Empirical estimates of STRFs are influenced by higher-order stimulus statistics

Jörn Anemüller

+Arne Meyer, +Jörg-Hendrik Bach +Jan-Philipp Diepenbrock, +Frank Ohl

Computational Audition Group Medical Physics Section and Cluster of Excellence Hearing4all Carl von Ossietzky University Oldenburg, Germany

Listening in Acoustic Scenes

Listening in Acoustic Scenes

Listening in Acoustic Sce

Listening in Acoustic

Historical approaches to neuron characterization

Frequency (kHz)

Historical approaches to neuron characterization

Hubel and Wiesel's visual receptive fields

Hubel and Wiesel's visual receptive fields

Statistical approach of neural characterization

Sensory stimulus ${\boldsymbol{\mathsf{s}}}$

• Goal: infer response properties from stimulus and evoked response

Simple cell linear receptive field model

Lateral inhibition

(Kandel et al., 2000)

Stimuli: White noise

deCharms, Blake, Merzenich (1998)

Stimulus = Point in feature space

Eggermont, Johannesma, Aertsen (1983) Schwartz, Pillow, Rust, Simoncelli (2006)

Spike triggered average (STA)

Eggermont, Johannesma, Aertsen (1983) Schwartz, Pillow, Rust, Simoncelli (2006)

Response characteristics in A1

deCharms, Blake, Merzenich (1998)

Stimuli: Dynamic moving ripples (DMR) and ripple noise

Escabi, Schreiner (2002)

STRF estimation with STA

Escabi, Schreiner (2002)

Response characteristics in IC

Escabi, Schreiner (2002)

STRF for natural stimuli

Theunissen, Sen, Doupe (2000)

STA not optimal for correlated stimuli

Theunissen, Sen, Doupe (2000)

Correcting for stimulus correlations

Normalized reverse correlation (NRC)

$$r = Sh + e$$

$$h_{\text{ideal}} = \frac{1}{T} C_{ss}^{-1} S^T r \qquad C_{ss} = S^T S / T$$

 Ridge Regression
Regularize C_{SS} with additive diagonal term (Often done on spike rate)

> Machens, Wehr, Zador (2004); David, Mesgarani, Shamma (2007); Park, Pillow (2011)

Linear-nonlinear Poission (LNP) model

Chichilniski, 2001; Schwartz, Pillow, Rust, Simoncelli (2006)

Linear-nonlinear Poission (LNP) model

Chichilniski, 2001; Schwartz, Pillow, Rust, Simoncelli (2006)

LNP estimation: generalized linear models (GLM) and maximally informative dimensions (MID)

GLM: maximize likelihood based on prior distribution

MID: search for directions that preserve stimulus information

Sharpee, Rust, Bialek (2003), Sharpee (2013)

Subspace approach: Spike-triggered covariance (STC)

Schwartz, Pillow, Rust, Simoncelli (2006)

Subspace approach: Spike-triggered covariance (STC)

Schwartz, Pillow, Rust, Simoncelli (2006)

From sounds to spikes

- Separation into linear part (= receptive field or kernel k) and static memoryless nonlinearity (Chichilnisky 2001)
- Once we know k estimation of the nonlinearity is quite simple!
- White noise approach: Estimation of linear part using (normalized) reverse correlation method (Bussgang Theorem 1952)
- BUT: need Gaussian (symmetric) stimuli!

Stimuli: Bank of frequency-modulated tones (FM-Bank)

Classification-based receptive field (CbRF) estimation Training a classifier to predict spike trains

Classification-based receptive field estimation (CbRF)

Spectro-temporal receptive field (STRF) estimation

Meyer, Diepenbrock, Happel, Ohl, Anemüller (2009, 2014)

STRF estimation from gerbil neurons

STRF estimation from gerbil neurons

Ripple

Ripple

STRF estimation with speech stimul input

Classification-based method best matches ground-truth

STRF estimation from gerbil IC neurons

STRF estimation from gerbil IC neurons: Mutual information analysis

Non-linear methods (CbRF, GLM, MID) show highest information-transfer rates for non-Gaussian stimuli

STRF estimation from gerbil IC neurons: speed of convergence

Classification-based method converges quickly and with relatively small estimation variance Meyer, Diepenbrock, Happel, Ohl, Anemüller (2014) Matching pursuit (MP) analysis of spectral, temporal and spectra-temporal characteristics

Data from Gill, Zhang, Woolley, Fremouw, Theunissen (2006) + ridge regression

Bach, Kollmeier, Anemüller (2017)

STRF estimation algorithms need to go beyond second order statistics (e.g., GLM, MID, CbRF)

Data show that estimation algorithm influences obtained STRF pattern *qualitatively*

FM-bank stimuli to mimic speech-like t-f-transients

Joint spectra-temporal STRFs appear to be rare, even on FM-bank stimuli

Beyond the linear time-invariant STRF model

Beyond the linear time-invariant STRF model

Beyond the linear time-invariant STRF model

Beyond the linear time-invariant STRF model

Adaptive STRF estimation model

Adaptive STRF estimation model

Adaptive STRF estimation model

STRF variability across time: Gerbil inferior colliculus

STRF variability across time: Gerbil inferior colliculus

STRF variability across time: Gerbil inferior colliculus

STRF variability across time: Gerbil auditory cortex

STRF variability across time: Gerbil auditory cortex

STRF variability across time: Gerbil auditory cortex

STRF variability across time: 3 units, moderate to strong fluctuation

STRF variability across time: Summary statistics

STRF variability across time: Summary statistics

Likelihood evidence of static vs. adaptive STRF model

IC

Likelihood evidence of static vs. adaptive STRF model

Cluster analysis: Do the neurons "revisit" discrete states?

Cluster analysis of two A1 units

Summary dynamic STRF model

- dynamic variability in STRF seems unrelated to spike count
- STRF variability higher in A1 than IC (shown quantitatively)
- quality of STRF variability:
 - parts of STRF change dynamically
 - even spectral BF changes in some cases
- dynamic STRF model supported by higher likelihood than static model
- Origin of fluctuations unclear. Randomly on timescale ~10s? Linked to stimuli?