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To Do Tangents
* Resonance * Conceptual details (e.g., convolutions)
e Highlight “interdisciplinary” approaches e Resonance in the inner ear?

* Nonlinear/active oscillators
e Other examples in biology



Tonotopy

Job(s) of the inner ear:
e transduction
* spectral decomposition
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An Acoustic Pris

Basilar membrane

Zweig et al. (1976)



Tonotopy (re speech)
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EXspectrogram.m
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An Acoustic Pris

Basilar membrane

Theme/Question:
What is the (basic) physical basis for “tonotopy”?

Hint: It ain’t a traveling wave per se.... (though such provides a useful framework)



Tonotopy & Traveling waves

Mammalian Cochlea Uncoiled
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Window C.D. Geisler (modified)

(one possible) Model: Non-uniform transmission line




Big picture theme/question here:

What is the (basic) physical basis for “tonotopy”?

Foundation: Harmonic Oscillator

i = —w’r — v + Acos (wt)

O
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Key (steady-state) principle: Resonance



Foundation: Resonance
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tude as function of
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but variable frequency.
(b) Phase difference &
as function of driving
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Aside: Spectral analysis
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Time and frequency are
“separated”.....

..... but you don’t have
one without the other




EXspectrogram.m
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EXhoResonance.m

Focal Point
Relatively simple
Matlab code...
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Focal Point

Magnitude

(unwrapped) Phase [cycs]
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> Exploring a handful of approaches to demonstrate
these characteristics of resonance

> Talk is really just an interdisciplinary crash course
on linear systems theory...

Nota bene: The inner ear is not really linear per se (i.e., it is complex)
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Aside

Resonance comes in a variety of “flavors”, e.g.,:

|

=
h
A

> Externally forced 2" order
”systems” (i.e., energy is being input into them)

> Standing waves

> NMR/MRI

Stevens (2000)



Wikipedia



Numerous NMR principles relevant to

cochlear mechanics
(e.g., micro/macroscopic states, phase coherence)

Fig, 3.147a-d. Classical representation of t&:
NMR experiment. a In equilibrium the nuclez
spins are distributed in the states z and f accorc

ing to the Boltzmann distribution, b At resonanc:
and with a sufficiently strong RF field, the popul:
tions of # and ff are equalized and the spins prece:

in phase at the Larmor frequency ;. ¢ Long-
tudinal relaxation restores the equilibrium dist—
bution of the spins. d The phase coherence of 17
spins is lost by transverse relaxation. In reality t™
processes ¢ and d proceed simultaneously

Hoppe et al (1983)



Resonance: The power to evoke enduring images, memories, and emotions — - Oxford dictionary, online

Sonia de Pasqua
http://www.d-sho.com/



EXhoResonance.m

. 2

I =—wix — v+ Acos (wt)

Several basic approaches:
(all arriving at the same answer)
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4. Impulse response Il (convolve in the
time domain)

Note: Via linear systems theory, these
different “approaches” are not necessarily 5. Analytic solution Il (via eigensolutions)

mutually exclusive (e.g., convolution theorem
directly links #s 3 & 4)



T ) EXhoResonance.m
Interdisciplinary connections (i.e., basic concepts this code demonstrates)

. Mathematics
Physics » Fourier transforms
=  ODEs (e.g., Newton’s 2"¢, Hooke’s Law) =  Complex #s
= Resonance = Eigenvalues

= Notion of “steady-state” = Phase space

Engineering Numerical

= Linear systems theory = Discrete Fourier transforms (FFT)

= Convolutions = Numerically solving ODEs (e.g., Euler,
= |mpedance/Admittance RK4, adaptive step-size and associated

» |mpulse response problems)

» Transfer functions = Matlab syntax

Basic physical intuition:

o 2ndorder system: two reactive elements (i.e., energy-storing)
e energy transferred back & forth between

e there is an optimal rate for such (i.e., resonant frequency)




To Do Tangents
* Resonance * Conceptual details (e.g., convolutions)
e Highlight “interdisciplinary” approaches e Resonance in the inner ear?

* Nonlinear/active oscillators
e Other examples in biology



EXhoResonance.m

$ ### EXhoResonance.m ### 2017.02.04 CB

% Code to solve the damped (sinusoidally-) driven harmonic oscillator (DDHO)
% for a variety of driving fregs. so to buildup the "resonance curve" via

% computation of the mag/phase of the Fourier transform of the steady-state
% response. Furthermore, the analytic solution for the DDHO as well as the

% transfer function are shown to be equivalent (Fig.l)

% Damped driven Harmonic Oscillator (DDHO)

$ d"2xdt"2 = -((P.wo)"2)*x - P.gamma*dx/dt + (P.A)*sin(P.w*t)

% Regs:

% EXhoResonanceFunc.m (re ode45), rfft.m

Q
i
(0]
V)
a]

Oscillator params. and ICs Note:

.p0 = 0.0; % Initial position {0} .. . .
0 = 0.0; % Initial velocity {0} This is a slightly older version
.wo= 10; $ resonant (angular) freq {10} of the code (does not include
.gamma= 0.5; % damping coefficient {0.5} methods4&5)

Sinusoidal driving term params.

.A = 10; % Driving force amplitude {10}

.wDrive= [5 15]; % start and end angular drive fregs. {[5 15]}
.wDriveN= 25; $ # of drive freqgs. to run {25}

.tmax = 200; % Maximum time to solve [s; arb] {200}

.SR= 150; % sample rate for time step [Hz; arb] {150}

.Npoints= 8192; % Number of points in time series for FFT, must be 2"n {8192}
.plotN= 1; % boolean re plotting the waveform and spectra for one driving freq.
1}

.plotNnum= round(P.wDriveN/2); % driving freq. index to plot {round(P.wDriveN/2)}

.solveType= 1; % 0-oded45, l-hard-coded RK4 {1}
.stepF= 0; % boolean re using a fixed step-size for ode45 {0}

o0 g ) o0 W~ HJ o0 HJ Hd Hd o° HJ HJ Hd o° o0 FJ Hd Hd H o° o0 o°




EXhoResonance.m

%

5 ——- (cont)
dt= 1/P.SR; % spacing of time steps

init0 = [P.p0 P.v0]'; % Column vector of initial conditions.

tspan = [0:dt:P.tmax]; % time interval for entire computation

tW=[0:1/P.SR: (P.Npoints-1)/P.SR]; & (shorter/later) time interval for FFT window

L = length(tspan); TW = L-(P.Npoints-1); % create offset point extracting FFT window
Y ———

% create relevant freq. arrays (e.g., for FFT bin labeling)

freg= [0:P.Npoints/2]; % Note: these values are not angular (i.e., [freg]= 1/s, not
rads/s)

freq= P.SR*freq./P.Npoints;

df = P.SR/P.Npoints; % freq. spacing between bins

wDT= linspace(P.wDrive(l),P.wDrive(2),500); % create ang. freq. array for plotting
analytic solution

S+ttt

% various relevant derived quantities (used post- main for loop)

Q0= P.wo/P.gamma; ¢ "quality factor" (Note: tau=1/P.gamma=Q/P.wo, where tau is time
const. of build-up)

lambdaP= 0.5*(-P.gamma+ sqgrt(P.gamma”"2-4*P.wo"2)); % Eigenvalues, for x=0 (undriven)
lambdaM= 0.5* (-P.gamma- sqrt(P.gamma”"2-4*P.wo"2));

% Note - Can also get eigenvalues via command: eig([0 1;-P.wo”"2 -P.gamma])

Z= P.gamma+ i*(wDT- P.wo"2./wDT); % impedance (see notes above; assumes mass is
unity)

Y= 1./Z; % admittance (reciprocal of impedance)

Y ———

% grabbing driving fregs. from freq array

$%indx= find(freg>=P.fDrive(l) & freqg<=P.fDrive(2)); % find relevant indicies

indx= find(freg>=P.wDrive(l)/(2*pi) & freg<=P.wDrive(2)/(2*pi)); % find relevant
indicies

indxB= round(linspace(indx(1l),indx(end),P.wDriveN)); % one means to get the desired
subset

freqD= 2*pi*freq(indxB); % array of driving angular fregs



for mm=1:numel (fregD)
P.w= fregD(mm); % extract driving freq.

%

*** Solve in one of two ways ***

if P.solveType==

oe

use Matlab's oded5

oe

oe

tell it to actually use the specified step-size
if(P.stepF==1), options = odeset('MaxStep',1/P.SR); else options=[]; end

else

end

[t,y] = ode45(@EXhoResonanceFunc,tspan,init0,options,P);

% use 4th order Runge-Kutta code

xPoints(l) = P.p0; vPoints(l) = P.v0; % initialize ICs into dummy arrays
x= P.p0; v= P.v0; % kludge

dt= 1/P.SR; % time step

for nn=1:(length(tspan)-1)

t = tspan(nn); % Current time.

% stepl

xkl= v;

vkl= -((P.wo)"2)*x - P.gamma*v + (P.A)*sin(P.w*t);
% step 2

xk2 = v + (dt/2)*vkl;

vk2= —-((P.wo)"2)*(x + (dt/2)*xkl) - P.gamma*(v + (dt/2)*vkl)...
+ (P.A)*sin(P.w* (t+(dt/2)));

% step 3

xk3 = v + (dt/2)*vk2;

vk3= —((P.wo)"2)*(x + (dt/2)*xk2) - P.gamma*(v + (dt/2)*vk2)...
+ (P.A)*sin(P.w* (t+(dt/2)));

% step 4

xk4 = v + dt*vk3;

vk4d= -((P.wo)"2)*(x + (dt)*xk3) - P.gamma*(v + dt*vk3)...

+ (P.A)*sin(P.w* (t+(dt/2)));
apply RK4 weighting

oe

x = x + (dt/6)*(xkl + 2*xk2 + 2*xk3 + xk4);
v =v + (dt/6)*(vkl + 2*vk2 + 2*vk3 + vk4);
% store away position and velocity
xPoints(nn+l) = x; vPoints(nn+l) = v;
end
y(:,1)= xPoints'; y(:,2)= vPoints'; % repackage output

EXhoResonance.m
(cont)



o EXhoResonance.m

ySPEC= y(TW:TW+P.Npoints-1,1); % steady-state portion of waveform for FFT (cont)
sigSPEC= rfft(ySPEC);

Q

S ———

oe

wDrive(mm)= 2*pi*freq(indxB(mm)); % store away driving fregs.
mag(mm)= abs(sigSPEC(indxB(mm))); % store away SS mag.

% need to correct the phase re the duration of the window allowed for settling into steady-state
tPhase= angle(sigSPEC(indxB(mm))); % extract the phase

tPhase= angle(exp(i*(tPhase- wDrive(mm)*tspan(TW)))); % correct phase re onset

phase(mm)= tPhase;

o

% visualize relevant bits for one of the drive fregs.
if mm==P.plotNnum

o

% integrated waveform and segment extracted for spectral analysis
figure(2); clf;

hl= plot(tspan,y(:,1)); hold on; grid on;

xlabel('Time'); ylabel('Position');

title('Time Waveform of integrated solution to damped driven HO equation')
L = length(tspan); TW = L-(P.Npoints-1); % create offset point

ySPEC= y(TW:TW+P.Npoints-1,1); % steady-state portion of waveform for FFT
h2= plot(tspan(TW:TW+P.Npoints-1),ySPEC, 'r."', 'MarkerSize',3);

legend([hl h2], 'Entire waveform', 'Steady-state portion (used for FFT)')

% phase space for waveform (entire and steady-state)

figure(3); clf;

hPS1= plot(y(:,1),y(:,2)); hold on; grid on;

hPS2= plot(y(TW:TW+P.Npoints-1,1),y(TW:TW+P.Npoints-1,2), 'r.-");
xlabel('Position'); ylabel('Velocity'); title( 'Phase plane');

legend([hPS1 hPS2], 'Entire waveform', 'Steady-state portion (used for FFT)')

% plot spectra of steady-state waveform
figure(4); clf;
hSl= plot(2*pi*freq,db(sigSPEC)); hold on; grid on;
xlabel('Freq [rads/s]'); ylabel('Spectral amplitude [dB]');
hS2= plot(2*pi*freq(indxB(mm)),db(mag(mm)), 'rs'); % indicate extracted freq.
legend([hS1 hS2], 'Steady-state spectra', 'Driving freq.');
end

)

disp([num2str(100*mm/numel (fregD)),'% done']);
end



EXhoResonance.m

% ++++++tttE (cont)

% [Fig.1l] ** Mags/phases extracted from the numeric steady-state responses **

figure(l); clf;

subplot(211); hhl= plot(wDrive/P.wo,mag, 'ko', 'MarkerSize',6, 'LineWwidth',2); hold on; grid on;

ylabel( 'Magnitude');

subplot(212); hh2= plot(wDrive/P.wo,unwrap(phase)/(2*pi), 'ko', 'MarkerSize',6, 'LineWidth',2); hold on; grid on;
xlabel('Normalized (angular) angular freq (w/wo)'); ylabel('(unwrapped) Phase [cycs]');

[

++++++++

[Fig.1l]** Analytic solution ** (see French, 1971; as noted above, these expressions are
equivalent to using Fourier transforms, which implicitly assume sinusoidal steady-state, to
¥ solving the main ODE)

magT— P.A./sqrt((P.wo”2-wDT."2)."2 + ((P.gamma*wDT)."2)); % mag (theory)

o0 o°

oo

phaseT= atan((P.gamma*wDT)./(-P.wo"2+wDT."2)); % phase (theory; note sign change in denom. re
convention)
phaseT= phaseT+ phase(l)+ abs(phaseT(1)); % (kludge) correct for (arb?) phase offset in numeric solution

figure(l);

subplot(211); hh3= plot(wDT/P.wo,magT, 'r-', 'LineWidth',2);

subplot(212); hh4= plot(wDT/P.wo,unwrap(2*phaseT)/(4*pi), 'r-', 'LineWidth',2); % kludge to get unwrapping
working

[

++++++++ -+
[Fig.1l] ** "Transfer function" ** re linear systems theory (i.e., the Fourier transform of the
impulse response of the DHO)

[

[

init0 = [0 10]'; % set ICs such that there is an "impulse" at t=0
P.w= 0; % make sure to "turn off" drive
options= []; [t,yI] = oded45(@EXhoResonanceFunc,tspan,init0,options,P);

specI= rfft(yI(l:P.Npoints));
magI= abs(specI);

magI= magIl* (max(mag)/max(magl)); % scale impulse mag. re max. value of driven case
phaseI= angle(specI);
phaseI= phaseI+ phase(l); % (kludge) correct for (arb?) phase offset in numeric solution

figure(l);

subplot(211); hh5= plot(2*pi*freq/P.wo,magl, 'b--"', 'LineWidth',2); xlim([wDT(l) wDT(end)]/P.wo);

subplot(212); hh6= plot(2*pi*freq/P.wo,unwrap(2*phasel)/(4*pi), 'b--', 'LineWidth',2); % kludge to get unwrapping
working

x1lim([wDT(1l) wDT(end)]/P.wo);



EXhoResonance.m

R o
% [Fig.l] Make a legend to put it all together (re Fig.l) (CC)nt)
figure(l); subplot(211); legend([hhl hh3 hh5], 'Numeric solution re steady-state FFT',...

'Analytic solution', 'Transfer function');

S+ttt

% [Fig.5] Plot the impulse response and comparison to admittance

figure(5); clf;

subplot(221); plot(tW,yI(l:P.Npoints)); hold on; grid on; xlabel('Time [s]'); ylabel('x');
title('Impulse response (no drive; P.w=0, P.p0=0, P.v0=10'); xlim([0 tW(round(numel(tW)/3))1);
subplot(222); hI2= plot(freq,db(specl), 'LineWwidth',2); grid on; hold on; ylabel('Amplitude [dB]');
title('Transfer function (mag. of FFT of IR)'); xlim(P.wDrive/(2*pi));

subplot(224); hI3= plot(freq,angle(specI)/(2*pi), 'LineWidth',2); grid on; hold on;

xlabel( 'Frequency [Hz]'); ylabel('Phase [cycles]');

title('Transfer function (phase of FFT of IR)'); xlim(P.wDrive/(2*pi));

subplot(223);

hZa= plot(wDT,abs(Y), 'k-'); grid on; hold on; hZb= plot(wDT,abs(Z),'r.");

grid on; hold on; ylabel('Amplitude'); xlabel('Ang. requency [rad/s]'); legend([hZa

hZb], 'admittance', 'impedance');

Q

o

% for reference, also include (scaled) admittance to indicate (near?) equivalence

offset= max(db(Y))- max(db(specI)); % scaling (in dB) to match up

¢mag¥= fliplr(db(Y)- offset); % kludge

mag¥= (db(Y)- offset);

subplot(222); hI2b= plot(wDT/(2*pi),magy¥, 'r--");

legend([hI2 hI2b], 'Transf. func.',6'(scaled) Admittance', 'Location', 'SouthWest');

angleY= angle(Y)/(2*pi) - angle(Y(1l))/(2*pi); % there will be a slight vert. ofseet re angle(specI)/
(2*pi)

subplot(224); hI3b= plot(wDT/(2*pi),angleY, 'r--");

R o

% display some relevant #s to screen

disp([ 'Quality factor (P.wo/P.gamma)= ',num2str(Q)]);

disp([ 'Eigenvalues (for x=0, undriven case): ',num2str(lambdaP),' and ',num2str(lambdaM)]);
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EXhoResonance.m

(cont)
Notes
o To solve this numerically, need to turn 2nd order ODE into series of 1lst order ODEs:
dx/dt=y

dy/dt= -P.wo"2*x - P.gamma*y + (P.A)*sin(P.w*t)
o For autonomous case (i.e., no drive), can rewrite in matrix form such that
A= [0 1;-P.wo"2 -P.gamma]; straight-forward to find associated eigenvalues (see below)
o via P.solveType, user can solve either via ode45 or a hard-coded RK4
(both should yield the same solution!); Note that (surprisingly) ode45 actually seems
slower than the RK4 (the slowest is ode45 w/ the fixed step-size), possibly due to
the passing of the large-ish structure P; also note that the default ode45 routine
(i.e., adaptive step-size) introduces harmonic disortions in the spectra
due to its nonlinear nature
o For the analytic solution (below manifest as magT and phaseT), the
expression used below, as derived in French (1971) for the steady-state,
is exactly the same as if one simply put in the Fourier transform and
solved for the resulting magnitude and phase [confirmed on the back of an
envelope; let x(t)= X(w)exp(i*w*t) and plug back in, solving for X(w); note then
that magT=abs(X) and phaseT= angle(X)]
o There are a few minor kludges below [e.g., vertical adjustment of the
analytic solution so to match the (arbitrary?) ref. phase of the numeric
solution)
o Impedance (Z) for DDHO is (by definition) the complex ratio of the driving
force and the (steady-state) velocity (see 4080W2016L10REF.pdf). Real part of Z (resistance)
describes energy loss while imaginary part (reactance) describes energy storage
o Comparison of the mags. for the transfer function and admittance
(Fig.5, top right) are a bit kludgy (unsure why fliplr was needed) and
off (worser overlap as you move away from wo)



EXhoResonanceFunc.m

function dy = EXhoResonanceFunc(t,y,P)
Damped driven HO

oo

% d"2xdt"2 = -((P.wo)"2)*x - P.gamma*dx/dt + (P.A)*sin(P.w*t)
% Note: y(1l) = x, y(2)= dx/dt

dy = zeros(2,1); % A column vector to be returned

dy(1l) = y(2);

dy(2) -((P.wo)"2)*y(l)- P.gamma*y(2)+ (P.A)*sin(P.w*t);



oo

RFFT: scaled real FFT, X=rfft(x)

Returns the positive-frequency half of the transform X=FFT(x).
The transform X is normalized so that if {x} is a sine wave of
unit amplitude and frequency n*df, then X[n]=1.

Usage: X=rfft(x)

If x is N points long, NF=N/2+1 complex points are returned.
See also IRFFT, FAST, FSST, FFT, IFFT,

o0 o0 oo

0% o°

oo

function X=rfft(x)
[m,n]=size(x);
if (m==1 | n==1)
% original...
N=length(x)/2+1;
xc=fft(x);
X=xc(l:fix(N));
else

o

% do it column-wise...
N=m/2+1;
xc=fft(x);
X=xc(l:fix(N),:);

end

X = X / (length(x)/2);
return

rfft.m



Approach 1 — Numeric + FFT

(a)

Fig. 4-11 (a) Re- (b)

sponse of an un-
damped harmonic os-
cillator to a periodic
driving force, as de-
scribed by Eq. (4-19).
This beat pattern
would continue in-
definitely. (b) Tran-
sient behavior of a
damped oscillator
with a periodic driving
force off resonance.
(¢) Transient behavior
at exact resonance, (c)
showing smooth
growth toward steady
amplitude. (Photos
by Jon Rosenfeld,
Education Research
Center, M.I.T.)

2
_wo

French (1971)

EXhoResonance.m

r — i + A cos (wt)



) EXhoResonance .m
Approach 1 — Numeric + FFT

i = —w?x — v + Acos (wt)

U

L m mmmm -




Approach 1 — Numeric + FFT

build-up time Note: Resonance takes time...

\l
L

| ~steady-state

x() = A() [1-e"7]

T=1/y=0/w,

Response Amplitude

“

— Hence the importance of
“steady-state”




EXhoResonance.m

Approach 1 — Numeric + FFT

w f wv

i = —w?x — v + Acos (wt)

g

M
——E

y s

L n m um

Compute the FFT to extract the magnitude (and phase; not shown)

i
‘ M 50 T T T T T T T T T
Steady-state spectra
O Driving freq.
{ |
ﬂ !H \ wu I l L ﬂ|
60 11| 120 140 -50 F —
o 100
S
. )
Can also plot in phase space... 3 -150
a
Phase plane g
— - I 200
°
8
@ 250
-300 # —
g -350 T
>
_400 | | Il Il | | Il Il
0 50 100 150 200 250 300 350 400 450 500
Freq [rads/s]




so tion to dam d d
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Approach 1 — Numeric + FFT
é

: HMH Hmum\\ R
\\

\ *u

EXhoResonance.m

— End up w/ the black circles....

Magnitude

(unwrapped) Phase [cycs]

285
€  Numeric solution re steady-state FFT
2 - Analytic solution
= == Transfer function
1.5
1+
0.5

— | | | | | | |
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Normalized (angular) angular freq (w/wo)



. . EXhoResonance.m
Approach 2 — Analytic solution

F,/m

Aw) =

[(wg — w2)2 + (7w)2]1/2 Can arrive here in a variety of ways
(including Fourier transforms; see notes at
end)

YW

0(w) = arctan

2 2
w* — ws
= End up w/ red line
Amplitude
A 2.5 T T T T T T T T
T ©  Numeric solution re steady-state FFT
2+ Analytic solution T
° = == Transfer function
815
Z
g
0.5

(unwrapped) Phase [cycs]

T T ] -0.8 I | | 1 1
0.5 1 2 0.5 0.6 0.7 0.8 0.9 1 11 1.2 1.3 1.4 1:5

Normalized (angular) angular freq (w/wo)



Approach 3 — Transfer Function

Impuls1e response (no drive; P.w=0, P.p0=0, P.v0=10 G Transfer function (mag. of FFT of IR)

0.5

X
o
—
_—
=
=
=
S
s
g
N
Amplitude [dB]

o0 -0 = Transf. func.
V — — (scaled) Admittance
‘1 ‘ | : -60 - - |
0 5 10 15 1 1.5 2
Time [s]
20 0Transfer function (phase of FFT of IR)
admittance
impedance -01 ¢
15 A -
g o
B % -0.2
'Té_ 10 '6'
0 _
< o 0.3
57 o
-0.4
0 ‘ -0.5 ' . .
2 10 15 1 1.5 2

Ang. requency [rad/s] Frequency [HZ]

EXhoResonance.m



Impulse Response

05 “Impulse response”
' h(x) (this fully characterizes
the “system”)
0
0.5 N/ X
Input: Incoming 8 2 10 1 2 3 Output: “filtered”
“signal” signal
(arbitrary) (combination of the
* p— system and the input)
1.5 ' ' ' ' - :
s(x) 40 g(x)
1 20
0.5 0
() h(x) Pg(X)-20
0 -40
-0.5 -60
X -80 X
T3 2 4 0 1 2 3 5 0 5

Fig. 4.11. Transmission of a signal. The transmitted signal is given by the convolution of the
signal s(x) with the system’s impulse response h(x)

Buzug (2008)



Aside: Impulse

F
Resonance T -
U |
CARL A. LUDEKE e e e
JOURNAL OF APPLIED PHYSICS ‘-——-—‘%E——J arr _l z
B sm o

VOLUME 13, JULY, 1942 F16. 4. The discontinuous force F supplied by the

~ motor in Fig. 3, as a function of time ¢.

md’x/dt*+Bdx/di+kx
=>_A, sin nwt+>_B, cos nwt.

A, sin (nwt— ¢,)

x= Z[(k — mn’w?) 2+ B2 2w b

B, cos (nwt—a,,)

+2 :
[ (k—mn2w?)?+ 52122 ]}




Aside: Impulse

0.9

0.8

Time domain Spectral domain

Time Waveform Spectrum

T T T =71

Magnitude [dB]

25

-100f

-2001-

-3001-

Phase [cycles]

—400}

20 40 60 80 100 120 140 160 180 200 500,

5 10 15
Time [ms]

Frequency [kHz]

Impulse (i.e., a “click”) has a flat magnitude
(this is also a good place to mention the notion of a ‘group delay’)

25



Ex. Acoustic Impulse Response

-
- ~ -

——————

early reflections

TSI

L

direct path

> \

N\

L
G
>

&

g(x) = L{s(x)}

Room response (g) “filters” an

input sound (s)

g(x) = s(x) < h(x) = [ s(E)h(x - §)d¢

Room response (g) is just “convolution” between s and room’s
impulse response (/)

— All the relevant bits of the room’s acoustics are contained in % (which we can easily measure!)

Pulkki & Karjalainen (2015)



Transfer functions

position

1

\\\%\\\\
i

- The “transfer function” is simply the Fourier
transform of the impulse response

Amplitude Spectral
. smally  impulse response

10 aka the transfer

Temporal function

impulse response

1 IIIIlIl

,,,,

L IIlIIII

time 05 1 2

Buzug (2008)



Aside: Impedance & Pole/zero descriptions F
LE] Ll 2 O

r+yr+w,x=—e
m

rwt

Fo.t 7+ (—mw?+k+iwb) , k
— = , =b+1|mw— —
T T - W w

A

Real part of Z (resistance) describes energy loss while imaginary part
(reactance) describes energy storage

Poles and Zeros of a transfer function are the frequencies for which the value of the denominator and numerator of transfer function becomes zero respectively. The values
of the poles and the zeros of a system determine whether the system is stable, and how well the system performs. Control systems, in the most simple sense, can be
designed simply by assigning specific values to the poles and zeros of the system.

https://en.wikibooks.org/wiki/Control_Systems/Poles_and_Zeros

Useful reference:
http://web.mit.edu/2.14/www/Handouts/PoleZero.pdf

Note: Electrical engineers commonly use complex frequency (s)
representation, tied back to Laplace transforms



. EXhoResonance.m
Approach 3 — Transfer Function

pul: 3 (no drive; P.w=0, P.p0=0, P.v0=10 o Transfer function (mag. of FFT of IR)
)
o.s‘\‘h‘w & -30
i .
I E
< ol §
(L 2
05 ‘ W < .50
-0. | o

M U Transf. func.
U — — (scaled) Admittance

e S = End up w/ dashed blue curve
Time [s]
0 0Trﬂnsfer function (phase of FFT of IR)
admittance 2.5 T T T T T T T T T
15 +  impedance '_—0.1
@ N R
8 e ©  Numeric solution re steady-state FFT
=1 P . .
£ 10 a 2 Analytic solution N
3 .
£ oS = = Transfer function
o
5 o [}
- ©
=
D5 10 15 08 1 15 2 c
Ang. requency [rad/s] Frequency [Hz] g)
=

(unwrapped) Phase [cycs]

-0.8 | I | I | I | I |
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Normalized (angular) angular freq (w/wo)



. EXhoResonance.m
Approach 4 — Convolve the impulse response

Convolve (in time N W ﬂ
domain) input drive
sinusoids w/ system's
impulse response,
then compute the FFT

Sinusoidal drive
o
1

———

0 2 4 6 8 10 12 14 16 18 20
1 T T T T T T T
@ 05 -
o
Q
3
2 Of i
Note: When convolving the 0
. . =
impulse response and the drive, Q
the initial transient is apparent, so E-05F ]
we use the "long" time window
| | | | |

and extract the "steady-state" -1 I I I I
0 2 4 6 8 10 12 14 16 18 20

portion of the convolved response
Time [s]



Aside: Convolutions et al....

Convolution Crosscorrelation  Autocorrelation

fxg f+g fxf
Zljjreejieac=ijyi:
_A A AN e [ LIN




Aside: e.g., Microscope Imaging

object image

€3 - €3
-

S

C . — .
point psf

“Within some quite general limitations, the
object (specimen) and image are related by an
operation known as convolution. In a
convolution, each point of the object is replaced
by a blurred image of the point having a relative
brightness proportional to that of the object
point. The final image is the sum of all these
blurred point images. The way each individual
point is blurred is described by the point spread
function (PSF), which is simply the image of a
single point.”

l..ooo" oo'o....
B ‘:oo... o..o:‘) _>

o

FIGURE 23.1. Diagram showing how a single point is imaged as the PSF by
a microscope, and thus that the image of an extended object is the convolution
of the object with the PSE.

Pawley (ch.23)



Aside: Connections to tomography (e.g., CT) & Radon transforms

Object Space

Fourier-Slice Theorem

D S

F,

Radon Space Fourler Space

Fig. 5.15. Schematic summary of the relations among the spatial object domain (shown as an
axial abdomen tomogram), the Radon space (given over an interval of 180° from the object),
and the Fourier space (only absolute values are shown). The Fourier domain results directly
from the spatial domain by a two-dimensional Fourier transform of the object, but can also
be obtained by the Fourier slice theorem using a set of one-dimensional Fourier transforms
of the projection profiles in the Radon space

Buzug (2008)



_ EXhoResonance.m
Approach 4 — Convolve the impulse response

“’W MM T T

e

Bl /\} )\\ M ) \l}

5 | | 1

100”‘“\“] W‘/ \”JHJ N‘}w ! = End up w/ the green +
1F I T T T ] | 2.5 : : . . . | | . .

- .o[llr\\' | ‘// SAAAAAAAAAAA A “ i /\ i
L é» L |
Convolution Crosscorrelation  Autocorrelation 0.5 Wf” l | Ik’ﬁrﬁw%;

f I_l f I—I f I—l O0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
AN AN I

f: x faf 0 GO gt - . . . | . |
*9 /ﬁ\ 9 A /&\ 'g‘ . ©  App.1 - Numeric integ. & FFT
ijjierrefjinmijieog, i
_IZEI_ _[L _[l]_ _[[L % ‘ + App:4 - Convolution re impulse resp.
AL —_m_ g 021 ‘ App.5 - Eigensolution .
g
© 03 .
&
. . S -04r i
- Now do this for a variety of s Soe.
.05 ! ! ! ! ! ! RO e e Dty ey

different drive frequencies... 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Normalized (angular) angular freq (w/wo)



Approach 5 — Eigensolutions

Determine eigenvalues for
x=\dot{x}=0 (either
numerically or analytically)
as the resulting
eigensolution, which is
equivalent to the impulse
response, then compute
Fourier transform via FFT

eigensolution)

Magnitude [dB]

-20

w
o

A
o

(o))
o

-60

— 2. \=a+i3

imag: A=a+i3
real: A=a-if3
imag: A=a-i3

1 1.5 2
Frequency [HZ]

Magnitude [dB]

EXhoResonance.m

" —

1.5 2
Frequency [HZ]



Approach 5 — Eigensolutions

X (eigensolution)

Magnitude [dB]

&
<]

VO S [E———
osfVI RN Y Y A Ty
\/ \I N \"' \l \I —-— ;rer|ag: A:nl-i,i
ol k! by il vy
i h | Al LY N8
Y
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S
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S

o
=]

Magnitude [dB]
X o o

)

1.5
Frequency [HzZ]

A

1.5 2
Frequency [Hz]

EXhoResonance.m

- End up w/

2.5 T T T T T T T T T
2r 4
8
E 1.5 n
5
S 1+ -
=
05 n
‘:"
0 e > L I ! I . i
0.5 0.6 0.7 0.8 0.9 1.4 1.5
0 SO =R O X - T T T T T T
'g‘ ©  App.1 - Numeric integ. & FFT
P L App.2 - Analytic solution |
o -0.1 .
;’ == = App.3 - Transfer function
% +  App.4 - Convolution re impulse resp.
& -0.2 App.5 - Eigensolution B
T
2 -03 B
g
S -04 n
g .
- .05 ! ! ! ! ! ! ok ol e SRR S
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 15

Normalized (angular) angular freq (w/wo)



. 9 . | ] ( t )
2.5 T T T T T T T T T
2 -
3
2 1.5
5
S 1+
=
0.5
0
0.5
0 =" T T T T
'@ ©  App.1 - Numeric integ. & FFT
3-01F App.2 - Analytic solution |
;‘ ’ == = App.3 - Transfer function
% +  App.4 - Convolution re impulse resp.
c 02 Eigensolution
o
8 .03
&
-~
3 -04
c
2
R, et ¥t R = S B == e —

05 I | | I
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Normalized (angular) angular freq (w/wo)

Note (re still to do #6)
stochastic differential equation (SDE) for a
purely noise-driven case

EXhoResonance.m

Several basic approaches:
(all arriving at the same answer)

1. Numerically solve the ODEs and
extract the relevant magnitudes
and phases (via an FFT)

2. Analytic solution | (via Fourier transforms)

3. Impulse response | (and associated
transfer function)

4. Impulse response Il (convolve in the
time domain)

5. Analytic solution Il (via eigensolutions)



Aside (still to do)

Noise-driven systems are very common physically....

in-situ earphone

Helmholtz resonator

-
\\‘i\\\\\\\\{‘\\\\\\\\\\\\\\\\\

W
\\\\\\\\G\\\\\\\\\

’ﬁﬁ'luﬁhullnﬁ\nn\uﬁ

.... but harder to deal w/ analytically and computationally



Tonotopy REVISITED Mammalian Cochlea Uncoiled

to
Vestibular
System

Helicotrema

pliant &
massive

to
Middle
Ear /
Ve . Cochlear
Round Partition
Window C.D. Geisler (modified)
Several key ingredients:
Model: Non-uniform transmission line ¢ resonance . .
— * longitudinal (e.g., fluid) coupling
Ref: Zweig et al. 1976, Bergevin 2007 ° WKB approximaﬁon

- Now in much better shape to understand this model!



Tonotopy & Traveling waves REVISITED

An Acoustic Pris

Basilar membrane

Theme/Question:
What is the (basic) physical basis for “tonotopy”?

Hint: It ain’t a traveling wave per se.... (though such provides a useful framework)

—> This picture may be a bit more complicated....



Tonotopy & Traveling waves REVISITED

Frequency selectivity without resonance in a
fluid waveguide

Marcel van der Heijden®

14548-14552 | PNAS | October 7,2014 | vol. 111 | no. 40

This work describes a simple waveguide that not only carries
fluid waves, but also performs a spectral analysis. When driven
by a complex input that contains several frequency compo-
nents, it will spatially separate those components, in analogy
to the separation of white light by a prism. The frequency
tuning of the waveguide is not based on resonance, but on
wave dispersion: Each wave has its own region in which it
undergoes a steep deceleration, causing it to focus its energy
and deliver it. This method of spectral analysis has not been
described before. The waveguide bears a striking resemblance
to the inner ear of mammals, both in terms of structure B
and behavior.

- Call it what you will (or will not), but all the basic ingredients for “resonance”

are there (e.g., elements that trade energy back and forth on a cycle-by-cycle basis, “stiffness
gradient”, etc...)



Tangent I: Resonance in the inner ear....

i = —wx — v + Acos (wt)

Resonance is chiefly a combination
of two reactive forces:

K * spring/stiffness

e inertial (i.e., moving mass)

\\\%\\\\
i

K* ions ®

Hair Cell

‘:mcgl
i

5

Afferent Auditory
Nerve Fiber (ANF)

— Can we model a hair cell bundle
using this basic formulation?

%
LE?
™ 5 e
Ay

P , -

Martin (2008)



Tangent |: Resonance in the inner ear....

The role of fluid inertia in mechanical stimulation of hair cells

Dennis M. Freeman and Thomas F. Weiss

Hearing Research, 35 (1988) 201-208

_ I 1
Boundary ] "
Layer %
Thxckness
1000 \LMKZ ﬂ{m&
SRR
10 -
5ot A . .;

—> Hair cell bundles seem to operate in the region
where viscous forces become relatively large....

Distance (um)

Vest. Auditory R

T T i i
0.001 0.01 0.1 1 10 100
Frequency (kHz)



Tangent |I: Resonance in the inner ear....

Comparative Aspects of Hearing in Vertebrates
and Insects with Antennal Ears

Joerg T. Albert! and Andrei S. Kozlov? Current Biology 26, R1050-R1061, October 24, 2016

Box 2. How liquid in the inner ear has shaped the hair bundie.

A hair bundle operates at small Reynolds numbers on the
order of 10™*. The Reynolds number (Re) is defined by: Re =
uLp/u, where u is the velocity, L is a linear dimension (e.g., a
hair bundle’s size), p is the density and u is the dynamic vis-
cosity of the fluid. The Reynolds number indicates the relative
importance of inertia over viscous forces for a particular
type of flow. For the hair bundle, a Reynolds number of
much lower than 1 indicates the relative importance of viscous
forces.

The Sca,//a,o Theorem —
Life at low Reynolds number 1

E. M. Purcell
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Received 12 June 1976)
American Journal of Physics, Vol. 45, No. 1, January 1977



Tangent I: Resonance in the inner ear....

But things are a bit
more complicated
than just “what is the
Reynold’s # of a hair
cell bundle?”....

Free-Standing

Unattached-Tectorial

Attached-Tectorial

Hair bundle
£

Basal Plate

Tectorial
Structure

Hair bundle
&

Tectorial Plate

Basal Plate

Tectorial
Structure

Tectorial Plate

Basal Plate

Hearing Research, 35 (1988) 201-208




Tangent I: Resonance in the inner ear....

Chicken basilar papilla (i.e., auditory hair cells)

B g

Hudspeth (2008)

Note: Be careful! This picture can be misleading. In-vivo, there is a massive tectorial
membrane (TM) overlying these hair cells....



Tangent |I: Resonance in the inner ear....

/

Bergevin et al (2008)



Tangent |I: Resonance in the inner ear....

L e g
1 1

1
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Bergevin et al (2008)



Tangent I: Resonance in the inner ear....

Chicken basilar papilla (i.e., auditory hair cells)

B g

Hudspeth (2008)

Note: Be careful! This picture can be misleading. In-vivo, there is a massive tectorial
membrane (TM) overlying these hair cells....

- Coupling between hair cells affects mechanical properties (e.g., tuning) how?
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Tangent |I: Resonance in the inner ear....

3

[in collaboration w/ Bob Harrison]

5.00kV x300 SE



Tangent |I: Resonance in the inner ear....

Note: These hair cells do not have an
overlying TM (for the most part)

5.00kV x300 SE

transition between free-standing (left) and TM

(right) regions; note “tweenage” bundles | mid-way along highfreq. (apiCaD end

hcsadlorih,

5.00kV x1.50k SE 5.00kV x1.50k SE



Tangent I: Resonance in the inner ear....

> “phalanx” of hair cells

> Implications for inter-
cell coupling?

> Longitudinal
propagations? (e.g.,
traveling/standing waves)

e

5.00kV x2.30k SE




Tangent I: Resonance in the inner ear....

© 300~ 200~ 100~ 50~ These are classic
-g /’\\/'_\\
£ - measurements from dead
Q
& g ears....

T 1

Distance
30 from stapes Somm

$=0 L XJ 3 I R

& 50~
@ g
o mH
G
8 My 2} -
§ 2l \YZ/OON X
[a W X

\ | 5 _

3L
o SLOPE =-1 71
(r = ~076)

Fic. 11-58. Phase displacement and resonance curves for four low tones.

Bekesy (1960)

RESONANT FREQUENCY FRr (KHzZ)

.... S0 clearly “tuned” responses can arise in the
absence of an active process (see tangent #2) 05 =

X 622L

O 623 R \ | N | \
10 15 20 25 30 35
BUNDLE HEIGHT Hg (um)

Frishkopf & DeRosier (1983)



35 mm Length of basilar membrane

11 mm (20000) (number of hair cells)
0.5 mm (16000)
(150) This figure leads us into tangent
y #2 (i.e., the ear ain’t passive...)
150
&
o
10} ©
5
0 R
50 &
-5t (%]
o
10} ©
™ W
51
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-20 1 1 1 1 1 1 1 1 1 1 J
1 2 3 4 5 6
Frequency [kHz] s
5 &
(%]
[aa] -10}
10f ©
-15}
>r Barn owl
=20 1 ! Il ! L 1 1 L ]
ol 2 3 4 5 6 7 8 9 10 11
Frequency [kHz]
-5
=10}
_'|5_
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) ’ ’ ’ ’ Bergevin, Manley & Koppl (PNAS 2015)
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Bergevin, Verhulst & van Dijk (SHAR 2017)



Tangent Il: The ear isn’t just passive.....

> Healthy ears actually emit sound

40
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Spontaneous otoacoustic
emissions (SOAEs)
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Tangent |I: SOAEs & threshold

30 ¥ v Ad AS A 20 . v T L] A
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25 1 15F .
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Frequency (Hz)

1950

> SOAEs directly tied to forward auditory transduction (i.e., neural responses)

Long & Tubis (1988)



Tangent Il: SOAEs & ANF responses

Evidence for an Active Process and a Cochlear Amplifier

in Nonmammals

GEOFFREY A. MANLEY

Lehrstuhl fiir Zoologie, Technische Universitit Miinchen, 85747 Garching, Germany

> SOAE “suppression” related to
auditory nerve fiber tuning....

> ... probably in a complicated
fashion

Sound pressure, dB SPL

70 \ Tuning of single
\neural afferent
60
50 |
40 { SOAE suppression
tuning curve, -2dB
30 - SOAE facilitation
tuning, +2dB
20
10 - - - . .
300 50 1000 2000 3000 5000

Frequency, kHz



Tangent Il: Simple heuristic for modeling SOAEs

Passive, linear case

.o 2 .

L= —W,Tr— YT + A cos (Wt) doesn’t do the trick....

Simple model to explain an SOAE peak: r=—x— 6(:132 - 1)9.3‘ \ézziﬁ:tgtd
Note: This equation comes in different flavors/ z = —Uz+1iWyz — |Z|2Z

forms (e.g., “normal form”, complex)

wherez€ C, u,w, € R

2 A (linear, undriven) harmonic oscillator can be described by a single, first-order ODE in terms of a
complex variable z (e.g., [10]):
Z. - _I.lZ—I_ i(l)oZ .

Via a change of variables, this can be re-expressed as a 2nd order (real-valued) ODE:
X4 2ux + (@ +u*)x =0.

Thus, the two notations are essentially equivalent. Note that in this case, no matter what the sign of w,
is, the quantity (@2 + p?) will always be positive. Thus the system will always have a positive stiffness,
though the damping can be positive or negative (depending upon the sign of u).

Binder et al (2011 MoH)
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Tangent Il: The ear isn’t just passive.....
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Tangent Il: The ear isn’t just passive.....

4622 Biophysical Journal Volume 95 November 2008 4622-4630

Frequency Clustering in Spontaneous Otoacoustic Emissions from a
Lizard’s Ear

Andrej Vilfan* and Thomas Duke®

*J. Stefan Institute, Ljubljana, Slovenia; and fLondon Center for Nanotechnology and Department of Physics & Astronomy, London,
United Kingdom

Unclear what the “correct” coupling should be...

FIGURE 1 Mechanical equivalent of the model. Sallets are represented as
inertial oscillators (mass M;, spring K), coupled to their neighbors by elastic
(constant k) and damping (constant y) elements. In addition, there exists an
active driving mechanism within each oscillator (not shown).

5.00kV x2.30k SE
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y #2 (i.e., the ear ain’t passive...)
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Tangent Ill: Other examples of “oscillators” in biology...

Vibrissa Resonance as a Transduction Mechanism for

Tactile Encoding

Maria A. Neimark,* Mark L. Andermann,"** John J. Hopfield,> and Christopher 1. Moore*

The Journal of Neuroscience, July 23, 2003 - 23(16):6499 — 6509

vi-bris-sa
VT brisa/ <)

noun ZOOLOGY

any of the long stiff hairs growing around the mouth or elsewhere on the face of many mammals,

used as organs of touch; whiskers.
« ORNITHOLOGY

each of the coarse bristlelike feathers growing around the gape of certain insectivorous birds that

catch insects in flight.

A
First Resonance Mode
ANANAV /\/\/\/
B
&
c = Muscle
o 51 <~
=0 Vibrissa >
SC
C
y(x, 1) Thin Elastic Beam

L, length




Tangent lll: Other examples of “oscillators” in biology...

Oscillations in cell biology
Karsten Kruse and Frank Julicher

Current Opinion in Cell Biology 2005, 17:20-26

= MinD
® MinE

Current Opinion in Cell Biology

Schematic representation of Min oscillations in E. coli. MinD (green) is localized on the inner bacterial membrane (yellow) on one side of the
cell, where it aggregates. MinE (red) induces disassembly of the MinD aggregates and detachment of MinD molecules into the cytoplasm. MinD

then assembles on the membrane of the opposite side of the cell and the process is repeated.




Tangent lll: Other examples of “oscillators” in biology...

Larynx % Airways below the lorynx:
trachea,bronchi, lungs

Vibration source Filter
Pressure source (vocal folds) (vocal tract)
(lungs) .25 cm® 2
25cm? Sem” |3 em I cm® §cm?®
Scm U
2 cm er Output
-— | cm—.| I (mouth)
2 N I5¢cm
1.5 cm
bronchi trachea . vocal tract
glottis

Stevens (2000)



Tangent IlI S

= Source: Vibrating vocal
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S
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Figure 3.1 Sketches indicating components of the output spectrum |p,(f)| for a vowel and a
fricative consonant. The output spectrum is the product of a source spectrum S( f). a transfer
function T(f), and a radiation characteristic R(f). The source spectra are similar to those derived
in figures 2.10 and 2.33 in chapter 2. For the periodic source, S(f) represents the amplitudes of
spectral components; for the noise source, S(f) is amplitude in a specified bandwidth. See text.
Stevens (2000)
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Ex. RLC circuit = Damped, Driven Harmonic Oscillator

Mechanical

F (force) <>
v (velocity) <>
x (position) €2
m (mass) <->
b (damping)$&—>
k (spring) <->

AN

Electrical
V' (potential) state
[ (current) variables
q (charge)
L (inductance) system
R (resistance) oroperties
1/C (capacitance)
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