Sound source localization – from low-level sensor signals to mid-level representations, and back

Jörn Anemüller, Niko Moritz, Hendrik Kayser

Computational Audition Group

Medical Physics Section and Cluster of Excellence Hearing4all

Carl von Ossietzky Universität Oldenburg

"Hard-wired" and "learned" acoustic features for sound localization

Which features permit robust localization?

partly "hard-wired"

mechanisms evolved over long time
partly "long-time learned"

stimulus statistics important
partly "adapted on-the-fly"

new environment, keep learned info

"Stop! Stop! What's that sound? What's that sound?"

"Hard-wired" and "learned" acoustic features for sound localization

Which features permit robust localization?

partly "hard-wired"

mechanisms evolved over long time

partly "long-time learned"

stimulus statistics important

partly "adapted on-the-fly"

new environment, keep learned info

"Stop! Stop! What's that sound? What's that sound?"

System overview: Localization and signal enhancement

Goal: Spatial source localization and enhancement with robust performance and fast computation

System overview: Localization and signal enhancement

Goal: Spatial source localization and enhancement with robust performance and fast computation

System overview: Localization and signal enhancement

Goal: Spatial source localization and enhancement with robust performance and fast computation

Hard-coded features

Generalised cross-correlation

Supervised learning (long-term)

Bank of SVMs

Sparse representation

Probabilistic localisation map

Acoustic parameter (re-)estimation (fast adaptation)

Anemüller, Kayser (2017)

Microphone Geometry

Microphone Geometry

- 6-channel hearing aid microphone array:
 - 3-channels on each ear
- Mounted on a head an torso simulator

Anechoic Environment

Azimuth: 0°, 5°, ..., 180°

Elevation: -10°, 0°, 10°, 20°,

Distance: 0.8m, 3m

Kayser, Ewert, Anemüller, Rohdenburg, Hohmann, Kollmeier (2009)

Echoic Environments

Office

Azimuth: 0°, 5°, ..., 180°

Distance: 1m

Several settings indoors and outdoors

Office, courtyard, cafeteria

Hard-coded features

Generalised cross-correlation

GCC-PHAT correlation features

Generalized cross-correlation with phase-transform

"Hard-wired"

Only phase-differences accounted for

Weighting towards higher frequency (low energy) spectral bands

$$\rho_{ij}(t,\tau) = \mathcal{IFFT} \left\{ \frac{X_i(t,f)}{|X_i(t,f)|} \frac{X_j^*(t,f)}{|X_j(t,f)|} \right\}$$

GCC-PHAT correlation features

Generalized cross-correlation with phase-transform

"Hard-wired"

Only phase-differences accounted for

Weighting towards higher frequency (low energy) spectral bands

$$\rho_{ij}(t,\tau) = \mathcal{IFFT} \left\{ \frac{X_i(t,f)}{|X_i(t,f)|} \frac{X_j^*(t,f)}{|X_j(t,f)|} \right\}$$

Supervised learning (long-term)

Bank of SVMs

Sparse representation

Probabilistic localisation map

Learning-based approach to acoustic source localisation

Train one SVM per possible source position

"long-term learned"

Learning-based approach to acoustic source localisation

Train one SVM per possible source position

"long-term learned"

SVM Class: $d(\zeta_r) = \langle \boldsymbol{w}(\zeta_r), \boldsymbol{\phi} \rangle + b(\zeta_r)$

GLM prob.: $\hat{P}_{source}(\zeta_r) = \hat{P}(d(\zeta_r)) = \frac{1}{1 + e^{-(\beta_1(\zeta_r) + \beta_2(\zeta_r)d(\zeta_r))}}$

Max. direction: $\hat{\zeta} = \operatorname*{argmax}_{\zeta_r} \left[\hat{P}_{source}(\zeta_r) \right]$

Probabilistic spatial map with HRTF setup

Probabilistic spatial localization map

A-posteriori speech probabilities
Highly kurtotic sparse representation

Results: Localization

	Training data	Test data
Environment	anechoic	office, courtyard, cafeteria
Reverberation	< 50 ms	300 ms, 900 ms, 1300 ms
# Sources	1	2, 3 ,4
Noise	speech-shaped, diffuse	on-site recording
SNR (dB)	{-10, 0, 10, 20 }	-10, 0, 10, 20

Results: Localization

	Training data	Test data
Environment	anechoic	office, courtyard, cafeteria
Reverberation	< 50 ms	300 ms, 900 ms, 1300 ms
# Sources	1	2, 3,4
Noise	speech-shaped, diffuse	on-site recording
SNR (dB)	{-10, 0, 10, 20 }	-10, 0, 10, 20

[Kayer, Anemüller, IWAENC 2014]

Acoustic parameter (re-)estimation (fast adaptation)

Estimation of source covariance matrix

Probabilistic spatial localization map

Probabilistic spatial localization map

1. Decide for target source direction

Probabilistic spatial localization map

- 1. Decide for target source direction
- 2. Compute sourceprobability weighted microphone covariance matrix

$$[\mathbf{\Phi}(k|\theta)]_{ij} \equiv \frac{1}{N} \sum_{n=1}^{N} p^{S}(\theta, n) c_{ij}(n, k)^{-1} x_{i}^{*}(n, k) x_{j}(n, k)$$

Probabilistic spatial localization map

- 1. Decide for target source direction
- 2. Compute sourceprobability weighted microphone covariance matrix

$$[\mathbf{\Phi}(k|\theta)]_{ij} \equiv \frac{1}{N} \sum_{i=1}^{N} p^{S}(\theta, n) c_{ij}(n, k)^{-1} x_{i}^{*}(n, k) x_{j}(n, k)$$

3. Normalization to unit gain, i.e., only phase retained

$$c_{ij}(n,k) = |x_i(n,k)| |x_j(n,k)|$$
$$d_j(k|\theta) = [\mathbf{\Phi}(k|\theta)]_{i^*j} / |[\mathbf{\Phi}(k|\theta)]_{i^*j}|$$

Probabilistic spatial localization map

Probabilistic spatial localization map

Probabilistic spatial localization map

1. Estimated noise probability time-course

Probabilistic spatial localization map

1. Estimated noise probability time-course

$$p^{N}(\theta, n) = \begin{cases} \gamma (1 - p^{S}(\theta, n)), & p^{S}(\theta, n) < p_{0} \\ 0, & p^{S}(\theta, n) \ge p_{0} \end{cases}$$

2. Compute noiseprobability weighted microphone covariance matrix

$$[\mathbf{R}(k|\theta)]_{ij} = \frac{1}{N} \sum_{n=1}^{N} p^{N}(\theta, n) x_{i}^{*}(n, k) x_{j}(n, k)$$

Signal enhancement with MVDR

Use estimated source and noise covariances to form MVDR projection vector

$$\mathbf{w}(k|\theta) = \frac{\mathbf{R}^{-1}(k|\theta) \, \mathbf{d}(k|\theta)}{\mathbf{d}^{\mathsf{H}}(k|\theta) \, \mathbf{R}^{-1}(k|\theta) \, \mathbf{d}(k|\theta)}$$

Mary Mary horsenmymm mynn mynn MANARAM. mymm mymm Mary Mary mymm mynn mymm Mary Mary

Evaluation: Data

6-channel bilateral hearing aid setup

Head-related impulse responses for anechoic and reverberant (office) environment (database [Kayser et al., 2009])

Target speech: **TIMIT** utterances

Interfering speaker: TIMIT utterances, different spatial position

SIR: -10dB, 0dB, 10dB and ∞dB

Noise: head-related isotropic noise field, speech shaped spectrum

SNR: -10dB, 0dB, 10dB and ∞dB

Target and interferer positions:

6832 position combinations in **anechoic** environment **3472** in **office** environment

Evaluation: Acoustic parameter models

Comparison of:

proposed **probabilistic estimation** of speech and noise covariance with

free-field target model and isotropic noise model

	Speech covariance	Noise covariance
PrS+PrN	prob. model	prob. model
FfS+PrN	free-field HRTF model	prob. model
PrS+IsoN	prob. model	isotr. model
FfS+IsoN	free-field HRTF model	isotr. model

Evaluation: Acoustic parameter models

Comparison of:

proposed **probabilistic estimation** of speech and noise covariance with

free-field target model and isotropic noise model

	Speech covariance	Noise covariance
PrS+PrN	prob. model	prob. model
FfS+PrN	free-field HRTF model	prob. model
PrS+IsoN	prob. model	isotr. model
FfS+IsoN	free-field HRTF model	isotr. model

Anechoic environment							
Input	Input SINR improvement (dB)						
SIR	SNR	PrS	FfS	PrS	FfS		
(dB)	(dB)	+PrN	+PrN	+IsoN	+IsoN		
-10	-10	3.0	9.6	-1.0	6.9		
-10	0	7.7	15.1	-1.5	8.9		
-10	10	12.9	20.8	-0.8	10.0		
-10	∞	18.6	26.3	0.8	10.2		
0	-10	1.7	7.8	1.4	6.1		
0	0	2.6	9.1	2.2	6.9		
0	10	7.0	13.4	2.6	8.8		
0	∞	16.3	20.8	3.7	10.2		
10	-10	1.7	7.6	1.7	6.1		
10	0	1.5	7.3	3.5	6.2		
10	10	2.7	8.1	4.6	6.9		
10	∞	12.9	14.7	5.8	10.2		
∞	-10	1.9	7.6	1.7	6.1		
∞	0	0.9	7.1	3.5	6.1		
∞	10	2.2	6.3	4.6	6.1		

Anechoic environment								
Input	Input SINR improvement (dB)							
SIR	SNR	PrS	FfS	PrS	FfS			
(dB)	(dB)	+PrN	+PrN	+IsoN	+IsoN			
-10	-10	3.0	9.6	-1.0	6.9			
-10	0	7.7	15.1	-1.5	8.9			
-10	10	12.9	20.8	-0.8	10.0			
-10	∞	18.6	26.3	0.8	10.2			
0	-10	1.7	7.8	1.4	6.1			
0	0	2.6	9.1	2.2	6.9			
0	10	7.0	13.4	2.6	8.8			
0	∞	16.3	20.8	3.7	10.2			
10	-10	1.7	7.6	1.7	6.1			
10	0	1.5	7.3	3.5	6.2			
10	10	2.7	8.1	4.6	6.9			
10	∞	12.9	14.7	5.8	10.2			
∞	-10	1.9	7.6	1.7	6.1			
∞	0	0.9	7.1	3.5	6.1			
∞	10	2.2	6.3	4.6	6.1			

Prob. source+ prob. noise model: correct, but general

	Anechoic environment							
Input	Input SINR improvement (dB)							
SIR	SNR	PrS	FfS	PrS	FfS			
(dB)	(dB)	+PrN	+Pri	+IsoN	+IsoN			
-10	-10	3.0	9.6	-1.0	6.9			
-10	0	7.7	15.1	-1.5	8.9			
-10	10	12.9	20.8	-0.8	10.0			
-10	∞	18.6	26.3	0.8	10.2			
0	-10	1.7	7.8	1.4	6.1			
0	0	2.6	9.1	2.2	6.9			
0	10	7.0	13.4	2.6	8.8			
0	∞	16.3	20.8	3.7	10.2			
10	-10	1.7	7.6	1.7	6.1			
10	0	1.5	7.3	3.5	6.2			
10	10	2.7	8.1	4.6	6.9			
10	∞	12.9	14.7	5.8	10.2			
∞	-10	1.9	7.6	1.7	6.1			
∞	0	0.9	7.1	3.5	6.1			
∞	10	2.2	6.3	4.6	6.1			

Prob. source+ prob. noise model: correct, but general

Free-field source + prob. noise model:

correct, with Ff constraint

Anechoic environment							
Input	Input SINR improvement (dB)						
SIR	SNR	PrS	FfS	PrS	FfS		
(dB)	(dB)	+PrN	+PrN	+Ison	+IsoN		
-10	-10	3.0	9.6	-1.0	6.9		
-10	0	7.7	15.1	-1.5	8.9		
-10	10	12.9	20.8	-0.8	10.0		
-10	∞	18.6	26.3	0.8	10.2		
0	-10	1.7	7.8	1.4	6.1		
0	0	2.6	9.1	2.2	6.9		
0	10	7.0	13.4	2.6	8.8		
0	∞	16.3	20.8	3.7	10.2		
10	-10	1.7	7.6	1.7	6.1		
10	0	1.5	7.3	3.5	6.2		
10	10	2.7	8.1	4.6	6.9		
10	∞	12.9	14.7	5.8	10.2		
∞	-10	1.9	7.6	1.7	6.1		
∞	0	0.9	7.1	3.5	6.1		
∞	10	2.2	6.3	4.6	6.1		

Prob. source+ prob. noise model: correct, but general

Free-field source + prob. noise model: correct, with Ff constraint

Prob. source + isotropic noise model: correct at high SIR, but general

	Anechoic environment						
Input	Input SINR improvement (dB)						
SIR	SNR	PrS	FfS	PrS	FfS		
(dB)	(dB)	+PrN	+PrN	+IsoN	+IsoN		
-10	-10	3.0	9.6	-1.0	6.9		
-10	0	7.7	15.1	-1.5	8.9		
-10	10	12.9	20.8	-0.8	10.0		
-10	∞	18.6	26.3	0.8	10.2		
0	-10	1.7	7.8	1.4	6.1		
0	0	2.6	9.1	2.2	6.9		
0	10	7.0	13.4	2.6	8.8		
0	∞	16.3	20.8	3.7	10.2		
10	-10	1.7	7.6	1.7	6.1		
10	0	1.5	7.3	3.5	6.2		
10	10	2.7	8.1	4.6	6.9		
10	∞	12.9	14.7	5.8	10.2		
∞	-10	1.9	7.6	1.7	6.1		
∞	0	0.9	7.1	3.5	6.1		
∞	10	2.2	6.3	4.6	6.1		

Prob. source+ prob. noise model: correct, but general

Free-field source + prob. noise model: correct, with Ff constraint

Prob. source + isotropic noise model: correct at high SIR, but general

Free-field source + isotropic noise model: correct at high SIR, with Ff constraint

(nb: training was anechoic)

	Office environment						
Input	Input SINR improvement (dB)						
SIR	SNR	PrS	FfS	PrS	FfS		
(dB)	(dB)	+PrN	+PrN	+IsoN	+IsoN		
-10	-10	6.0	4.5	2.5	3.7		
-10	0	8.2	7.4	1.4	3.4		
-10	10	10.2	9.8	1.6	3.3		
-10	∞	10.9	10.6	2.1	3.2		
0	-10	5.6	2.7	5.0	4.3		
0	0	3.8	2.0	4.0	3.7		
0	10	5.0	3.6	4.2	3.4		
0	∞	6.4	5.4	4.3	3.3		
10	-10	6.1	2.5	5.3	4.4		
10	0	3.1	-0.0	5.2	4.3		
10	10	1.0	-1.1	5.6	3.8		
10	∞	1.4	0.1	6.1	3.2		
∞	-10	6.3	2.6	5.1	4.5		
∞	0	4.1	0.1	5.2	4.6		
∞	10	0.7	-2.5	6.4	4.5		

(nb: training was anechoic)

	Office environment						
Input	Input SINR improvement (dB)						
SIR (dB)	SNR (dB)	PrS +PrN	FfS +PrN	PrS +IsoN	FfS +IsoN		
-10 -10 -10 -10 -10 0 0	-10 0 10 \infty -10 0 10	6.0 8.2 10.2 10.9 5.6 3.8 5.0	4.5 7.4 9.8 10.6	2.5 1.4 1.6 2.1 5.0 4.0 4.2	3.7 3.4 3.3 3.2 4.3 3.7 3.4		
0 10 10 10 ∞ ∞	∞ -10 0 10 ∞ -10 0 110	6.4 6.1 3.1 1.0 1.4 6.3 4.1 0.7	5.4 2.5 -0.0 -1.1 0.1 2.6 0.1 -2.5	4.3 5.3 5.2 5.6 6.1 5.1 5.2 6.4	3.3 4.4 4.3 3.8 3.2 4.5 4.6 4.5		

Prob. source+ prob. noise model: correct

(nb: training was anechoic)

	Office environment						
Input	Input SINR improvement (dB)						
SIR	SNR	PrS		FfS	PrS	FfS	
(dB)	(dB)	+PrN	+	Pri	+IsoN	+IsoN	
-10	-10	6.0		4.5	2.5	3.7	
-10	0	8.2		7.4	1.4	3.4	
-10	10	10.2	1	9.8	1.6	3.3	
-10	∞	10.9		10.6	2.1	3.2	
0	-10	5.6	ı	2.7	5.0	4.3	
0	0	3.8	ı	2.0	4.0	3.7	
0	10	5.0	ı	3.6	4.2	3.4	
0	∞	6.4	ı	5.4	4.3	3.3	
10	-10	6.1	ı	2.5	5.3	4.4	
10	0	3.1	ı	-0.0	5.2	4.3	
10	10	1.0	ı	-1.1	5.6	3.8	
10	∞	1.4	١	0.1	6.1	3.2	
∞	-10	6.3	١	2.6	5.1	4.5	
∞	0	4.1		0.1	5.2	4.6	
∞	10	0.7		-2.5	6.4	4.5	

Prob. source+ prob. noise model: correct

Free-field source + prob. noise model: incorrect, with Ff constraint

(nb: training was anechoic)

Office environment							
Input	Input SINR improvement (dB)						
SIR	SNR	PrS	FfS	PrS	FfS		
(dB)	(dB)	+PrN	+PrN	+IsoN	+IsoN		
-10	-10	6.0	4.5	2.5	3.7		
-10	0	8.2	7.4	1.4	3.4		
-10	10	10.2	9.8	1.6	3.3		
-10	∞	10.9	10.6	2.1	3.2		
0	-10	5.6	2.7	5.0	4.3		
0	0	3.8	2.0	4.0	3.7		
0	10	5.0	3.6	4.2	3.4		
0	∞	6.4	5.4	4.3	3.3		
10	-10	6.1	2.5	5.3	4.4		
10	0	3.1	-0.0	5.2	4.3		
10	10	1.0	-1.1	5.6	3.8		
10	∞	1.4	0.1	6.1	3.2		
∞	-10	6.3	2.6	5.1	4.5		
∞	0	4.1	0.1	5.2	4.6		
∞	10	0.7	-2.5	6.4	4.5		
				_			

Prob. source+ prob. noise model: correct

Free-field source + prob. noise model: incorrect, with Ff constraint

Prob. source + isotropic noise model: approx. correct at high SIR, but general

(nb: training was anechoic)

Office environment								
Input	Input SINR improvement (dB)							
SIR	SNR	PrS	FfS	PrS	FfS			
(dB)	(dB)	+PrN	+PrN	+IsoN	+IsoN			
-10	-10	6.0	4.5	2.5	3.7			
-10	0	8.2	7.4	1.4	3.4			
-10	10	10.2	9.8	1.6	3.3			
-10	∞	10.9	10.6	2.1	3.2			
0	-10	5.6	2.7	5.0	4.3			
0	0	3.8	2.0	4.0	3.7			
0	10	5.0	3.6	4.2	3.4			
0	∞	6.4	5.4	4.3	3.3			
10	-10	6.1	2.5	5.3	4.4			
10	0	3.1	-0.0	5.2	4.3			
10	10	1.0	-1.1	5.6	3.8			
10	∞	1.4	0.1	6.1	3.2			
∞	-10	6.3	2.6	5.1	4.5			
∞	0	4.1	0.1	5.2	4.6			
∞	10	0.7	-2.5	6.4	4.5			

Prob. source+ prob. noise model: correct

Free-field source + prob. noise model: incorrect, with Ff constraint

Prob. source + isotropic noise model: approx. correct at high SIR, but general

Free-field source + isotropic noise model: incorrect, highly constrained

Six-channel tablet recordings

3-D localization (x, y + depth)

8 speakers, noisy environments

http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/overview.html

Six-channel tablet recordings

3-D localization (x, y + depth)

8 speakers, noisy environments

http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/overview.html

ASR system

Temporal modulation patterns as acoustic input features for ASR

7-layer hybrid DNN, 2047 sigmoid activation units

WSJ0 tri-gram, entropy pruning, RNN-based LM rescoring

Six-channel tablet recordings

3-D localization (x, y + depth)

8 speakers, noisy environments

http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/overview.html

Six-channel tablet recordings

3-D localization (x, y + depth)

8 speakers, noisy environments

http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/overview.html

WER rel. impr.: 5.90% — 17.45%

Current work: Towards object based signal enhancement

Goal: Group spatial components of single object together using disjoint component analysis (DCA).

Current work: Towards object based signal enhancement

Goal: Group spatial components of single object together using disjoint component analysis (DCA).

Current work: Towards object based signal enhancement

Goal: Group spatial components of single object together using disjoint component analysis (DCA).

Conclusion

Supervised learning for probabilistic source localization:
efficient: linear projection plus 1-dim. non-linearity
derived from training data, no subsequent adaptation
(Re-) Estimation of acoustic parameters
based on learned anechoic space representation
adaptation per utterance to new acoustic environment
Results

Anechoic environment: partly-fixed geometry model best Reverberant environment: full prob. re-estimation best

Conclusion

Supervised learning for probabilistic source localization:

efficient: linear projection plus 1-dim. non-linearity derived from training data, no subsequent adaptation

(Re-) Estimation of acoustic parameters

based on learned anechoic space representation adaptation per utterance to new acoustic environment

Results

Anechoic environment: partly-fixed geometry model best Reverberant environment: full prob. re-estimation best