) These patterns are generally sensitive to
minor changes in the model parameters, and their origin is diffi-
cult to describe more intuitively than with reference to the inter-
action between nonlinearities and stimulus statistics (e.g., see the
analytic form of the STRF for the multiplicative RF in Materials
and Methods).

Non-intuitive consequences of linear regression in
high-dimensional spaces
The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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the lateral-inhibition-like function of the
model selects for those ripples that have a
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the spacing of the surrounds, and the re-
sulting dominance of ripples with this fre-
quency modulation causes additional
banding to emerge in the STRF.

Thresholding
Multiplicative nonlinearities are not re-
quired to produce this sort of effect. Even a
thresholding output nonlinearity (Fig.
5a), fundamental to the spiking response,
can lead to an overestimation of support in
the STRF when the stimulus is not spectro-
temporally independent (Fig. 5c). The
STRF for the rectified bimodal linear RF in
Figure 5c is very similar to the STRF for the
multiplicative nonlinearity of Figure 2f and for essentially the
same reason; the rectification ensures that the majority of spec-
trograms that actually elicit responses are those that have power
corresponding to both peaks in the linear RF. In addition to the
side bands, another feature of the ripple-estimated STRF shared
between the two cases, but more obvious in Figure 5c, is the
increased size of the STRF elements corresponding to the true RF
components. This again arises from structure in the ripple stim-
ulus. A high threshold requires that the majority of the receptive
field be stimulated to elicit a response. Because individual ripples
are continuous, any stimulus that elicits a response and hence has
power throughout the extent of the receptive field will also have
power immediately outside the border of the receptive field.
Thus, the set of all response-eliciting ripples have power extend-
ing beyond the support of the RF, and this is reflected in the
STRF.

General effects of nonlinearities
In all Figures 2–5, other patterns can be seen in the STRFs, in
addition to the specific features we have described. (This is true
not only for the ripple-estimated STRFs but also for the DRC-
estimated STRFs, which show an apparently noisy background.)
Such effects are not entirely attributable to noise in the simulated
responses; they remain present even when noise is excluded from
the simulations. Rather, these patterns, like the specific features
described previously for each model, arise from an interaction
between the RF nonlinearity and the statistics of the stimulus
used to estimate the STRF. (In the case of the DRC-estimated
STRFs, some part of the noisy-looking background derives from
non-zero moments in the stimulus that occur because the stim-
ulus is finite in length.) These patterns are generally sensitive to
minor changes in the model parameters, and their origin is diffi-
cult to describe more intuitively than with reference to the inter-
action between nonlinearities and stimulus statistics (e.g., see the
analytic form of the STRF for the multiplicative RF in Materials
and Methods).

Non-intuitive consequences of linear regression in
high-dimensional spaces
The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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independent stimuli and the neuronal response can reflect statis-
tical properties of the stimuli used in the fit rather than properties
of the RF. This fact is well known in theory; in practice, its con-
sequences for STRF analysis are not always fully appreciated. In
particular, it is often assumed that STRFs always provide a reli-
able estimate of the receptive field of a neuron, but this is not
necessarily the case.

We show here in simulation that simple, biologically plausible
nonlinearities can interact with higher-order central moments in
non-independent stimuli to produce STRFs with spurious recep-
tive field elements. Moreover, we illustrate the fact that even
STRFs estimated with spectrotemporally independent stimuli are
dependent on the power of the stimulus. Finally, we demonstrate
using natural sounds that these effects can lead to STRFs that
appear to adapt to reflect stimulus structure, without any actual
change in the underlying response function. Thus, the STRF of a
nonlinear neuron does not necessarily reflect excitatory and in-
hibitory components of the underlying RF, and the structure and
extent of the STRF may be stimulus dependent even when the
true response function of the neuron is not.

Materials and Methods
Stimuli. All stimuli were created in “frames” of spectrograms consisting
of 80 frequency bins and 30 time bins. For each type of stimulus, 75,000
spectrograms were created.

Dynamic random chord stimuli. As an example of spectrotemporally
independent (and therefore also uncorrelated) stimuli, we used a DRC
stimulus, one frame of which is shown in Figure 1a. DRC frames were
generated directly in spectrotemporal space by randomly selecting 20%
of the bins of the spectrogram to have zero intensity and assigning the
non-zero bins to have one of five evenly distributed intensities with uni-
form probability. A DRC stimulus is spectrotemporally independent, in
that the mean power in any given bin of the spectrogram is independent
of the mean power in the other bins. In other words, knowing the power
in any number of the spectrogram bins does not allow prediction of the
power in any other spectrogram bin.

Ripple stimuli. As an example of uncorrelated but not independent
stimuli, we used an ensemble of ripples. Each ripple spectrogram in the
ensemble was assigned 1 of 128 temporal modulations (with frequencies
evenly distributed from 0 through to the maximum possible), and 1 of
255 frequency modulations (again evenly sampled between 0 and the
maximum possible), multiplied by a randomly assigned sign; an example
of one such spectrogram is shown in Figure 1b. Such ensembles of ripples
are spectrotemporally uncorrelated; that is, the power in any given spec-
trogram bin cannot be predicted from the power in any other single bin.
However, these stimuli are not independent; because ripples are periodic,

the power in a given spectrogram bin can be predicted from the power in
two other bins along the same line through the spectrogram.

Natural stimuli. Four classes of natural sounds were used in this study:
environmental sounds from the Pittsburgh database (Smith and Lewicki,
2006), speech sounds from the TIMIT (for Texas Instruments and Mas-
sachusetts Institute of Technology) speech database (Garofolo et al.,
1993), a selection of tamarin vocalizations (all either contact calls or
combination long calls) provided by R. Egnor and M. Hauser (Harvard
University, Cambridge, MA), and Bengalese finch songs provided by C.
Hampton and M. Brainard (University of California at San Francisco,
San Francisco, CA). All sounds were resampled to a sampling rate of 16
kHz and passed through a filter bank consisting of 80 gamma-tone band-
pass filters with center frequencies linearly distributed between 100 and
7000 Hz. The spectrogram was then given by the Hilbert envelopes of the
filter-bank output, decimated to a sampling rate of 1 kHz. The stimuli
were subdivided into spectrogram elements, each 80 frequency bins by 30
time bins, and then a random subset of 75,000 were chosen for use in the
study.

Natural stimuli, unlike DRC stimuli and ensembles of ripple stimuli,
may have (second-order) correlations. The problem of robustly compen-
sating for the effects of these correlations on STRF estimation has been
addressed in previous studies (Theunissen et al., 2000; Woolley et al.,
2006). Because our primary interest was in the effects of higher-order
statistics on STRF analysis, we chose to avoid the issues associated with
second-order structure by numerically whitening natural stimuli before
use. After this process, the off-diagonal elements of the autocorrelation
matrix were all five or more orders of magnitude smaller than the diag-
onal elements, although any higher-order statistical structure was
preserved.

Simulation of response. Spectrograms were each recast into a vector and
became rows in a 75,000 ! 2400 stimulus matrix S. This was then mul-
tiplied by one or more similarly vector-recast RF matrices w! (2400 ! 1),
and the results were combined according to the rules below to give a
75,000 ! 1 response vector r!. In Figures 9 and 10, this was taken to be the
response of the neuron. In other simulations, a final response !! (75,000 !
1) was obtained by drawing 20 samples from an inhomogeneous Poisson
distribution with mean parameter r! and then averaging across the
samples:

!! "
1

20!i"1

20 !! i; !! i " Poisson#r!$.

For simulation of a linear RF neuron, S was multiplied by a single RF w!
(2400 ! 1):

r! " Sw! .

For the linear model in Figure 9, r! was taken to represent the response,
even if some entries were negative, thus preserving true linearity. In
simulations with noise, the stimuli were offset so that r! was never nega-
tive, and Poisson noise was added, as above.

Three basic nonlinear RFs were modeled. A “multiplicative RF” was
modeled using the linear responses to two distinct Gaussian receptive
fields in spectrotemporal space. The outputs of the linear projections
were rectified and multiplied pointwise (indicated by the Schur product
!) to give the response vector r!:

r! " #Sw! 1#%!#Sw! 2#%.

A “divisive inhibition RF” was modeled using the linear response to two
distinct receptive fields. Both receptive fields were Gaussian in temporal
extent. The excitatory receptive field was a squared Gaussian in spectral
extent, whereas the inhibitory receptive field was quadratic (see Fig. 4a).
As with the multiplicative model, the output of each projection was
rectified and then combined pointwise (with pointwise division indi-
cated by the symbol &):

r! " #Sw! 1#% # #1 $ a#Sw! 2#%$.

Figure 1. a, b, Examples of single frames of both the DRC stimulus (a) and the ripple stim-
ulus (b). For STRF estimations, 75,000 frames of each stimulus were used. In the case of the DRC
stimulus, each of these frames was randomly generated; in the case of the ripple stimulus, each
frame had different modulation patterns along the time and frequency axes.
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Figure 1.1.: The neural encoding model used in this thesis. The sound waveform of the
stimulus is transformed into an internal representation, e.g., the auditory spec-
trogram. The neural encoding model performs linear filtering of stimulus
features, represented here by the spectro-temporal stimulus history preced-
ing the response. The linear filter, the receptive field (RF), signals stimulus
feature preference of the neuron under test. The RF-filtered stimulus is trans-
formed into a spike rate by a static, memoryless nonlinearity. A probabilistic
spike train is generated by a subsequent Poisson process. The first part of
this thesis proposes a method for reliable estimation of the linear part in the
combined linear-nonlinear model. The second part addresses whether alterna-
tive stimulus representations or accounting for modulation of the response by
bottom-up or top-down processes yields a better understanding of how stimuli
are processed at di↵erent levels along the auditory pathway.

1.2. Towards robust estimation of RF parameters from

responses to natural stimuli

One complication with the LN approach is that estimating the linear part in a

combined linear-nonlinear model is not trivial and there is a large diversity of es-

timation methods, each making di↵erent assumptions about the underlying nature

of the system (for a review see Wu et al. (2006); Schwartz et al. (2006); Sharpee

(2013)). Below, we will disentangle the arsenal of existing RF estimation methods

and describe how a novel method to LN parameter estimation developed in this the-

sis compares to existing methods. Such methods are at the heart of sensory systems

neuroscience and advances in computational modeling methods have direct influence

on experimental paradigms (and vice versa, Stevenson et al. (2008); Stevenson and

Kording (2011)).

A common approach to RF estimation is the spike-triggered average (STA, deBoer

and Kuyper (1968)), a linear estimator based on the reverse correlation technique

(Bussgang, 1952). The STA allows to estimate the linear part in the LN model if

the employed stimulus ensemble exhibits a Gaussian (or at least a spherically sym-

metric) distribution (Chichilnisky, 2001; Paninski, 2003a). The STA and derived

variants (Theunissen et al., 2000; Klein et al., 2000; Machens et al., 2004) have suc-

cessfully been applied to study sensory processing at di↵erent levels of the auditory

system, e.g., probing cortical neurons for optimal spectro-temporal stimulus features

independent stimuli and the neuronal response can reflect statis-
tical properties of the stimuli used in the fit rather than properties
of the RF. This fact is well known in theory; in practice, its con-
sequences for STRF analysis are not always fully appreciated. In
particular, it is often assumed that STRFs always provide a reli-
able estimate of the receptive field of a neuron, but this is not
necessarily the case.

We show here in simulation that simple, biologically plausible
nonlinearities can interact with higher-order central moments in
non-independent stimuli to produce STRFs with spurious recep-
tive field elements. Moreover, we illustrate the fact that even
STRFs estimated with spectrotemporally independent stimuli are
dependent on the power of the stimulus. Finally, we demonstrate
using natural sounds that these effects can lead to STRFs that
appear to adapt to reflect stimulus structure, without any actual
change in the underlying response function. Thus, the STRF of a
nonlinear neuron does not necessarily reflect excitatory and in-
hibitory components of the underlying RF, and the structure and
extent of the STRF may be stimulus dependent even when the
true response function of the neuron is not.

Materials and Methods
Stimuli. All stimuli were created in “frames” of spectrograms consisting
of 80 frequency bins and 30 time bins. For each type of stimulus, 75,000
spectrograms were created.

Dynamic random chord stimuli. As an example of spectrotemporally
independent (and therefore also uncorrelated) stimuli, we used a DRC
stimulus, one frame of which is shown in Figure 1a. DRC frames were
generated directly in spectrotemporal space by randomly selecting 20%
of the bins of the spectrogram to have zero intensity and assigning the
non-zero bins to have one of five evenly distributed intensities with uni-
form probability. A DRC stimulus is spectrotemporally independent, in
that the mean power in any given bin of the spectrogram is independent
of the mean power in the other bins. In other words, knowing the power
in any number of the spectrogram bins does not allow prediction of the
power in any other spectrogram bin.

Ripple stimuli. As an example of uncorrelated but not independent
stimuli, we used an ensemble of ripples. Each ripple spectrogram in the
ensemble was assigned 1 of 128 temporal modulations (with frequencies
evenly distributed from 0 through to the maximum possible), and 1 of
255 frequency modulations (again evenly sampled between 0 and the
maximum possible), multiplied by a randomly assigned sign; an example
of one such spectrogram is shown in Figure 1b. Such ensembles of ripples
are spectrotemporally uncorrelated; that is, the power in any given spec-
trogram bin cannot be predicted from the power in any other single bin.
However, these stimuli are not independent; because ripples are periodic,

the power in a given spectrogram bin can be predicted from the power in
two other bins along the same line through the spectrogram.

Natural stimuli. Four classes of natural sounds were used in this study:
environmental sounds from the Pittsburgh database (Smith and Lewicki,
2006), speech sounds from the TIMIT (for Texas Instruments and Mas-
sachusetts Institute of Technology) speech database (Garofolo et al.,
1993), a selection of tamarin vocalizations (all either contact calls or
combination long calls) provided by R. Egnor and M. Hauser (Harvard
University, Cambridge, MA), and Bengalese finch songs provided by C.
Hampton and M. Brainard (University of California at San Francisco,
San Francisco, CA). All sounds were resampled to a sampling rate of 16
kHz and passed through a filter bank consisting of 80 gamma-tone band-
pass filters with center frequencies linearly distributed between 100 and
7000 Hz. The spectrogram was then given by the Hilbert envelopes of the
filter-bank output, decimated to a sampling rate of 1 kHz. The stimuli
were subdivided into spectrogram elements, each 80 frequency bins by 30
time bins, and then a random subset of 75,000 were chosen for use in the
study.

Natural stimuli, unlike DRC stimuli and ensembles of ripple stimuli,
may have (second-order) correlations. The problem of robustly compen-
sating for the effects of these correlations on STRF estimation has been
addressed in previous studies (Theunissen et al., 2000; Woolley et al.,
2006). Because our primary interest was in the effects of higher-order
statistics on STRF analysis, we chose to avoid the issues associated with
second-order structure by numerically whitening natural stimuli before
use. After this process, the off-diagonal elements of the autocorrelation
matrix were all five or more orders of magnitude smaller than the diag-
onal elements, although any higher-order statistical structure was
preserved.

Simulation of response. Spectrograms were each recast into a vector and
became rows in a 75,000 ! 2400 stimulus matrix S. This was then mul-
tiplied by one or more similarly vector-recast RF matrices w! (2400 ! 1),
and the results were combined according to the rules below to give a
75,000 ! 1 response vector r!. In Figures 9 and 10, this was taken to be the
response of the neuron. In other simulations, a final response !! (75,000 !
1) was obtained by drawing 20 samples from an inhomogeneous Poisson
distribution with mean parameter r! and then averaging across the
samples:

!! "
1

20!i"1

20 !! i; !! i " Poisson#r!$.

For simulation of a linear RF neuron, S was multiplied by a single RF w!
(2400 ! 1):

r! " Sw! .

For the linear model in Figure 9, r! was taken to represent the response,
even if some entries were negative, thus preserving true linearity. In
simulations with noise, the stimuli were offset so that r! was never nega-
tive, and Poisson noise was added, as above.

Three basic nonlinear RFs were modeled. A “multiplicative RF” was
modeled using the linear responses to two distinct Gaussian receptive
fields in spectrotemporal space. The outputs of the linear projections
were rectified and multiplied pointwise (indicated by the Schur product
!) to give the response vector r!:

r! " #Sw! 1#%!#Sw! 2#%.

A “divisive inhibition RF” was modeled using the linear response to two
distinct receptive fields. Both receptive fields were Gaussian in temporal
extent. The excitatory receptive field was a squared Gaussian in spectral
extent, whereas the inhibitory receptive field was quadratic (see Fig. 4a).
As with the multiplicative model, the output of each projection was
rectified and then combined pointwise (with pointwise division indi-
cated by the symbol &):

r! " #Sw! 1#% # #1 $ a#Sw! 2#%$.

Figure 1. a, b, Examples of single frames of both the DRC stimulus (a) and the ripple stim-
ulus (b). For STRF estimations, 75,000 frames of each stimulus were used. In the case of the DRC
stimulus, each of these frames was randomly generated; in the case of the ripple stimulus, each
frame had different modulation patterns along the time and frequency axes.
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Higher-order stimulus statistics 
influences STRF estimation results

the lateral-inhibition-like function of the
model selects for those ripples that have a
frequency modulation pattern matching
the spacing of the surrounds, and the re-
sulting dominance of ripples with this fre-
quency modulation causes additional
banding to emerge in the STRF.

Thresholding
Multiplicative nonlinearities are not re-
quired to produce this sort of effect. Even a
thresholding output nonlinearity (Fig.
5a), fundamental to the spiking response,
can lead to an overestimation of support in
the STRF when the stimulus is not spectro-
temporally independent (Fig. 5c). The
STRF for the rectified bimodal linear RF in
Figure 5c is very similar to the STRF for the
multiplicative nonlinearity of Figure 2f and for essentially the
same reason; the rectification ensures that the majority of spec-
trograms that actually elicit responses are those that have power
corresponding to both peaks in the linear RF. In addition to the
side bands, another feature of the ripple-estimated STRF shared
between the two cases, but more obvious in Figure 5c, is the
increased size of the STRF elements corresponding to the true RF
components. This again arises from structure in the ripple stim-
ulus. A high threshold requires that the majority of the receptive
field be stimulated to elicit a response. Because individual ripples
are continuous, any stimulus that elicits a response and hence has
power throughout the extent of the receptive field will also have
power immediately outside the border of the receptive field.
Thus, the set of all response-eliciting ripples have power extend-
ing beyond the support of the RF, and this is reflected in the
STRF.

General effects of nonlinearities
In all Figures 2–5, other patterns can be seen in the STRFs, in
addition to the specific features we have described. (This is true
not only for the ripple-estimated STRFs but also for the DRC-
estimated STRFs, which show an apparently noisy background.)
Such effects are not entirely attributable to noise in the simulated
responses; they remain present even when noise is excluded from
the simulations. Rather, these patterns, like the specific features
described previously for each model, arise from an interaction
between the RF nonlinearity and the statistics of the stimulus
used to estimate the STRF. (In the case of the DRC-estimated
STRFs, some part of the noisy-looking background derives from
non-zero moments in the stimulus that occur because the stim-
ulus is finite in length.) These patterns are generally sensitive to
minor changes in the model parameters, and their origin is diffi-
cult to describe more intuitively than with reference to the inter-
action between nonlinearities and stimulus statistics (e.g., see the
analytic form of the STRF for the multiplicative RF in Materials
and Methods).

Non-intuitive consequences of linear regression in
high-dimensional spaces
The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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best stimulus of the neuron, this convention is flipped for the neuron and
its RTF (positive, upward sweep; negative, downward sweep).

Although this approach was successfully applied for many neurons,
other neurons did not show statistically significant STRFs; therefore, it
was impossible to estimate their RTFs directly. We therefore approxi-
mate the probability distribution function of observing a given set of
parameters given a spike at time tn, P(Fm, !!tn), by performing a spike-
triggered average with respect to the time-varying DMR parameters,
!(t) and Fm(t):

Pkl ! "
n"1

N

I#k$Fm " Fm%tn& " %k # 1&$Fm' ! I#l$! " !%tn& " %l # 1&$!',

(15)

where Pkl is the discrete version of P(Fm, !!tn), and I[!] is the identity
function. The identity function takes a value of unity whenever the
condition inside its argument is satisfied. Otherwise, it assumes a value of
0. Thus for any given bin of Pkl, this conditioned response histogram
(CRH) is incremented by (1 if and only if the instantaneous parameters,
Fm(tn) and !(tn), fall within the required intervals, k$Fm " Fm(tn) " (k
( 1)$Fm and l$! " !(tn) " (l ( 1)$!, at the time of the neuronal spike,
tn (see Fig. 5C,D). Bin width resolutions of $Fm " 15–35 Hz and $! "
0.2–0.4 cycles per octave were used. The exact position used to estimate
the parameters relative to the neuronal spike time, tn, did not alter the
resulting histogram (tested for a time lag of 0–50 msec), because
the parameters vary at a slow rate (1.5 and 3 Hz) compared with the
integration time of ICC neurons (usually tens of milliseconds).

As for single units, it was also useful to characterize population
responses in the frequency domain, and we therefore extended these
methods to include population statistics. By averaging the RTFs of
individual neurons, we estimated the population ripple transfer function
(pRTF) for those neurons with significant STRFs. To avoid biasing the
pRTF because of systematic differences in firing strength, the RTFs of
individual neurons were equally weighted so that the cumulative area of
each was exactly 1.

For neurons that did not produce statistically significant STRFs, a
modified approach was applied. We normalized the CRH of each neuron
so that its cumulative sum was exactly 1. An average was then taken over
the entire population, thereby producing the “population” CRH
(pCRH). To facilitate comparisons, the pCRH was interpolated using the
interp2 function (spline option) in MATLAB to identical resolution as
for pRTF.

RESULTS
We studied 81 single neurons with the intent of understanding
how dynamic spectrotemporal signals are processed within the
central nucleus of the inferior colliculus. Specifically, we address
whether single neurons integrate spectrotemporal information
according to a linear integration model and whether dynamic
stimulus aspects significantly affect neuronal encoding. Our com-
plex stimuli constitute an integral part of the experimental pro-
tocol, and we fully characterize several pertinent properties of the
stimulus ensembles. By design, both test sounds have identical
average statistics and, therefore, equally sample the relevant
spectrotemporal stimulus dimensions for this study. As a first-
order test of evaluating spectrotemporal response nonlinearities,
we compute and compare the spectrotemporal receptive field for
each sound type. We also characterize higher-order response
attributes that are not directly accessible with the STRF
descriptor.

Stimulus statistics: average versus dynamic
spectrotemporal characteristics of the dynamic
moving ripple and ripple noise
To test the possibility that individual auditory neurons in the ICC
are selective for structural features prevalent in natural sounds
(Fig. 1A,B), complex broadband stimuli (Fig. 1C,D) were de-
signed that allow us to systematically identify nonlinear process-
ing capabilities of auditory neurons. These stimuli fulfill a num-

ber of theoretical and ecological constraints: first, both sounds
were designed to stringently meet a number of necessary require-
ments for use with the STRF. Second, both sounds incorporate a
number of pertinent acoustic stimulus attributes that are preva-
lent in various natural signals [e.g., spectral energy peaks, fre-
quency modulation (FM) sweeps, and temporal modulations] and
that determine important perceptual qualities (Plomp, 1970,
1983; Van Veen and Houtgast, 1983).

The DMR stimulus (Fig. 1C) is an extension of the rippled
spectrum noise used to characterize spectral and temporal re-
sponse properties in the ferret and cat auditory cortex (Schreiner
and Calhoun, 1994; Kowalski et al., 1996; Klein et al., 2000). This
sound is constructed so that its spectrotemporal envelope is
dynamic and coherently modulated (“structured”) in time and
frequency. As for speech and animal vocalizations (Fig. 1A), the
DMR has strong short-time spectrotemporal correlations. These
are determined by two independent parameters that vary ran-
domly in time: the temporal modulation rate, Fm(t), and ripple
density, !(t) (see Materials and Methods; Figs. 1C, and 2). The
temporal modulation parameter determines the number of onsets
and offsets per unit time (units of hertz) (Fig. 1C, top right). At any
given time, the DMR sound produces a sinusoidal energy excita-
tion pattern along the sensory epithelium, where the number of
peaks per octave frequency is determined by the ripple density at
that instant (Fig. 1C, top right). To efficiently excite neurons in the
range characteristic for vocalizations, these parameters continu-
ously vary at a nominal rate of 3 Hz (ripple density) (Fig. 2A) and
1.5 Hz (temporal modulation rate) (Fig. 2B) (in speech, for
instance, similar features change at a rate of )2–8 Hz; Green-
berg, 1998).

Figure 1. Synthetic sound sequence used for reverse correlation analysis
(C, D) and some corresponding natural sound counterparts (A, kitten
vocalizations; B, babbling brook). The DMR (C) is designed to mimic
spectral profiles created by formants (spectral energy peaks) and temporal
modulations in speech production and animal vocalizations. The ripple
density parameter, !( t), corresponds to the number of energy peaks
(cycles per octave) along the spectral axis at time t. The temporal
modulation rate, Fm( t), describes the repetition rate of the envelope in
hertz. The second stimulus, the RN (D), has noise-like properties that
uniformly cover the ripple dimensions. The DMR and RN are shown for
a maximum temporal modulation rate of 70 Hz, although a value of 350
Hz was used for the experiments.
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best stimulus of the neuron, this convention is flipped for the neuron and
its RTF (positive, upward sweep; negative, downward sweep).

Although this approach was successfully applied for many neurons,
other neurons did not show statistically significant STRFs; therefore, it
was impossible to estimate their RTFs directly. We therefore approxi-
mate the probability distribution function of observing a given set of
parameters given a spike at time tn, P(Fm, !!tn), by performing a spike-
triggered average with respect to the time-varying DMR parameters,
!(t) and Fm(t):

Pkl ! "
n"1

N

I#k$Fm " Fm%tn& " %k # 1&$Fm' ! I#l$! " !%tn& " %l # 1&$!',

(15)

where Pkl is the discrete version of P(Fm, !!tn), and I[!] is the identity
function. The identity function takes a value of unity whenever the
condition inside its argument is satisfied. Otherwise, it assumes a value of
0. Thus for any given bin of Pkl, this conditioned response histogram
(CRH) is incremented by (1 if and only if the instantaneous parameters,
Fm(tn) and !(tn), fall within the required intervals, k$Fm " Fm(tn) " (k
( 1)$Fm and l$! " !(tn) " (l ( 1)$!, at the time of the neuronal spike,
tn (see Fig. 5C,D). Bin width resolutions of $Fm " 15–35 Hz and $! "
0.2–0.4 cycles per octave were used. The exact position used to estimate
the parameters relative to the neuronal spike time, tn, did not alter the
resulting histogram (tested for a time lag of 0–50 msec), because
the parameters vary at a slow rate (1.5 and 3 Hz) compared with the
integration time of ICC neurons (usually tens of milliseconds).

As for single units, it was also useful to characterize population
responses in the frequency domain, and we therefore extended these
methods to include population statistics. By averaging the RTFs of
individual neurons, we estimated the population ripple transfer function
(pRTF) for those neurons with significant STRFs. To avoid biasing the
pRTF because of systematic differences in firing strength, the RTFs of
individual neurons were equally weighted so that the cumulative area of
each was exactly 1.

For neurons that did not produce statistically significant STRFs, a
modified approach was applied. We normalized the CRH of each neuron
so that its cumulative sum was exactly 1. An average was then taken over
the entire population, thereby producing the “population” CRH
(pCRH). To facilitate comparisons, the pCRH was interpolated using the
interp2 function (spline option) in MATLAB to identical resolution as
for pRTF.

RESULTS
We studied 81 single neurons with the intent of understanding
how dynamic spectrotemporal signals are processed within the
central nucleus of the inferior colliculus. Specifically, we address
whether single neurons integrate spectrotemporal information
according to a linear integration model and whether dynamic
stimulus aspects significantly affect neuronal encoding. Our com-
plex stimuli constitute an integral part of the experimental pro-
tocol, and we fully characterize several pertinent properties of the
stimulus ensembles. By design, both test sounds have identical
average statistics and, therefore, equally sample the relevant
spectrotemporal stimulus dimensions for this study. As a first-
order test of evaluating spectrotemporal response nonlinearities,
we compute and compare the spectrotemporal receptive field for
each sound type. We also characterize higher-order response
attributes that are not directly accessible with the STRF
descriptor.

Stimulus statistics: average versus dynamic
spectrotemporal characteristics of the dynamic
moving ripple and ripple noise
To test the possibility that individual auditory neurons in the ICC
are selective for structural features prevalent in natural sounds
(Fig. 1A,B), complex broadband stimuli (Fig. 1C,D) were de-
signed that allow us to systematically identify nonlinear process-
ing capabilities of auditory neurons. These stimuli fulfill a num-

ber of theoretical and ecological constraints: first, both sounds
were designed to stringently meet a number of necessary require-
ments for use with the STRF. Second, both sounds incorporate a
number of pertinent acoustic stimulus attributes that are preva-
lent in various natural signals [e.g., spectral energy peaks, fre-
quency modulation (FM) sweeps, and temporal modulations] and
that determine important perceptual qualities (Plomp, 1970,
1983; Van Veen and Houtgast, 1983).

The DMR stimulus (Fig. 1C) is an extension of the rippled
spectrum noise used to characterize spectral and temporal re-
sponse properties in the ferret and cat auditory cortex (Schreiner
and Calhoun, 1994; Kowalski et al., 1996; Klein et al., 2000). This
sound is constructed so that its spectrotemporal envelope is
dynamic and coherently modulated (“structured”) in time and
frequency. As for speech and animal vocalizations (Fig. 1A), the
DMR has strong short-time spectrotemporal correlations. These
are determined by two independent parameters that vary ran-
domly in time: the temporal modulation rate, Fm(t), and ripple
density, !(t) (see Materials and Methods; Figs. 1C, and 2). The
temporal modulation parameter determines the number of onsets
and offsets per unit time (units of hertz) (Fig. 1C, top right). At any
given time, the DMR sound produces a sinusoidal energy excita-
tion pattern along the sensory epithelium, where the number of
peaks per octave frequency is determined by the ripple density at
that instant (Fig. 1C, top right). To efficiently excite neurons in the
range characteristic for vocalizations, these parameters continu-
ously vary at a nominal rate of 3 Hz (ripple density) (Fig. 2A) and
1.5 Hz (temporal modulation rate) (Fig. 2B) (in speech, for
instance, similar features change at a rate of )2–8 Hz; Green-
berg, 1998).

Figure 1. Synthetic sound sequence used for reverse correlation analysis
(C, D) and some corresponding natural sound counterparts (A, kitten
vocalizations; B, babbling brook). The DMR (C) is designed to mimic
spectral profiles created by formants (spectral energy peaks) and temporal
modulations in speech production and animal vocalizations. The ripple
density parameter, !( t), corresponds to the number of energy peaks
(cycles per octave) along the spectral axis at time t. The temporal
modulation rate, Fm( t), describes the repetition rate of the envelope in
hertz. The second stimulus, the RN (D), has noise-like properties that
uniformly cover the ripple dimensions. The DMR and RN are shown for
a maximum temporal modulation rate of 70 Hz, although a value of 350
Hz was used for the experiments.
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best stimulus of the neuron, this convention is flipped for the neuron and
its RTF (positive, upward sweep; negative, downward sweep).

Although this approach was successfully applied for many neurons,
other neurons did not show statistically significant STRFs; therefore, it
was impossible to estimate their RTFs directly. We therefore approxi-
mate the probability distribution function of observing a given set of
parameters given a spike at time tn, P(Fm, !!tn), by performing a spike-
triggered average with respect to the time-varying DMR parameters,
!(t) and Fm(t):

Pkl ! "
n"1

N

I#k$Fm " Fm%tn& " %k # 1&$Fm' ! I#l$! " !%tn& " %l # 1&$!',

(15)

where Pkl is the discrete version of P(Fm, !!tn), and I[!] is the identity
function. The identity function takes a value of unity whenever the
condition inside its argument is satisfied. Otherwise, it assumes a value of
0. Thus for any given bin of Pkl, this conditioned response histogram
(CRH) is incremented by (1 if and only if the instantaneous parameters,
Fm(tn) and !(tn), fall within the required intervals, k$Fm " Fm(tn) " (k
( 1)$Fm and l$! " !(tn) " (l ( 1)$!, at the time of the neuronal spike,
tn (see Fig. 5C,D). Bin width resolutions of $Fm " 15–35 Hz and $! "
0.2–0.4 cycles per octave were used. The exact position used to estimate
the parameters relative to the neuronal spike time, tn, did not alter the
resulting histogram (tested for a time lag of 0–50 msec), because
the parameters vary at a slow rate (1.5 and 3 Hz) compared with the
integration time of ICC neurons (usually tens of milliseconds).

As for single units, it was also useful to characterize population
responses in the frequency domain, and we therefore extended these
methods to include population statistics. By averaging the RTFs of
individual neurons, we estimated the population ripple transfer function
(pRTF) for those neurons with significant STRFs. To avoid biasing the
pRTF because of systematic differences in firing strength, the RTFs of
individual neurons were equally weighted so that the cumulative area of
each was exactly 1.

For neurons that did not produce statistically significant STRFs, a
modified approach was applied. We normalized the CRH of each neuron
so that its cumulative sum was exactly 1. An average was then taken over
the entire population, thereby producing the “population” CRH
(pCRH). To facilitate comparisons, the pCRH was interpolated using the
interp2 function (spline option) in MATLAB to identical resolution as
for pRTF.

RESULTS
We studied 81 single neurons with the intent of understanding
how dynamic spectrotemporal signals are processed within the
central nucleus of the inferior colliculus. Specifically, we address
whether single neurons integrate spectrotemporal information
according to a linear integration model and whether dynamic
stimulus aspects significantly affect neuronal encoding. Our com-
plex stimuli constitute an integral part of the experimental pro-
tocol, and we fully characterize several pertinent properties of the
stimulus ensembles. By design, both test sounds have identical
average statistics and, therefore, equally sample the relevant
spectrotemporal stimulus dimensions for this study. As a first-
order test of evaluating spectrotemporal response nonlinearities,
we compute and compare the spectrotemporal receptive field for
each sound type. We also characterize higher-order response
attributes that are not directly accessible with the STRF
descriptor.

Stimulus statistics: average versus dynamic
spectrotemporal characteristics of the dynamic
moving ripple and ripple noise
To test the possibility that individual auditory neurons in the ICC
are selective for structural features prevalent in natural sounds
(Fig. 1A,B), complex broadband stimuli (Fig. 1C,D) were de-
signed that allow us to systematically identify nonlinear process-
ing capabilities of auditory neurons. These stimuli fulfill a num-

ber of theoretical and ecological constraints: first, both sounds
were designed to stringently meet a number of necessary require-
ments for use with the STRF. Second, both sounds incorporate a
number of pertinent acoustic stimulus attributes that are preva-
lent in various natural signals [e.g., spectral energy peaks, fre-
quency modulation (FM) sweeps, and temporal modulations] and
that determine important perceptual qualities (Plomp, 1970,
1983; Van Veen and Houtgast, 1983).

The DMR stimulus (Fig. 1C) is an extension of the rippled
spectrum noise used to characterize spectral and temporal re-
sponse properties in the ferret and cat auditory cortex (Schreiner
and Calhoun, 1994; Kowalski et al., 1996; Klein et al., 2000). This
sound is constructed so that its spectrotemporal envelope is
dynamic and coherently modulated (“structured”) in time and
frequency. As for speech and animal vocalizations (Fig. 1A), the
DMR has strong short-time spectrotemporal correlations. These
are determined by two independent parameters that vary ran-
domly in time: the temporal modulation rate, Fm(t), and ripple
density, !(t) (see Materials and Methods; Figs. 1C, and 2). The
temporal modulation parameter determines the number of onsets
and offsets per unit time (units of hertz) (Fig. 1C, top right). At any
given time, the DMR sound produces a sinusoidal energy excita-
tion pattern along the sensory epithelium, where the number of
peaks per octave frequency is determined by the ripple density at
that instant (Fig. 1C, top right). To efficiently excite neurons in the
range characteristic for vocalizations, these parameters continu-
ously vary at a nominal rate of 3 Hz (ripple density) (Fig. 2A) and
1.5 Hz (temporal modulation rate) (Fig. 2B) (in speech, for
instance, similar features change at a rate of )2–8 Hz; Green-
berg, 1998).

Figure 1. Synthetic sound sequence used for reverse correlation analysis
(C, D) and some corresponding natural sound counterparts (A, kitten
vocalizations; B, babbling brook). The DMR (C) is designed to mimic
spectral profiles created by formants (spectral energy peaks) and temporal
modulations in speech production and animal vocalizations. The ripple
density parameter, !( t), corresponds to the number of energy peaks
(cycles per octave) along the spectral axis at time t. The temporal
modulation rate, Fm( t), describes the repetition rate of the envelope in
hertz. The second stimulus, the RN (D), has noise-like properties that
uniformly cover the ripple dimensions. The DMR and RN are shown for
a maximum temporal modulation rate of 70 Hz, although a value of 350
Hz was used for the experiments.
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best stimulus of the neuron, this convention is flipped for the neuron and
its RTF (positive, upward sweep; negative, downward sweep).

Although this approach was successfully applied for many neurons,
other neurons did not show statistically significant STRFs; therefore, it
was impossible to estimate their RTFs directly. We therefore approxi-
mate the probability distribution function of observing a given set of
parameters given a spike at time tn, P(Fm, !!tn), by performing a spike-
triggered average with respect to the time-varying DMR parameters,
!(t) and Fm(t):

Pkl ! "
n"1

N

I#k$Fm " Fm%tn& " %k # 1&$Fm' ! I#l$! " !%tn& " %l # 1&$!',

(15)

where Pkl is the discrete version of P(Fm, !!tn), and I[!] is the identity
function. The identity function takes a value of unity whenever the
condition inside its argument is satisfied. Otherwise, it assumes a value of
0. Thus for any given bin of Pkl, this conditioned response histogram
(CRH) is incremented by (1 if and only if the instantaneous parameters,
Fm(tn) and !(tn), fall within the required intervals, k$Fm " Fm(tn) " (k
( 1)$Fm and l$! " !(tn) " (l ( 1)$!, at the time of the neuronal spike,
tn (see Fig. 5C,D). Bin width resolutions of $Fm " 15–35 Hz and $! "
0.2–0.4 cycles per octave were used. The exact position used to estimate
the parameters relative to the neuronal spike time, tn, did not alter the
resulting histogram (tested for a time lag of 0–50 msec), because
the parameters vary at a slow rate (1.5 and 3 Hz) compared with the
integration time of ICC neurons (usually tens of milliseconds).

As for single units, it was also useful to characterize population
responses in the frequency domain, and we therefore extended these
methods to include population statistics. By averaging the RTFs of
individual neurons, we estimated the population ripple transfer function
(pRTF) for those neurons with significant STRFs. To avoid biasing the
pRTF because of systematic differences in firing strength, the RTFs of
individual neurons were equally weighted so that the cumulative area of
each was exactly 1.

For neurons that did not produce statistically significant STRFs, a
modified approach was applied. We normalized the CRH of each neuron
so that its cumulative sum was exactly 1. An average was then taken over
the entire population, thereby producing the “population” CRH
(pCRH). To facilitate comparisons, the pCRH was interpolated using the
interp2 function (spline option) in MATLAB to identical resolution as
for pRTF.

RESULTS
We studied 81 single neurons with the intent of understanding
how dynamic spectrotemporal signals are processed within the
central nucleus of the inferior colliculus. Specifically, we address
whether single neurons integrate spectrotemporal information
according to a linear integration model and whether dynamic
stimulus aspects significantly affect neuronal encoding. Our com-
plex stimuli constitute an integral part of the experimental pro-
tocol, and we fully characterize several pertinent properties of the
stimulus ensembles. By design, both test sounds have identical
average statistics and, therefore, equally sample the relevant
spectrotemporal stimulus dimensions for this study. As a first-
order test of evaluating spectrotemporal response nonlinearities,
we compute and compare the spectrotemporal receptive field for
each sound type. We also characterize higher-order response
attributes that are not directly accessible with the STRF
descriptor.

Stimulus statistics: average versus dynamic
spectrotemporal characteristics of the dynamic
moving ripple and ripple noise
To test the possibility that individual auditory neurons in the ICC
are selective for structural features prevalent in natural sounds
(Fig. 1A,B), complex broadband stimuli (Fig. 1C,D) were de-
signed that allow us to systematically identify nonlinear process-
ing capabilities of auditory neurons. These stimuli fulfill a num-

ber of theoretical and ecological constraints: first, both sounds
were designed to stringently meet a number of necessary require-
ments for use with the STRF. Second, both sounds incorporate a
number of pertinent acoustic stimulus attributes that are preva-
lent in various natural signals [e.g., spectral energy peaks, fre-
quency modulation (FM) sweeps, and temporal modulations] and
that determine important perceptual qualities (Plomp, 1970,
1983; Van Veen and Houtgast, 1983).

The DMR stimulus (Fig. 1C) is an extension of the rippled
spectrum noise used to characterize spectral and temporal re-
sponse properties in the ferret and cat auditory cortex (Schreiner
and Calhoun, 1994; Kowalski et al., 1996; Klein et al., 2000). This
sound is constructed so that its spectrotemporal envelope is
dynamic and coherently modulated (“structured”) in time and
frequency. As for speech and animal vocalizations (Fig. 1A), the
DMR has strong short-time spectrotemporal correlations. These
are determined by two independent parameters that vary ran-
domly in time: the temporal modulation rate, Fm(t), and ripple
density, !(t) (see Materials and Methods; Figs. 1C, and 2). The
temporal modulation parameter determines the number of onsets
and offsets per unit time (units of hertz) (Fig. 1C, top right). At any
given time, the DMR sound produces a sinusoidal energy excita-
tion pattern along the sensory epithelium, where the number of
peaks per octave frequency is determined by the ripple density at
that instant (Fig. 1C, top right). To efficiently excite neurons in the
range characteristic for vocalizations, these parameters continu-
ously vary at a nominal rate of 3 Hz (ripple density) (Fig. 2A) and
1.5 Hz (temporal modulation rate) (Fig. 2B) (in speech, for
instance, similar features change at a rate of )2–8 Hz; Green-
berg, 1998).

Figure 1. Synthetic sound sequence used for reverse correlation analysis
(C, D) and some corresponding natural sound counterparts (A, kitten
vocalizations; B, babbling brook). The DMR (C) is designed to mimic
spectral profiles created by formants (spectral energy peaks) and temporal
modulations in speech production and animal vocalizations. The ripple
density parameter, !( t), corresponds to the number of energy peaks
(cycles per octave) along the spectral axis at time t. The temporal
modulation rate, Fm( t), describes the repetition rate of the envelope in
hertz. The second stimulus, the RN (D), has noise-like properties that
uniformly cover the ripple dimensions. The DMR and RN are shown for
a maximum temporal modulation rate of 70 Hz, although a value of 350
Hz was used for the experiments.
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best stimulus of the neuron, this convention is flipped for the neuron and
its RTF (positive, upward sweep; negative, downward sweep).

Although this approach was successfully applied for many neurons,
other neurons did not show statistically significant STRFs; therefore, it
was impossible to estimate their RTFs directly. We therefore approxi-
mate the probability distribution function of observing a given set of
parameters given a spike at time tn, P(Fm, !!tn), by performing a spike-
triggered average with respect to the time-varying DMR parameters,
!(t) and Fm(t):

Pkl ! "
n"1

N

I#k$Fm " Fm%tn& " %k # 1&$Fm' ! I#l$! " !%tn& " %l # 1&$!',

(15)

where Pkl is the discrete version of P(Fm, !!tn), and I[!] is the identity
function. The identity function takes a value of unity whenever the
condition inside its argument is satisfied. Otherwise, it assumes a value of
0. Thus for any given bin of Pkl, this conditioned response histogram
(CRH) is incremented by (1 if and only if the instantaneous parameters,
Fm(tn) and !(tn), fall within the required intervals, k$Fm " Fm(tn) " (k
( 1)$Fm and l$! " !(tn) " (l ( 1)$!, at the time of the neuronal spike,
tn (see Fig. 5C,D). Bin width resolutions of $Fm " 15–35 Hz and $! "
0.2–0.4 cycles per octave were used. The exact position used to estimate
the parameters relative to the neuronal spike time, tn, did not alter the
resulting histogram (tested for a time lag of 0–50 msec), because
the parameters vary at a slow rate (1.5 and 3 Hz) compared with the
integration time of ICC neurons (usually tens of milliseconds).

As for single units, it was also useful to characterize population
responses in the frequency domain, and we therefore extended these
methods to include population statistics. By averaging the RTFs of
individual neurons, we estimated the population ripple transfer function
(pRTF) for those neurons with significant STRFs. To avoid biasing the
pRTF because of systematic differences in firing strength, the RTFs of
individual neurons were equally weighted so that the cumulative area of
each was exactly 1.

For neurons that did not produce statistically significant STRFs, a
modified approach was applied. We normalized the CRH of each neuron
so that its cumulative sum was exactly 1. An average was then taken over
the entire population, thereby producing the “population” CRH
(pCRH). To facilitate comparisons, the pCRH was interpolated using the
interp2 function (spline option) in MATLAB to identical resolution as
for pRTF.

RESULTS
We studied 81 single neurons with the intent of understanding
how dynamic spectrotemporal signals are processed within the
central nucleus of the inferior colliculus. Specifically, we address
whether single neurons integrate spectrotemporal information
according to a linear integration model and whether dynamic
stimulus aspects significantly affect neuronal encoding. Our com-
plex stimuli constitute an integral part of the experimental pro-
tocol, and we fully characterize several pertinent properties of the
stimulus ensembles. By design, both test sounds have identical
average statistics and, therefore, equally sample the relevant
spectrotemporal stimulus dimensions for this study. As a first-
order test of evaluating spectrotemporal response nonlinearities,
we compute and compare the spectrotemporal receptive field for
each sound type. We also characterize higher-order response
attributes that are not directly accessible with the STRF
descriptor.

Stimulus statistics: average versus dynamic
spectrotemporal characteristics of the dynamic
moving ripple and ripple noise
To test the possibility that individual auditory neurons in the ICC
are selective for structural features prevalent in natural sounds
(Fig. 1A,B), complex broadband stimuli (Fig. 1C,D) were de-
signed that allow us to systematically identify nonlinear process-
ing capabilities of auditory neurons. These stimuli fulfill a num-

ber of theoretical and ecological constraints: first, both sounds
were designed to stringently meet a number of necessary require-
ments for use with the STRF. Second, both sounds incorporate a
number of pertinent acoustic stimulus attributes that are preva-
lent in various natural signals [e.g., spectral energy peaks, fre-
quency modulation (FM) sweeps, and temporal modulations] and
that determine important perceptual qualities (Plomp, 1970,
1983; Van Veen and Houtgast, 1983).

The DMR stimulus (Fig. 1C) is an extension of the rippled
spectrum noise used to characterize spectral and temporal re-
sponse properties in the ferret and cat auditory cortex (Schreiner
and Calhoun, 1994; Kowalski et al., 1996; Klein et al., 2000). This
sound is constructed so that its spectrotemporal envelope is
dynamic and coherently modulated (“structured”) in time and
frequency. As for speech and animal vocalizations (Fig. 1A), the
DMR has strong short-time spectrotemporal correlations. These
are determined by two independent parameters that vary ran-
domly in time: the temporal modulation rate, Fm(t), and ripple
density, !(t) (see Materials and Methods; Figs. 1C, and 2). The
temporal modulation parameter determines the number of onsets
and offsets per unit time (units of hertz) (Fig. 1C, top right). At any
given time, the DMR sound produces a sinusoidal energy excita-
tion pattern along the sensory epithelium, where the number of
peaks per octave frequency is determined by the ripple density at
that instant (Fig. 1C, top right). To efficiently excite neurons in the
range characteristic for vocalizations, these parameters continu-
ously vary at a nominal rate of 3 Hz (ripple density) (Fig. 2A) and
1.5 Hz (temporal modulation rate) (Fig. 2B) (in speech, for
instance, similar features change at a rate of )2–8 Hz; Green-
berg, 1998).

Figure 1. Synthetic sound sequence used for reverse correlation analysis
(C, D) and some corresponding natural sound counterparts (A, kitten
vocalizations; B, babbling brook). The DMR (C) is designed to mimic
spectral profiles created by formants (spectral energy peaks) and temporal
modulations in speech production and animal vocalizations. The ripple
density parameter, !( t), corresponds to the number of energy peaks
(cycles per octave) along the spectral axis at time t. The temporal
modulation rate, Fm( t), describes the repetition rate of the envelope in
hertz. The second stimulus, the RN (D), has noise-like properties that
uniformly cover the ripple dimensions. The DMR and RN are shown for
a maximum temporal modulation rate of 70 Hz, although a value of 350
Hz was used for the experiments.

4118 J. Neurosci., May 15, 2002, 22(10):4114–4131 Escabı́ and Schreiner • Spectrotemporal Sound Analysis in the Auditory Midbrain
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STRF estimation from gerbil IC neurons: 
Mutual information analysis

Non-linear methods (CbRF, GLM, MID) show highest 
information-transfer rates for non-Gaussian stimuli

Meyer, Diepenbrock, Happel, Ohl, Anemüller (2014)
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Bach et al. Matching Pursuit Analysis of STRFs

FIGURE 1 | The full Gabor filter bank. Each square has a width of 100ms

and a height of 21 Bark channels.

feature dimensions. Figure 2 displays the amount of variance in
the data cumulatively explained by the PCA components. STRF
features have the steepest PCA curves, i.e., their variance can
be explained with the lowest number of dimensions. This arises
from the strong similarity between some STRFs which causes
them to produce highly correlated features. By construction,
the Gabor filter set consists of highly non-redundant filters.
The filter shift along frequency (see above) as well as some
spectro-temporal overlap between the filters causes some feature
channels to be (weakly) correlated. Table 1 shows the number
of dimensions needed to account for 90 and 99% of the data.
The high numbers for Gabors and the low numbers for STRFs
illustrates the high degree of redundancy in STRFs compared to
Gabor filters.

In the experiments section, some results are given in terms
of accuracy against relative amount of variance explained by
the PCA in order to compare the different feature sets. We use
variance as an (arguably imperfect) estimator of information
content, assuming Gaussian distributions throughout.

Matching Pursuit Analysis of STRFs with
Gabor Atoms
As described above, Gabor filters have been proposed as models
for STRFs. Explicitly describing the STRFs found in the present
work in terms of the Gabor filter bank underscores this choice.
This was done by implementing a two-dimensional matching
pursuit (MP) algorithm (Mallat and Zhang, 1993). MP is a greedy
reconstruction algorithm of signals by a dictionary of given
“atoms.” In our case, the target “signals” were the STRFs, and

FIGURE 2 | PCA results. Cumulative variance explained by the PCA

components plotted against the number of feature dimensions used. Since

STRF, Gabor, and estimated Gabor feature spaces have different

dimensionalities, values along the abscissa are relative. The abscissa is

log-scaled to better visualize the interesting region of low dimensionality.

TABLE 1 | PCA results.

Variance Explained Feature set Dimensions

90% STRF 8 (1%)

90% Gabor 26 (7%)

99% STRF 30 (6%)

99% Gabor 74 (21%)

Results of the principle component analysis: number of features needed to account for

90 and 99% of the variance. The second column contains the feature sets. “STRF”:

estimated neural responses; “Gabor”: Gabor filter bank (Figure 1). The third column gives

the number of dimensions; percentages relative to the dimensionality of full feature set are

given in parentheses.

the atoms were defined by the elements of the Gabor filter bank.
MP computes the overlap γ between signal and each atom in
the dictionary by correlation. At each iteration step i, γijk was
defined as the maximal correlation coefficient, computed from
two-dimensional correlation between the j-th Gabor atom and
the k-th STRF. Let CC denote two-dimensional cross-correlation,
g the Gabor function as defined above, and S the STRF:

γijk = max{CC(gj, Sk)}
∣

∣

iter=i (6)

γ was computed for all Gabor atoms, the projection of the
atom with the largest correlation coefficient was subtracted from
the signal, and the process was repeated on the residual signal.
The correlation coefficient θ between original and reconstructed
STRFs increases monotonically through MP iterations. For
most tasks, we chose θ = 0.8 as termination criterion. As
described above, the Gabors are complex-valued filters; for MP,
we used the real (symmetric) and imaginary (antisymmetric)
parts as independent, real-valued Gabor atoms. Re-synthesized
STRFs were in turn used for feature extraction and subsequent
classification. The effect of the MP re-synthesis on these
features was two-fold: first, the filter shapes are approximated
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Bach et al. Matching Pursuit Analysis of STRFs

FIGURE 5 | Typical shapes of STRFs found in this study. The two examples on the left depict STRFs corresponding to temporal onset detectors of varying

spectral bandwidths. The third panel has a similar detector characteristics for broadband offsets. The fourth pattern represents a detector for spectral modulations,

while the 5th and 6th panels show more complex transient spectro-temporal behavior.

for application of STRF-based and Gabor filters as a front-
end for sound classification. This experiment investigates how
the STRF-based features perform compared to Gabor filter-
based features and to (purely spectral) Mel-frequency cepstral
coefficient (MFCC) features in quiet and in noisy conditions.

A: STRF Estimation and Analysis of
Spectro-Temporal Properties
Neural data from several areas in the zebra finch (Taeniopygia
guttata) auditory system was used to compute auditory STRFs,
cf. Gill et al. (2006) for a detailed description of the experimental
setting and data. Single-unit recordings were taken from
anesthetized zebra finches. The animals listened to stimuli
consisting of conspecific songs and modulated ripple patterns
that had the same modulation spectrum as conspecific bird
song. Recordings were performed in areas Caudal Mesopallium,
Primary Forebrain (from sub-areas L1, L2a, L2b, L3, and L),
Nucleus Ovoidalis, and Mesencephalicus lateral dorsalis. Stimuli
were typically repeated 10 times.

Typical shapes of auditory STRFs are displayed in Figure 5.
These correspond to narrowband and broadband onset/offset
detectors, frequency modulation detectors, transient detectors,
and complex spectro-temporal patterns. Most STRFs observed
can be classified as one of the first three groups.

Based on these findings, we used Gabor filters as model
patterns for auditory STRFs by approximating the zebra
finch STRFs with Gabor basis vectors using two-dimen-
sional matching pursuit (MP). In a first step, we determine
the number of Gabor atoms needed to reproduce an STRF
pattern with sufficient reconstruction accuracy. Figure 6 shows
a histogram of the results: More than half of the 52
STRFs need only 1 or 2 Gabor atoms. The single most
complex pattern is represented by a superposition of 8 Gabor
atoms. Thus, STRFs can be well approximated as sparse
combinations of Gabor basis functions, with a comparably low
dimensionality of each STRF pattern when decomposed into
Gabors.

In a second step, we analyze the particular Gabor shapes that
are used in reconstructing the STRF in terms of their spectral,
temporal and joint spectro-temporal extent. Figure 7 shows the

FIGURE 6 | Dimensionality analysis of STRF patterns. Number of Gabor

atoms needed to reconstruct STRFs with θ = 0.8 in matching pursuit.

FIGURE 7 | Matching Pursuit: Modulation characteristics. Importance η

of the different Gabor atoms when using matching pursuit (θ = 0.8), plotted by

modulation frequencies (see text for details).

dominantmodulation frequencies contained in the reconstructed
STRFs. These are discretely spaced because each Gabor atom
corresponds to one specific spectro-temporal modulation. The

Frontiers in Systems Neuroscience | www.frontiersin.org 6 February 2017 | Volume 11 | Article 4

Matching pursuit (MP) analysis of spectral, temporal 
and spectra-temporal characteristics

Gabor basis functions 
as MP-atoms 

Spectro-temporal distribution 
of MP-selected atoms

Bach, Kollmeier, Anemüller (2017)

Data from Gill, Zhang, Woolley, Fremouw, Theunissen (2006) + ridge regression



Summary STRF estimation

STRF estimation algorithms need to go beyond 
second order statistics (e.g., GLM, MID, CbRF) 

Data show that estimation algorithm influences 
obtained STRF pattern qualitatively 

FM-bank stimuli to mimic speech-like t-f-transients 

Joint spectra-temporal STRFs appear to be rare, 
even on FM-bank stimuli
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Adaptive STRF estimation model 



STRF variability across time: 
Gerbil inferior colliculus
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STRF variability across time: 
Gerbil inferior colliculus
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STRF variability across time: 
Gerbil inferior colliculus
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STRF variability across time: 
Gerbil auditory cortex
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STRF variability across time: 
Gerbil auditory cortex
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STRF variability across time: 
Gerbil auditory cortex
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STRF variability across time: 
3 units, moderate to strong fluctuation



STRF variability across time: 
Summary statistics
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Likelihood evidence of 
static vs. adaptive STRF model
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Cluster analysis: 
Do the neurons “revisit” discrete states?

A B

C

Cluster analysis of two A1 units



Summary dynamic STRF model 

- dynamic variability in STRF seems unrelated to spike 
count 

- STRF variability higher in A1 than IC (shown 
quantitatively) 

- quality of STRF variability: 
- parts of STRF change dynamically 
- even spectral BF changes in some cases 

- dynamic STRF model supported by higher likelihood 
than static model 

- Origin of fluctuations unclear. Randomly on timescale 
~10s? Linked to stimuli?


