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Sound source localization –  
from low-level sensor signals  

to mid-level representations, and back
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“Hard-wired” and “learned” acoustic 
features for sound localization

Which features permit robust localization? 
partly “hard-wired” 

mechanisms evolved over long time 
partly “long-time learned” 

stimulus statistics important 
partly “adapted on-the-fly” 

new environment, keep learned info 
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Goal: Spatial source localization and enhancement 
with robust performance and fast computation
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Microphone Geometry

• 6-channel hearing aid microphone array: 
• 3-channels on each ear 

• Mounted on a head an torso simulator 
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-164 mm

Anechoic Environment

Azimuth: 0°, 5°, ... , 180° 
Elevation: -10°, 0°, 10°, 20° 
Distance: 0.8m, 3m

Kayser, Ewert, Anemüller, Rohdenburg, Hohmann, Kollmeier (2009)



Echoic Environments

Office 
Azimuth: 0°, 5°, ... , 180° 
Distance: 1m 

Several settings indoors and outdoors 
Office, courtyard, cafeteria
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GCC-PHAT correlation features

Generalized cross-correlation with phase-transform 
“Hard-wired” 
Only phase-differences accounted for 
Weighting towards higher frequency (low energy) spectral 

bands
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Learning-based approach to 
acoustic source localisation

Train one SVM per possible source position 
“long-term learned” 



Learning-based approach to 
acoustic source localisation

Train one SVM per possible source position 
“long-term learned” 

SVM Class.: 

GLM prob.: 

Max. direction:



Probabilistic spatial map with HRTF setup
time instance t is only used if

dIAC(t)

dt
� 0. (4)

B. Probabilistic data model

Feature  →

IA
C

  →

αi αj

FIG. 2. Illustration of feature distribution in dependence of
IAC. Distances between sloped lines scematically sketch den-
sity of the feature dsitributions. The bell-shaped curves on
the horizontal lines represent modeled probability density on
a given IAC level depicted on the ordinate.

Desired output of the model:

P (↵|IPD, ILD, IAC). (5)

A training data set delivers the joint pdf of the interaural
parameters conditioned on ↵ and IAC:

P (IPD, ILD|↵, IAC). (6)

Hence we apply Bayes’ Theorem to transform Equation
(5) into an expression of (6). DOA has a uniform prior
probability thus with law of total probability it follows:

P (↵|IPD, ILD, IAC)

=
P (IPD, ILD|↵, IAC) · P (↵|IAC)

P (IPD, ILD|IAC) (7)

=
P (IPD, ILD|↵, IAC) · P (↵|IAC)P
↵ P (IPD, ILD|↵, IAC)P (↵|IAC) (8)

=
P (IPD, ILD|↵, IAC)P
↵ P (IPD, ILD|↵, IAC) . (9)

In the case that the probability distributions of IPD and
ILD are statistically independent under the given condi-
tions the joint pdfs on the rigth-hand side of Equation
(9) factorize:

P (IPD, ILD|↵, IAC) = P (IPD|↵, IAC) · P (ILD|↵, IAC).
(10)

Details of the according statistical analysis are found in
Section IV.A.1. The final formulation of the probabilistic
model is as follows:

P (↵|IPD, ILD, IAC) =
P (IPD|↵, IAC) · P (ILD|↵, IAC)

Z

(11)

with Z =
X

↵

P (IPD|↵, IAC) · P (ILD|↵, IAC)

(12)

By this means a probability map of the direction of ar-
rival in each time instance as shown in Figure 3 is gener-
ated.
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FIG. 3. Exemplary probability map of the direction of arrival
generated by the probabilistic framework as described in this
section for two speech sources impinging from -30� and 20�.

In the modeling process the IAC is regarded on a non-
linear scale proportional to the Fisher Z-transform, see
Lüddemann et al. (2009); Durlach et al. (1986); Culling
et al. (2001) for details:

dIAC(IAC) = 10 · log
10

1 + IAC

1� IAC
. (13)

Yields IAC values in dB.

• Culling et al. (2001): Relation between equivalent
SNR and d’ is approximately linear

Empiric distribution functions are modeled as prob-
ability density functions conditioned on the IAC value
coming along with the data for each direction.
dB-scaled ILD is modeled as a Gaussian distribution:

P (ILD|µ,�) = 1

�
p
2⇡

e
�(ILD�µ)2

2�2 . (14)

Being a circular quantity the IPD is modeled with a
wrapped Gaussian distribution, the analogue pdf with
mean direction � and mean resultant length ⇢:

P̂ (IPD|�, ⇢) = 1

2⇡

 
1 + 2

1X

p=1

⇢p
2

cos p(IPD� �)

!
,(15)

�⇡  IPD < ⇡, 0  ⇢ < 1.

This distribution does not have a closed-form expression,
thus the von Mises distribution was used instead. Its pdf
is very similar to the wrapped Gaussian distribution in
terms of its shape:

P (IPD|�,) = e cos(IPD��)

2⇡I
0

()
, (16)

�⇡  IPD < ⇡, 0   < 1,

where

I
0

() =
1

2⇡

Z
2⇡

0

d�e cos(���) (17)

3

Probabilistic spatial 
localization map

A-posteriori speech probabilities 
Highly kurtotic sparse representation
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[Kayer, Anemüller, IWAENC 2014]
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Fig. 1. Processing diagram of the proposed algorithm.

In the proposed approach, we use spatial speech pres-
ence probability to obtain a direct estimate of the target
source steering vector for a six-channel hearing aid setup.
In order to enhance the target signal and reduce interference
from other sound sources, minimum-variance-distortionless-
response (MVDR) signal enhancement is performed. An
estimate of the noise covariance matrix, which is essential
for MVDR processing, encodes information about the noise
field and is obtained by estimating the noise covariance ma-
trix with a probabilistic weighting that is inversely related
to target source activity. Acoustic scenarios including one
target source and combinations of a diffuse noise field and
a localized interfering talker in an anechoic and a reverber-
ant office room were investigated. The proposed parameter
estimation method and use of model-based spatial filters, as
well as combinations of both were compared in these scenar-
ios. Results show that probabilistic estimation of the spatial
filters outperforms model-based approaches if exact a-priori
information is unavailable.

2. METHODS

The method proposed here is conducted in four steps, cf.
Fig. 1: First, a spatio-temporal analysis of the acoustic scene
is conducted with a probabilistic source localization method
that estimates for each time-point n and discretized loca-
tion index ✓ the a-posteriori probability of speech and, thus,
permits identification of the maximum-a-posteriori speech
source location. Estimated speech probability is used subse-
quently to determine the corresponding (generalized) speech
covariance matrix as well as the noise-covariance matrix
induced by interfering sources. Multi-channel signal en-
hancement is then carried out with filter parameters obtained
from the estimated covariance matrices.

2.1. Probabilistic source localization

Reliable estimation of spatially localized speech source prob-
ability is the first step in the proposed method which the sub-
sequent steps build upon. We here employ the discriminative

classification approach to probabilistic sound source localiza-
tion described in [1]. It estimates the a-posteriori probability
of speech for a defined set of source locations ✓ using short-
term generalized cross-correlation [12] with phase transform
(GCC-PHAT) as input features. These are used to train a bank
of discriminative linear support-vector machine (SVM) clas-
sifiers, with presence and absence of a speech source for a
given position serving as the training class label. Each SVM
is followed by a generalized linear model (GLM) classifier,
that converts SVM decision values into the estimated spatial
source probability map p

S
(✓, n). Let G✓(·) denote the com-

bined localizer for direction ✓ as described above, then the
source probability map is given by

p

S
(✓, n) = G✓(x(n, k)) (1)

for location index ✓, time frame index n, spectral band index
k and multi-channel STFT input vector x(n, k).

2.2. Speech and noise covariance matrix estimation

Knowledge of the localizer G✓(·) corresponds to implicit
knowledge of a spatial source model. However, a model that
is appropriate for source localization does not necessarily im-
ply knowledge of spatial filter parameters that would permit
to optimally enhance a target speech source and maximally
attenuate interference from other sound sources. For one,
the learned localization model may not be precise enough
for spatial signal enhancement. In realistic applications, we
may further wish to utilize a localiztion model trained in one
environment (e.g., under anechoic conditions) also in other
more realistic test conditions for signal enhancement. How-
ever, the spatial source model learned by the localizer G✓(·)
does contain valuable information that should be maximally
exploited in order to perform fast and robust spatial signal
enhancement in realistic situations.

To this end, we present a novel approach for estimation of
spatial filters from the multi-channel input signals without use
of an explicit model of sound propagation, while still exploit-
ing the source probability map obtained in Sec. 2.1 and the
learned knowledge about spatial source positions that is im-
plicitly encoded in it. The estimated speech probability map
values pS(✓, n) are used as weights to compute a generalized
speech covariance matrix �(k|✓) conditioned on speech di-
rection ✓, with ij-element

[�(k|✓)]ij ⌘
1

N

NX

n=1

p

S
(✓, n) cij(n, k)

�1
x

⇤
i (n, k)xj(n, k)

(2)
where the average is computed over N contiguous STFT
frames and cij(n, k)

�1 are spectral weights. Choosing

cij(n, k) = |xi(n, k)| |xj(n, k)|, (3)

we obtain a measure similar to the normalized cross-power
spectrum as used in [13, 14], albeit conditioned on location ✓.
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In the proposed approach, we use spatial speech pres-
ence probability to obtain a direct estimate of the target
source steering vector for a six-channel hearing aid setup.
In order to enhance the target signal and reduce interference
from other sound sources, minimum-variance-distortionless-
response (MVDR) signal enhancement is performed. An
estimate of the noise covariance matrix, which is essential
for MVDR processing, encodes information about the noise
field and is obtained by estimating the noise covariance ma-
trix with a probabilistic weighting that is inversely related
to target source activity. Acoustic scenarios including one
target source and combinations of a diffuse noise field and
a localized interfering talker in an anechoic and a reverber-
ant office room were investigated. The proposed parameter
estimation method and use of model-based spatial filters, as
well as combinations of both were compared in these scenar-
ios. Results show that probabilistic estimation of the spatial
filters outperforms model-based approaches if exact a-priori
information is unavailable.

2. METHODS

The method proposed here is conducted in four steps, cf.
Fig. 1: First, a spatio-temporal analysis of the acoustic scene
is conducted with a probabilistic source localization method
that estimates for each time-point n and discretized loca-
tion index ✓ the a-posteriori probability of speech and, thus,
permits identification of the maximum-a-posteriori speech
source location. Estimated speech probability is used subse-
quently to determine the corresponding (generalized) speech
covariance matrix as well as the noise-covariance matrix
induced by interfering sources. Multi-channel signal en-
hancement is then carried out with filter parameters obtained
from the estimated covariance matrices.

2.1. Probabilistic source localization

Reliable estimation of spatially localized speech source prob-
ability is the first step in the proposed method which the sub-
sequent steps build upon. We here employ the discriminative

classification approach to probabilistic sound source localiza-
tion described in [1]. It estimates the a-posteriori probability
of speech for a defined set of source locations ✓ using short-
term generalized cross-correlation [12] with phase transform
(GCC-PHAT) as input features. These are used to train a bank
of discriminative linear support-vector machine (SVM) clas-
sifiers, with presence and absence of a speech source for a
given position serving as the training class label. Each SVM
is followed by a generalized linear model (GLM) classifier,
that converts SVM decision values into the estimated spatial
source probability map p

S
(✓, n). Let G✓(·) denote the com-

bined localizer for direction ✓ as described above, then the
source probability map is given by

p

S
(✓, n) = G✓(x(n, k)) (1)

for location index ✓, time frame index n, spectral band index
k and multi-channel STFT input vector x(n, k).

2.2. Speech and noise covariance matrix estimation

Knowledge of the localizer G✓(·) corresponds to implicit
knowledge of a spatial source model. However, a model that
is appropriate for source localization does not necessarily im-
ply knowledge of spatial filter parameters that would permit
to optimally enhance a target speech source and maximally
attenuate interference from other sound sources. For one,
the learned localization model may not be precise enough
for spatial signal enhancement. In realistic applications, we
may further wish to utilize a localiztion model trained in one
environment (e.g., under anechoic conditions) also in other
more realistic test conditions for signal enhancement. How-
ever, the spatial source model learned by the localizer G✓(·)
does contain valuable information that should be maximally
exploited in order to perform fast and robust spatial signal
enhancement in realistic situations.

To this end, we present a novel approach for estimation of
spatial filters from the multi-channel input signals without use
of an explicit model of sound propagation, while still exploit-
ing the source probability map obtained in Sec. 2.1 and the
learned knowledge about spatial source positions that is im-
plicitly encoded in it. The estimated speech probability map
values pS(✓, n) are used as weights to compute a generalized
speech covariance matrix �(k|✓) conditioned on speech di-
rection ✓, with ij-element

[�(k|✓)]ij ⌘
1
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(✓, n) cij(n, k)
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(2)
where the average is computed over N contiguous STFT
frames and cij(n, k)

�1 are spectral weights. Choosing

cij(n, k) = |xi(n, k)| |xj(n, k)|, (3)

we obtain a measure similar to the normalized cross-power
spectrum as used in [13, 14], albeit conditioned on location ✓.
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FIG. 2. Illustration of feature distribution in dependence of
IAC. Distances between sloped lines scematically sketch den-
sity of the feature dsitributions. The bell-shaped curves on
the horizontal lines represent modeled probability density on
a given IAC level depicted on the ordinate.

Desired output of the model:

P (↵|IPD, ILD, IAC). (5)

A training data set delivers the joint pdf of the interaural
parameters conditioned on ↵ and IAC:

P (IPD, ILD|↵, IAC). (6)

Hence we apply Bayes’ Theorem to transform Equation
(5) into an expression of (6). DOA has a uniform prior
probability thus with law of total probability it follows:

P (↵|IPD, ILD, IAC)

=
P (IPD, ILD|↵, IAC) · P (↵|IAC)

P (IPD, ILD|IAC) (7)

=
P (IPD, ILD|↵, IAC) · P (↵|IAC)P
↵ P (IPD, ILD|↵, IAC)P (↵|IAC) (8)

=
P (IPD, ILD|↵, IAC)P
↵ P (IPD, ILD|↵, IAC) . (9)

In the case that the probability distributions of IPD and
ILD are statistically independent under the given condi-
tions the joint pdfs on the rigth-hand side of Equation
(9) factorize:

P (IPD, ILD|↵, IAC) = P (IPD|↵, IAC) · P (ILD|↵, IAC).
(10)

Details of the according statistical analysis are found in
Section IV.A.1. The final formulation of the probabilistic
model is as follows:

P (↵|IPD, ILD, IAC) =
P (IPD|↵, IAC) · P (ILD|↵, IAC)

Z

(11)

with Z =
X

↵

P (IPD|↵, IAC) · P (ILD|↵, IAC)

(12)

By this means a probability map of the direction of ar-
rival in each time instance as shown in Figure 3 is gener-
ated.
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FIG. 3. Exemplary probability map of the direction of arrival
generated by the probabilistic framework as described in this
section for two speech sources impinging from -30� and 20�.

In the modeling process the IAC is regarded on a non-
linear scale proportional to the Fisher Z-transform, see
Lüddemann et al. (2009); Durlach et al. (1986); Culling
et al. (2001) for details:

dIAC(IAC) = 10 · log
10

1 + IAC

1� IAC
. (13)

Yields IAC values in dB.

• Culling et al. (2001): Relation between equivalent
SNR and d’ is approximately linear

Empiric distribution functions are modeled as prob-
ability density functions conditioned on the IAC value
coming along with the data for each direction.
dB-scaled ILD is modeled as a Gaussian distribution:

P (ILD|µ,�) = 1

�
p
2⇡

e
�(ILD�µ)2

2�2 . (14)

Being a circular quantity the IPD is modeled with a
wrapped Gaussian distribution, the analogue pdf with
mean direction � and mean resultant length ⇢:
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�⇡  IPD < ⇡, 0  ⇢ < 1.

This distribution does not have a closed-form expression,
thus the von Mises distribution was used instead. Its pdf
is very similar to the wrapped Gaussian distribution in
terms of its shape:

P (IPD|�,) = e cos(IPD��)
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, (16)
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In the proposed approach, we use spatial speech pres-
ence probability to obtain a direct estimate of the target
source steering vector for a six-channel hearing aid setup.
In order to enhance the target signal and reduce interference
from other sound sources, minimum-variance-distortionless-
response (MVDR) signal enhancement is performed. An
estimate of the noise covariance matrix, which is essential
for MVDR processing, encodes information about the noise
field and is obtained by estimating the noise covariance ma-
trix with a probabilistic weighting that is inversely related
to target source activity. Acoustic scenarios including one
target source and combinations of a diffuse noise field and
a localized interfering talker in an anechoic and a reverber-
ant office room were investigated. The proposed parameter
estimation method and use of model-based spatial filters, as
well as combinations of both were compared in these scenar-
ios. Results show that probabilistic estimation of the spatial
filters outperforms model-based approaches if exact a-priori
information is unavailable.

2. METHODS

The method proposed here is conducted in four steps, cf.
Fig. 1: First, a spatio-temporal analysis of the acoustic scene
is conducted with a probabilistic source localization method
that estimates for each time-point n and discretized loca-
tion index ✓ the a-posteriori probability of speech and, thus,
permits identification of the maximum-a-posteriori speech
source location. Estimated speech probability is used subse-
quently to determine the corresponding (generalized) speech
covariance matrix as well as the noise-covariance matrix
induced by interfering sources. Multi-channel signal en-
hancement is then carried out with filter parameters obtained
from the estimated covariance matrices.

2.1. Probabilistic source localization

Reliable estimation of spatially localized speech source prob-
ability is the first step in the proposed method which the sub-
sequent steps build upon. We here employ the discriminative

classification approach to probabilistic sound source localiza-
tion described in [1]. It estimates the a-posteriori probability
of speech for a defined set of source locations ✓ using short-
term generalized cross-correlation [12] with phase transform
(GCC-PHAT) as input features. These are used to train a bank
of discriminative linear support-vector machine (SVM) clas-
sifiers, with presence and absence of a speech source for a
given position serving as the training class label. Each SVM
is followed by a generalized linear model (GLM) classifier,
that converts SVM decision values into the estimated spatial
source probability map p

S
(✓, n). Let G✓(·) denote the com-

bined localizer for direction ✓ as described above, then the
source probability map is given by

p

S
(✓, n) = G✓(x(n, k)) (1)

for location index ✓, time frame index n, spectral band index
k and multi-channel STFT input vector x(n, k).

2.2. Speech and noise covariance matrix estimation

Knowledge of the localizer G✓(·) corresponds to implicit
knowledge of a spatial source model. However, a model that
is appropriate for source localization does not necessarily im-
ply knowledge of spatial filter parameters that would permit
to optimally enhance a target speech source and maximally
attenuate interference from other sound sources. For one,
the learned localization model may not be precise enough
for spatial signal enhancement. In realistic applications, we
may further wish to utilize a localiztion model trained in one
environment (e.g., under anechoic conditions) also in other
more realistic test conditions for signal enhancement. How-
ever, the spatial source model learned by the localizer G✓(·)
does contain valuable information that should be maximally
exploited in order to perform fast and robust spatial signal
enhancement in realistic situations.

To this end, we present a novel approach for estimation of
spatial filters from the multi-channel input signals without use
of an explicit model of sound propagation, while still exploit-
ing the source probability map obtained in Sec. 2.1 and the
learned knowledge about spatial source positions that is im-
plicitly encoded in it. The estimated speech probability map
values pS(✓, n) are used as weights to compute a generalized
speech covariance matrix �(k|✓) conditioned on speech di-
rection ✓, with ij-element

[�(k|✓)]ij ⌘
1

N

NX

n=1
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S
(✓, n) cij(n, k)

�1
x

⇤
i (n, k)xj(n, k)

(2)
where the average is computed over N contiguous STFT
frames and cij(n, k)

�1 are spectral weights. Choosing

cij(n, k) = |xi(n, k)| |xj(n, k)|, (3)

we obtain a measure similar to the normalized cross-power
spectrum as used in [13, 14], albeit conditioned on location ✓.

noise covariance matrix 
estimation

generalized speech 
covariance estimation

multi-channel signal 
enhancement

spatio-temporal speech 
probability map

y(n,k)

{xi(n,k)}

Fig. 1. Processing diagram of the proposed algorithm.

In the proposed approach, we use spatial speech pres-
ence probability to obtain a direct estimate of the target
source steering vector for a six-channel hearing aid setup.
In order to enhance the target signal and reduce interference
from other sound sources, minimum-variance-distortionless-
response (MVDR) signal enhancement is performed. An
estimate of the noise covariance matrix, which is essential
for MVDR processing, encodes information about the noise
field and is obtained by estimating the noise covariance ma-
trix with a probabilistic weighting that is inversely related
to target source activity. Acoustic scenarios including one
target source and combinations of a diffuse noise field and
a localized interfering talker in an anechoic and a reverber-
ant office room were investigated. The proposed parameter
estimation method and use of model-based spatial filters, as
well as combinations of both were compared in these scenar-
ios. Results show that probabilistic estimation of the spatial
filters outperforms model-based approaches if exact a-priori
information is unavailable.

2. METHODS

The method proposed here is conducted in four steps, cf.
Fig. 1: First, a spatio-temporal analysis of the acoustic scene
is conducted with a probabilistic source localization method
that estimates for each time-point n and discretized loca-
tion index ✓ the a-posteriori probability of speech and, thus,
permits identification of the maximum-a-posteriori speech
source location. Estimated speech probability is used subse-
quently to determine the corresponding (generalized) speech
covariance matrix as well as the noise-covariance matrix
induced by interfering sources. Multi-channel signal en-
hancement is then carried out with filter parameters obtained
from the estimated covariance matrices.

2.1. Probabilistic source localization

Reliable estimation of spatially localized speech source prob-
ability is the first step in the proposed method which the sub-
sequent steps build upon. We here employ the discriminative

classification approach to probabilistic sound source localiza-
tion described in [1]. It estimates the a-posteriori probability
of speech for a defined set of source locations ✓ using short-
term generalized cross-correlation [12] with phase transform
(GCC-PHAT) as input features. These are used to train a bank
of discriminative linear support-vector machine (SVM) clas-
sifiers, with presence and absence of a speech source for a
given position serving as the training class label. Each SVM
is followed by a generalized linear model (GLM) classifier,
that converts SVM decision values into the estimated spatial
source probability map p

S
(✓, n). Let G✓(·) denote the com-

bined localizer for direction ✓ as described above, then the
source probability map is given by

p

S
(✓, n) = G✓(x(n, k)) (1)

for location index ✓, time frame index n, spectral band index
k and multi-channel STFT input vector x(n, k).

2.2. Speech and noise covariance matrix estimation

Knowledge of the localizer G✓(·) corresponds to implicit
knowledge of a spatial source model. However, a model that
is appropriate for source localization does not necessarily im-
ply knowledge of spatial filter parameters that would permit
to optimally enhance a target speech source and maximally
attenuate interference from other sound sources. For one,
the learned localization model may not be precise enough
for spatial signal enhancement. In realistic applications, we
may further wish to utilize a localiztion model trained in one
environment (e.g., under anechoic conditions) also in other
more realistic test conditions for signal enhancement. How-
ever, the spatial source model learned by the localizer G✓(·)
does contain valuable information that should be maximally
exploited in order to perform fast and robust spatial signal
enhancement in realistic situations.

To this end, we present a novel approach for estimation of
spatial filters from the multi-channel input signals without use
of an explicit model of sound propagation, while still exploit-
ing the source probability map obtained in Sec. 2.1 and the
learned knowledge about spatial source positions that is im-
plicitly encoded in it. The estimated speech probability map
values pS(✓, n) are used as weights to compute a generalized
speech covariance matrix �(k|✓) conditioned on speech di-
rection ✓, with ij-element

[�(k|✓)]ij ⌘
1

N

NX

n=1

p

S
(✓, n) cij(n, k)

�1
x

⇤
i (n, k)xj(n, k)

(2)
where the average is computed over N contiguous STFT
frames and cij(n, k)

�1 are spectral weights. Choosing

cij(n, k) = |xi(n, k)| |xj(n, k)|, (3)

we obtain a measure similar to the normalized cross-power
spectrum as used in [13, 14], albeit conditioned on location ✓.

Speech covariance Noise covariance

PrS+PrN prob. model (Eq. 2) prob. model (Eq. 5)
FfS+PrN free-field HRTF model prob. model (Eq. 5)
PrS+IsoN prob. model (Eq. 2) isotr. model
FfS+IsoN free-field HRTF model isotr. model

Table 1. Summary of combined models for generalized
speech covariance and noise covariance estimation, that were
investigated experimentally.

In order to compute in an analogous way the noise co-
variance matrix conditioned on speech source direction ✓, we
define a robust estimate of noise probability p

N
(✓, n) as

p

N
(✓, n) =

⇢
� (1� p

S
(✓, n)), p

S
(✓, n) < p0

0, p

S
(✓, n) � p0

(4)

with a confidence threshold p0 and scaling factor �. The ij-
element [R(k|✓)]ij of ✓-conditioned noise covariance matrix
R(k|✓) is estimated as

[R(k|✓)]ij =
1

N

NX

n=1

p

N
(✓, n)x

⇤
i (n, k)xj(n, k). (5)

2.3. Multi-channel signal enhancement

While the proposed scheme is not specific to a particu-
lar multi-channel enhancement algorithm, we employ the
minimum-variance distortionless-response (MVDR) method.
In the spectral domain implementation used here, it uses
a projection operator w(✓, k) that is applied to the multi-
channel short-term Fourier transform x(n, k) of the input
signals. Output signals are obtained as

y(n, k|✓) = w

H
(k|✓)x(n, k). (6)

The projection operator w is obtained from a steering vector
d and noise covariance matrix R as

w(k|✓) = R

�1
(k|✓)d(k|✓)

d

H
(k|✓)R�1

(k|✓)d(k|✓) . (7)

The steering vector d(k|✓) for speech source direction ✓ is
obtained from the generalized speech covariance matrix Eq. 2
by choosing an arbitrary but fixed reference channel i⇤ and
extracting the normalized i

⇤-th row elements according to

dj(k|✓) = [�(k|✓)]i⇤j / |[�(k|✓)]i⇤j |, (8)

retaining inter-microphone phase and neglecting (possible)
level differences. The maximum-a-posteriori speech position
✓

⇤ was chosen as the location value for the MVDR filter.
For baseline comparison, steering vector and noise-

covariance were also derived from an anechoic free-field
model with head-related transfer functions (in case of d)
and a free-field isotropic noise model (in case of R). See
Tab. 1 for a summary of investigated conditions for combined
source- and noise-model.

3. EXPERIMENTS

We evaluated the signal enhancement performance of the
MVDR beamformer (7) with parameters estimated by all
approaches summarized in Tab. 1. A six-channel binaural
hearing aid geometry setup was used for MVDR beamform-
ing of which four channels (front and rear microphone pairs)
were employed for estimation of the spatial source proba-
bility map as described in [1] with discrete azimuth angles
✓ = 0

�
, . . . , 355

� in steps of 5

�. STFT frame length was
10 ms with 25 % shift. For the estimation of the steering vec-
tor and the noise covariance matrix, we utilized the a-priori
known target DOA, indicated by ˆ

✓, to select either the accord-
ing probability weighting from the map for the estimation or
the model steering vector. Groundtruth DOA values were
used in order to separate localization accuracy [1] from the
filter estimation approach pursued here. As reference channel
in the spatial filter, the left frontal hearing aid microphone
was used. The parameters for the noise covariance estimation
were set to p0 = 0.99 and � = (1 � p0)/maxt2T (p(

ˆ

✓, n))

with T containing all 10 ms-samples from the current test
signal. No temporal smoothing, apart from the weighting
with p

S
(✓, n) and p

N
(✓, n), was used.

3.1. Acoustic Data

All acoustic signals used in the experiments were generated
by filtering single-channel speech signals with head-related
impulse responses (HRIR) captured with a binaural hearing
aid setup with three microphones on each side of the head
[15]. Measurements for various source positions from two
different environments were used: an anechoic chamber and
an office room. Three-seconds-long speech signals, each
from the same (female or male) speaker, were randomly sam-
pled from the TIMIT speech database [16]. A head-related
isotropic noise field was obtained by convolution of speech
shaped noise [17] with anechoic HRIRs from the whole hori-
zontal plane. Processing was performed at a sampling rate of
16 kHz.
The resulting signals were combined to a set of test scenarios
containing a target speech source, an interfering speaker from
a different position and isotropic noise. Thereby the energy
ratio between target and interferer, signal-to-interference ratio
(SIR), was varied between �10 dB, 0 dB, 10 dB and 1 dB,
as well as the energy ratio between target and noise field,
signal-to-noise-ratio (SNR). The resulting overall acoustic
complexity is then represented by the signal-to-noise-plus-
interferer-ratio (SINR). In the anechoic environment, the
target was located in the left semi-circle at DOAs ranging
from �180

� (back) to 0

� (front) in steps of 30�. The interfer-
ing speaker occurred on the whole circle around the head in
the range from �165

� to +165

� in steps of 30�. In the office
environment the source locations were limited to the frontal
semi-circle, such that the target position ranged from �90

�

3. Normalization to unit gain, i.e., only phase retained

2. Compute source-
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matrix
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FIG. 2. Illustration of feature distribution in dependence of
IAC. Distances between sloped lines scematically sketch den-
sity of the feature dsitributions. The bell-shaped curves on
the horizontal lines represent modeled probability density on
a given IAC level depicted on the ordinate.

Desired output of the model:

P (↵|IPD, ILD, IAC). (5)

A training data set delivers the joint pdf of the interaural
parameters conditioned on ↵ and IAC:

P (IPD, ILD|↵, IAC). (6)

Hence we apply Bayes’ Theorem to transform Equation
(5) into an expression of (6). DOA has a uniform prior
probability thus with law of total probability it follows:

P (↵|IPD, ILD, IAC)

=
P (IPD, ILD|↵, IAC) · P (↵|IAC)

P (IPD, ILD|IAC) (7)

=
P (IPD, ILD|↵, IAC) · P (↵|IAC)P
↵ P (IPD, ILD|↵, IAC)P (↵|IAC) (8)

=
P (IPD, ILD|↵, IAC)P
↵ P (IPD, ILD|↵, IAC) . (9)

In the case that the probability distributions of IPD and
ILD are statistically independent under the given condi-
tions the joint pdfs on the rigth-hand side of Equation
(9) factorize:

P (IPD, ILD|↵, IAC) = P (IPD|↵, IAC) · P (ILD|↵, IAC).
(10)

Details of the according statistical analysis are found in
Section IV.A.1. The final formulation of the probabilistic
model is as follows:

P (↵|IPD, ILD, IAC) =
P (IPD|↵, IAC) · P (ILD|↵, IAC)

Z

(11)

with Z =
X

↵

P (IPD|↵, IAC) · P (ILD|↵, IAC)

(12)

By this means a probability map of the direction of ar-
rival in each time instance as shown in Figure 3 is gener-
ated.
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FIG. 3. Exemplary probability map of the direction of arrival
generated by the probabilistic framework as described in this
section for two speech sources impinging from -30� and 20�.

In the modeling process the IAC is regarded on a non-
linear scale proportional to the Fisher Z-transform, see
Lüddemann et al. (2009); Durlach et al. (1986); Culling
et al. (2001) for details:

dIAC(IAC) = 10 · log
10

1 + IAC

1� IAC
. (13)

Yields IAC values in dB.

• Culling et al. (2001): Relation between equivalent
SNR and d’ is approximately linear

Empiric distribution functions are modeled as prob-
ability density functions conditioned on the IAC value
coming along with the data for each direction.
dB-scaled ILD is modeled as a Gaussian distribution:

P (ILD|µ,�) = 1

�
p
2⇡

e
�(ILD�µ)2

2�2 . (14)

Being a circular quantity the IPD is modeled with a
wrapped Gaussian distribution, the analogue pdf with
mean direction � and mean resultant length ⇢:

P̂ (IPD|�, ⇢) = 1
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,(15)

�⇡  IPD < ⇡, 0  ⇢ < 1.

This distribution does not have a closed-form expression,
thus the von Mises distribution was used instead. Its pdf
is very similar to the wrapped Gaussian distribution in
terms of its shape:

P (IPD|�,) = e cos(IPD��)

2⇡I
0

()
, (16)

�⇡  IPD < ⇡, 0   < 1,
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Desired output of the model:

P (↵|IPD, ILD, IAC). (5)

A training data set delivers the joint pdf of the interaural
parameters conditioned on ↵ and IAC:

P (IPD, ILD|↵, IAC). (6)

Hence we apply Bayes’ Theorem to transform Equation
(5) into an expression of (6). DOA has a uniform prior
probability thus with law of total probability it follows:

P (↵|IPD, ILD, IAC)

=
P (IPD, ILD|↵, IAC) · P (↵|IAC)
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In the case that the probability distributions of IPD and
ILD are statistically independent under the given condi-
tions the joint pdfs on the rigth-hand side of Equation
(9) factorize:

P (IPD, ILD|↵, IAC) = P (IPD|↵, IAC) · P (ILD|↵, IAC).
(10)

Details of the according statistical analysis are found in
Section IV.A.1. The final formulation of the probabilistic
model is as follows:

P (↵|IPD, ILD, IAC) =
P (IPD|↵, IAC) · P (ILD|↵, IAC)

Z
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with Z =
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By this means a probability map of the direction of ar-
rival in each time instance as shown in Figure 3 is gener-
ated.
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FIG. 3. Exemplary probability map of the direction of arrival
generated by the probabilistic framework as described in this
section for two speech sources impinging from -30� and 20�.

In the modeling process the IAC is regarded on a non-
linear scale proportional to the Fisher Z-transform, see
Lüddemann et al. (2009); Durlach et al. (1986); Culling
et al. (2001) for details:

dIAC(IAC) = 10 · log
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Yields IAC values in dB.

• Culling et al. (2001): Relation between equivalent
SNR and d’ is approximately linear

Empiric distribution functions are modeled as prob-
ability density functions conditioned on the IAC value
coming along with the data for each direction.
dB-scaled ILD is modeled as a Gaussian distribution:
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thus the von Mises distribution was used instead. Its pdf
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generated by the probabilistic framework as described in this
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In the modeling process the IAC is regarded on a non-
linear scale proportional to the Fisher Z-transform, see
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et al. (2001) for details:
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SNR and d’ is approximately linear

Empiric distribution functions are modeled as prob-
ability density functions conditioned on the IAC value
coming along with the data for each direction.
dB-scaled ILD is modeled as a Gaussian distribution:
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1. Estimated noise 
probability time-course

Speech covariance Noise covariance

PrS+PrN prob. model (Eq. 2) prob. model (Eq. 5)
FfS+PrN free-field HRTF model prob. model (Eq. 5)
PrS+IsoN prob. model (Eq. 2) isotr. model
FfS+IsoN free-field HRTF model isotr. model

Table 1. Summary of combined models for generalized
speech covariance and noise covariance estimation, that were
investigated experimentally.

In order to compute in an analogous way the noise co-
variance matrix conditioned on speech source direction ✓, we
define a robust estimate of noise probability p
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(✓, n) as
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with a confidence threshold p0 and scaling factor �. The ij-
element [R(k|✓)]ij of ✓-conditioned noise covariance matrix
R(k|✓) is estimated as

[R(k|✓)]ij =
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2.3. Multi-channel signal enhancement

While the proposed scheme is not specific to a particu-
lar multi-channel enhancement algorithm, we employ the
minimum-variance distortionless-response (MVDR) method.
In the spectral domain implementation used here, it uses
a projection operator w(✓, k) that is applied to the multi-
channel short-term Fourier transform x(n, k) of the input
signals. Output signals are obtained as

y(n, k|✓) = w

H
(k|✓)x(n, k). (6)

The projection operator w is obtained from a steering vector
d and noise covariance matrix R as

w(k|✓) = R
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The steering vector d(k|✓) for speech source direction ✓ is
obtained from the generalized speech covariance matrix Eq. 2
by choosing an arbitrary but fixed reference channel i⇤ and
extracting the normalized i

⇤-th row elements according to

dj(k|✓) = [�(k|✓)]i⇤j / |[�(k|✓)]i⇤j |, (8)

retaining inter-microphone phase and neglecting (possible)
level differences. The maximum-a-posteriori speech position
✓

⇤ was chosen as the location value for the MVDR filter.
For baseline comparison, steering vector and noise-

covariance were also derived from an anechoic free-field
model with head-related transfer functions (in case of d)
and a free-field isotropic noise model (in case of R). See
Tab. 1 for a summary of investigated conditions for combined
source- and noise-model.

3. EXPERIMENTS

We evaluated the signal enhancement performance of the
MVDR beamformer (7) with parameters estimated by all
approaches summarized in Tab. 1. A six-channel binaural
hearing aid geometry setup was used for MVDR beamform-
ing of which four channels (front and rear microphone pairs)
were employed for estimation of the spatial source proba-
bility map as described in [1] with discrete azimuth angles
✓ = 0
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, . . . , 355

� in steps of 5

�. STFT frame length was
10 ms with 25 % shift. For the estimation of the steering vec-
tor and the noise covariance matrix, we utilized the a-priori
known target DOA, indicated by ˆ

✓, to select either the accord-
ing probability weighting from the map for the estimation or
the model steering vector. Groundtruth DOA values were
used in order to separate localization accuracy [1] from the
filter estimation approach pursued here. As reference channel
in the spatial filter, the left frontal hearing aid microphone
was used. The parameters for the noise covariance estimation
were set to p0 = 0.99 and � = (1 � p0)/maxt2T (p(

ˆ

✓, n))

with T containing all 10 ms-samples from the current test
signal. No temporal smoothing, apart from the weighting
with p

S
(✓, n) and p

N
(✓, n), was used.

3.1. Acoustic Data

All acoustic signals used in the experiments were generated
by filtering single-channel speech signals with head-related
impulse responses (HRIR) captured with a binaural hearing
aid setup with three microphones on each side of the head
[15]. Measurements for various source positions from two
different environments were used: an anechoic chamber and
an office room. Three-seconds-long speech signals, each
from the same (female or male) speaker, were randomly sam-
pled from the TIMIT speech database [16]. A head-related
isotropic noise field was obtained by convolution of speech
shaped noise [17] with anechoic HRIRs from the whole hori-
zontal plane. Processing was performed at a sampling rate of
16 kHz.
The resulting signals were combined to a set of test scenarios
containing a target speech source, an interfering speaker from
a different position and isotropic noise. Thereby the energy
ratio between target and interferer, signal-to-interference ratio
(SIR), was varied between �10 dB, 0 dB, 10 dB and 1 dB,
as well as the energy ratio between target and noise field,
signal-to-noise-ratio (SNR). The resulting overall acoustic
complexity is then represented by the signal-to-noise-plus-
interferer-ratio (SINR). In the anechoic environment, the
target was located in the left semi-circle at DOAs ranging
from �180

� (back) to 0

� (front) in steps of 30�. The interfer-
ing speaker occurred on the whole circle around the head in
the range from �165

� to +165

� in steps of 30�. In the office
environment the source locations were limited to the frontal
semi-circle, such that the target position ranged from �90

�



time instance t is only used if

dIAC(t)

dt
� 0. (4)

B. Probabilistic data model

Feature  →

IA
C

  →

αi αj

FIG. 2. Illustration of feature distribution in dependence of
IAC. Distances between sloped lines scematically sketch den-
sity of the feature dsitributions. The bell-shaped curves on
the horizontal lines represent modeled probability density on
a given IAC level depicted on the ordinate.

Desired output of the model:

P (↵|IPD, ILD, IAC). (5)

A training data set delivers the joint pdf of the interaural
parameters conditioned on ↵ and IAC:
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(5) into an expression of (6). DOA has a uniform prior
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P (IPD, ILD|↵, IAC) = P (IPD|↵, IAC) · P (ILD|↵, IAC).
(10)

Details of the according statistical analysis are found in
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model is as follows:

P (↵|IPD, ILD, IAC) =
P (IPD|↵, IAC) · P (ILD|↵, IAC)

Z

(11)

with Z =
X

↵

P (IPD|↵, IAC) · P (ILD|↵, IAC)

(12)

By this means a probability map of the direction of ar-
rival in each time instance as shown in Figure 3 is gener-
ated.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−60
−30

0
30

60

0

0.25

0.5

Time (s)
DOA (°)

P(
α

)

FIG. 3. Exemplary probability map of the direction of arrival
generated by the probabilistic framework as described in this
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In the modeling process the IAC is regarded on a non-
linear scale proportional to the Fisher Z-transform, see
Lüddemann et al. (2009); Durlach et al. (1986); Culling
et al. (2001) for details:
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Yields IAC values in dB.

• Culling et al. (2001): Relation between equivalent
SNR and d’ is approximately linear

Empiric distribution functions are modeled as prob-
ability density functions conditioned on the IAC value
coming along with the data for each direction.
dB-scaled ILD is modeled as a Gaussian distribution:
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Being a circular quantity the IPD is modeled with a
wrapped Gaussian distribution, the analogue pdf with
mean direction � and mean resultant length ⇢:
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This distribution does not have a closed-form expression,
thus the von Mises distribution was used instead. Its pdf
is very similar to the wrapped Gaussian distribution in
terms of its shape:
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Speech covariance Noise covariance

PrS+PrN prob. model (Eq. 2) prob. model (Eq. 5)
FfS+PrN free-field HRTF model prob. model (Eq. 5)
PrS+IsoN prob. model (Eq. 2) isotr. model
FfS+IsoN free-field HRTF model isotr. model

Table 1. Summary of combined models for generalized
speech covariance and noise covariance estimation, that were
investigated experimentally.

In order to compute in an analogous way the noise co-
variance matrix conditioned on speech source direction ✓, we
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with a confidence threshold p0 and scaling factor �. The ij-
element [R(k|✓)]ij of ✓-conditioned noise covariance matrix
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2.3. Multi-channel signal enhancement

While the proposed scheme is not specific to a particu-
lar multi-channel enhancement algorithm, we employ the
minimum-variance distortionless-response (MVDR) method.
In the spectral domain implementation used here, it uses
a projection operator w(✓, k) that is applied to the multi-
channel short-term Fourier transform x(n, k) of the input
signals. Output signals are obtained as

y(n, k|✓) = w
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The projection operator w is obtained from a steering vector
d and noise covariance matrix R as
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The steering vector d(k|✓) for speech source direction ✓ is
obtained from the generalized speech covariance matrix Eq. 2
by choosing an arbitrary but fixed reference channel i⇤ and
extracting the normalized i

⇤-th row elements according to

dj(k|✓) = [�(k|✓)]i⇤j / |[�(k|✓)]i⇤j |, (8)

retaining inter-microphone phase and neglecting (possible)
level differences. The maximum-a-posteriori speech position
✓

⇤ was chosen as the location value for the MVDR filter.
For baseline comparison, steering vector and noise-

covariance were also derived from an anechoic free-field
model with head-related transfer functions (in case of d)
and a free-field isotropic noise model (in case of R). See
Tab. 1 for a summary of investigated conditions for combined
source- and noise-model.

3. EXPERIMENTS

We evaluated the signal enhancement performance of the
MVDR beamformer (7) with parameters estimated by all
approaches summarized in Tab. 1. A six-channel binaural
hearing aid geometry setup was used for MVDR beamform-
ing of which four channels (front and rear microphone pairs)
were employed for estimation of the spatial source proba-
bility map as described in [1] with discrete azimuth angles
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�. STFT frame length was
10 ms with 25 % shift. For the estimation of the steering vec-
tor and the noise covariance matrix, we utilized the a-priori
known target DOA, indicated by ˆ

✓, to select either the accord-
ing probability weighting from the map for the estimation or
the model steering vector. Groundtruth DOA values were
used in order to separate localization accuracy [1] from the
filter estimation approach pursued here. As reference channel
in the spatial filter, the left frontal hearing aid microphone
was used. The parameters for the noise covariance estimation
were set to p0 = 0.99 and � = (1 � p0)/maxt2T (p(
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with T containing all 10 ms-samples from the current test
signal. No temporal smoothing, apart from the weighting
with p
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(✓, n), was used.
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All acoustic signals used in the experiments were generated
by filtering single-channel speech signals with head-related
impulse responses (HRIR) captured with a binaural hearing
aid setup with three microphones on each side of the head
[15]. Measurements for various source positions from two
different environments were used: an anechoic chamber and
an office room. Three-seconds-long speech signals, each
from the same (female or male) speaker, were randomly sam-
pled from the TIMIT speech database [16]. A head-related
isotropic noise field was obtained by convolution of speech
shaped noise [17] with anechoic HRIRs from the whole hori-
zontal plane. Processing was performed at a sampling rate of
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The resulting signals were combined to a set of test scenarios
containing a target speech source, an interfering speaker from
a different position and isotropic noise. Thereby the energy
ratio between target and interferer, signal-to-interference ratio
(SIR), was varied between �10 dB, 0 dB, 10 dB and 1 dB,
as well as the energy ratio between target and noise field,
signal-to-noise-ratio (SNR). The resulting overall acoustic
complexity is then represented by the signal-to-noise-plus-
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containing a target speech source, an interfering speaker from
a different position and isotropic noise. Thereby the energy
ratio between target and interferer, signal-to-interference ratio
(SIR), was varied between �10 dB, 0 dB, 10 dB and 1 dB,
as well as the energy ratio between target and noise field,
signal-to-noise-ratio (SNR). The resulting overall acoustic
complexity is then represented by the signal-to-noise-plus-
interferer-ratio (SINR). In the anechoic environment, the
target was located in the left semi-circle at DOAs ranging
from �180

� (back) to 0

� (front) in steps of 30�. The interfer-
ing speaker occurred on the whole circle around the head in
the range from �165

� to +165

� in steps of 30�. In the office
environment the source locations were limited to the frontal
semi-circle, such that the target position ranged from �90

�



Use estimated source and noise covariances to form 
MVDR projection vector

Signal enhancement with MVDR
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Evaluation: Data

6-channel bilateral hearing aid setup 

Head-related impulse responses for anechoic and reverberant 
(office) environment (database [Kayser et al., 2009]) 

Target speech: TIMIT utterances 

Interfering speaker: TIMIT utterances, different spatial position 

             SIR: -10dB, 0dB, 10dB and ∞dB  

Noise: head-related isotropic noise field, speech shaped spectrum  

             SNR: -10dB, 0dB, 10dB and ∞dB 
Target and interferer positions: 

            6832 position combinations in anechoic environment 
        3472 in office environment



Evaluation: Acoustic parameter models

Comparison of: 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Results: Anechoic test conditions

Anechoic environment
Input SINR improvement (dB)
SIR SNR PrS FfS PrS FfS

(dB) (dB) +PrN +PrN +IsoN +IsoN

-10 -10 3.0 9.6 -1.0 6.9
-10 0 7.7 15.1 -1.5 8.9
-10 10 12.9 20.8 -0.8 10.0
-10 1 18.6 26.3 0.8 10.2

0 -10 1.7 7.8 1.4 6.1
0 0 2.6 9.1 2.2 6.9
0 10 7.0 13.4 2.6 8.8
0 1 16.3 20.8 3.7 10.2

10 -10 1.7 7.6 1.7 6.1
10 0 1.5 7.3 3.5 6.2
10 10 2.7 8.1 4.6 6.9
10 1 12.9 14.7 5.8 10.2
1 -10 1.9 7.6 1.7 6.1
1 0 0.9 7.1 3.5 6.1
1 10 2.2 6.3 4.6 6.1

Office environment
Input SINR improvement (dB)
SIR SNR PrS FfS PrS FfS

(dB) (dB) +PrN +PrN +IsoN +IsoN

-10 -10 6.0 4.5 2.5 3.7
-10 0 8.2 7.4 1.4 3.4
-10 10 10.2 9.8 1.6 3.3
-10 1 10.9 10.6 2.1 3.2

0 -10 5.6 2.7 5.0 4.3
0 0 3.8 2.0 4.0 3.7
0 10 5.0 3.6 4.2 3.4
0 1 6.4 5.4 4.3 3.3

10 -10 6.1 2.5 5.3 4.4
10 0 3.1 -0.0 5.2 4.3
10 10 1.0 -1.1 5.6 3.8
10 1 1.4 0.1 6.1 3.2
1 -10 6.3 2.6 5.1 4.5
1 0 4.1 0.1 5.2 4.6
1 10 0.7 -2.5 6.4 4.5

Table 2. Improvement in SINR obtained with probabilist estimates of speech (PrS) and noise (PrN) covariance, and with a-
priori known free-field HRTF speech (FfS) and isotropic noise (IsoN) models, respectively in all possible combinations. Results
shown for the anechoic (left) and reverberant office (right) environment.

to +90

� and the interferer from �75

� to +75

�
30

� same step
size. Four realizations of all possible combinations of target
and interferer positions, SIR and SNR were generated result-
ing in 6832 signals in the anechoic environment and 3472 in
the office room.

3.2. Results

In Tab. 2 the signal enhancement performance measured in
terms of SINR improvement of the four approaches under test
is summarized. For both environments, anechoic and office,
average results over all source position combinations, the four
realizations of each and both reference channels are shown
dependent on the input SIR and SNR. In the anechoic environ-
ment (left table) the combination of the a-priori known steer-
ing vector and the estimated noise covariance matrix is most
successful in all conditions, yielding SINR enhancement up to
26.3 dB. In the office room, where model steering vectors do
not provide perfect information, using probabilistic estimates
for both parameters (PrS+PrN) yields the best results for con-
ditions with low to moderate SIR followed by the FfS+PrN
combination. The latter, however, does not achieve much sig-
nal enhancement for SIRs above 0 dB and is even detrimental
in some cases. For these SIR conditions the combination of
estimated steering vector and noise model (PrS+IsoN) outper-
forms the other approaches.

4. SUMMARY AND DISCUSSION

In this contribution, we presented an approach to the estima-
tion of steering vector and noise covariance matrix for MVDR
beamforming. Based on spatial source presence probabil-
ity maps, obtained with a machine learning-based localiza-
tion method, target source activity was measured and steering
vectors were estimated in the STFT domain with the result-
ing probabilistic weights. From target source probability, the
inversely related noise probability was derived and used to
estimate noise statistics. Incorporating these estimates into
the spatial filters of an MVDR beamformer, signal enhance-
ment performance was compared to an entirely HRTF-model-
based approach and to two partially model-based approaches,
showing that spatial probability delivers suitable information
for robust spatial filter estimation. However, the probabilistic
estimation-based approach generalized well to a reverberant
environment and was shown to be appropriate for real-world
scenarios where a-priori knowledge is not available. The pro-
posed scheme for noise covariance estimation may account
for mixtures of a diffuse noise field and localized interfering
speech without the need for additional parameter estimation.
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inversely related noise probability was derived and used to
estimate noise statistics. Incorporating these estimates into
the spatial filters of an MVDR beamformer, signal enhance-
ment performance was compared to an entirely HRTF-model-
based approach and to two partially model-based approaches,
showing that spatial probability delivers suitable information
for robust spatial filter estimation. However, the probabilistic
estimation-based approach generalized well to a reverberant
environment and was shown to be appropriate for real-world
scenarios where a-priori knowledge is not available. The pro-
posed scheme for noise covariance estimation may account
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Results: Reverberant test conditions 
(nb: training was anechoic)
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1 -10 6.3 2.6 5.1 4.5
1 0 4.1 0.1 5.2 4.6
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Table 2. Improvement in SINR obtained with probabilist estimates of speech (PrS) and noise (PrN) covariance, and with a-
priori known free-field HRTF speech (FfS) and isotropic noise (IsoN) models, respectively in all possible combinations. Results
shown for the anechoic (left) and reverberant office (right) environment.
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size. Four realizations of all possible combinations of target
and interferer positions, SIR and SNR were generated result-
ing in 6832 signals in the anechoic environment and 3472 in
the office room.

3.2. Results

In Tab. 2 the signal enhancement performance measured in
terms of SINR improvement of the four approaches under test
is summarized. For both environments, anechoic and office,
average results over all source position combinations, the four
realizations of each and both reference channels are shown
dependent on the input SIR and SNR. In the anechoic environ-
ment (left table) the combination of the a-priori known steer-
ing vector and the estimated noise covariance matrix is most
successful in all conditions, yielding SINR enhancement up to
26.3 dB. In the office room, where model steering vectors do
not provide perfect information, using probabilistic estimates
for both parameters (PrS+PrN) yields the best results for con-
ditions with low to moderate SIR followed by the FfS+PrN
combination. The latter, however, does not achieve much sig-
nal enhancement for SIRs above 0 dB and is even detrimental
in some cases. For these SIR conditions the combination of
estimated steering vector and noise model (PrS+IsoN) outper-
forms the other approaches.

4. SUMMARY AND DISCUSSION

In this contribution, we presented an approach to the estima-
tion of steering vector and noise covariance matrix for MVDR
beamforming. Based on spatial source presence probabil-
ity maps, obtained with a machine learning-based localiza-
tion method, target source activity was measured and steering
vectors were estimated in the STFT domain with the result-
ing probabilistic weights. From target source probability, the
inversely related noise probability was derived and used to
estimate noise statistics. Incorporating these estimates into
the spatial filters of an MVDR beamformer, signal enhance-
ment performance was compared to an entirely HRTF-model-
based approach and to two partially model-based approaches,
showing that spatial probability delivers suitable information
for robust spatial filter estimation. However, the probabilistic
estimation-based approach generalized well to a reverberant
environment and was shown to be appropriate for real-world
scenarios where a-priori knowledge is not available. The pro-
posed scheme for noise covariance estimation may account
for mixtures of a diffuse noise field and localized interfering
speech without the need for additional parameter estimation.
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in some cases. For these SIR conditions the combination of
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nal enhancement for SIRs above 0 dB and is even detrimental
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estimated steering vector and noise model (PrS+IsoN) outper-
forms the other approaches.

4. SUMMARY AND DISCUSSION

In this contribution, we presented an approach to the estima-
tion of steering vector and noise covariance matrix for MVDR
beamforming. Based on spatial source presence probabil-
ity maps, obtained with a machine learning-based localiza-
tion method, target source activity was measured and steering
vectors were estimated in the STFT domain with the result-
ing probabilistic weights. From target source probability, the
inversely related noise probability was derived and used to
estimate noise statistics. Incorporating these estimates into
the spatial filters of an MVDR beamformer, signal enhance-
ment performance was compared to an entirely HRTF-model-
based approach and to two partially model-based approaches,
showing that spatial probability delivers suitable information
for robust spatial filter estimation. However, the probabilistic
estimation-based approach generalized well to a reverberant
environment and was shown to be appropriate for real-world
scenarios where a-priori knowledge is not available. The pro-
posed scheme for noise covariance estimation may account
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speech without the need for additional parameter estimation.
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cf. Eq. 1, to time signal y using a frame rate l of 10 ms and an 
analysis block length b of 25 ms that is windowed by the Hann 
envelope wb (Eq. 2). 
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The magnitude of the complex STFT spectrogram is com-
puted prior to Mel-frequency warping using the transformation 
matrix Fk,m (Eq. 3). Triangular shaped filters are spanned ac-
cording to Mel-scale along the frequency axis ranging from 
100 Hz to the Nyquist frequency. The number of Mel-bands M 
varies with the sampling rate. Hence, 23 Mel-bands are used at 
8 kHz and 31 at 16 kHz. Amplitudes of the Mel-spectrogram 
are compressed by a logarithmic function before further pro-
cessing: 
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Next, the cepstrogram Ỹc is computed by applying a discrete 
cosine transform (DCT) along the Mel-frequency axis of the 
log-Mel-spectrogram Ŷm (Eq. 4). 
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Similar to MFCC feature extraction, the first 13 DCT coef-
ficients including the 0th are retained and others are discarded. 
Now the AMFB is employed to cepstral coefficients in order 
to decompose features into different sub-band of temporal AM 
frequency components. 

The AM filter functions qi (Eq. 5), which form the AMFB, 
are complex exponential functions that are windowed using 
zero-phase Hann envelopes denoted by Wi (Eq. 6). Index i 
identifies the filter, whereby I corresponds to the total number 
of complex AM filters. 
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The AM filtered cepstrogram Qc,i is derived by convolution 
of Ỹc and qi (Eq. 7). The AMFB used here involves CF and 
BW settings proposed by Dau et al. [21]. Thus, two regions of 
different time and frequency resolution are applied. The first 
ranges from 0 to 10 Hz modulation frequency and has a con-
stant absolute BW of 5 Hz. At amplitude modulation frequen-
cies higher than 10 Hz, the AMFB setting follows a constant 
relative CF to BW ratio with a constant Q value of 2, i.e., a 
logarithmic scaling. In order to preserve a frame rate of 10 ms, 
which is typical for ASR systems, we limit the AMFB to fre-
quencies below 50 Hz. Furthermore, the filter spacing used by 
Dau et al. corresponds to a relatively sparse sampling of the 
AM domain, i.e., neighboring AM bands overlap at their -3 dB 
attenuation points. Following these instructions, five AM 
filters are derived, whose CF and BW settings are given in 
Table I. Note that different AM filter overlap sizes are dis-
cussed and evaluated in Section IV. 

Usually, cues that contain information about modulation 
phase are discarded within the AMFB for frequencies that 
exceed 10 Hz by extracting the Hilbert envelope. However, 
AM filters with lower center frequencies partly preserve mod-
ulation phase by using real filter parts instead of computing 
magnitude outputs. The intention of keeping phase infor-
mation is to sustain the temporal order of frequency compo-
nents within the analysis window. This is of higher relevance 
if narrow-band filters with large temporal context are used, 
such as within the AMFB. For comparison, phase structure of 
acoustic frequencies is of minor relevance, due to a relatively 
small temporal extension of the analysis block, which is typi-
cally 25 ms. Fig. 2 illustrates real and imaginary filters parts of 
the AMFB and their corresponding normalized magnitude 
frequency responses. In contrast to the AMFB recommended 
by Dau et al., real and imaginary parts of each AM filter are 
maintained in our implementation, except for the DC filter, 
because its sinusoidal carrier is zero. In addition we subtract 
the mean of each filter whose CF is unequal to zero. Examina-

 
Fig. 2.  Impulse and magnitude frequency response of real and imaginary 
filter parts used within the AMFB. Filter center frequencies are denoted by fc. 

TABLE I 
FILTER CENTER FREQUENCY (CF) AND ACCORDING -3 DB BANDWIDTH (BW) 

SETTINGS OF THE AMFB. Bi DENOTES LENGTH OF IMPULSE RESPONSES IN 
SAMPLES AT A SAMPLING RATE OF 100 HZ. 

 Constant absolute BW Constant relative BW 
Filter ID #1 #2 #3 #4 #5 
CF 0 Hz 5 Hz 10 Hz 16.67 Hz 27.78 Hz 
BW 5 Hz 5 Hz 5 Hz 8.33 Hz 13.89 Hz 
Bi 28.84 28.84 28.84 17.30 10.38 
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Conclusion

Supervised learning for probabilistic source localization: 
efficient: linear projection plus 1-dim. non-linearity 
derived from training data, no subsequent adaptation 

(Re-) Estimation of acoustic parameters 
based on learned anechoic space representation 
adaptation per utterance to new acoustic environment 

Results 
Anechoic environment: partly-fixed geometry model best 
Reverberant environment: full prob. re-estimation best
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