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Challenges: - Representation and processing of signal information in the 
auditory system; neural correlates of perception.

- Modelling auditory signal processing and perception.

- Integration of processing strategies in technical and clinical 
applications.
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Some ’’hot topics’’: • Solving the cocktail-party problem
• Solving the dynamic range problem
• Coding of spatial sounds in humans
• Neural correlates of learning and attention 

Various challenges



The “cocktail-party” problem

In ”cocktail-party” situations, normally-hearing listeners effortlessly segregate 
different sources. No artificial system performs anywhere near as well.



The “cocktail-party” problem

Key problem: Hearing-impaired people have difficulty with speech communication
(even with hearing aids) when background noise is present.

• What gets lost in the impaired system
(besides sensitivity)?

• How can we compensate for the deficits 
with hearing instruments? 

• What are the properties that makes the 
intact auditory system so special?

• Why is the intact auditory system so 
robust in challenging situations?



Can auditory models help?

• To represent the results from experiments within one framework

• To explain the functioning of the system

Main goals:

Specifically: – Models can help generate hypotheses that can be explicitely stated.

– Models can help determine how a deficit in one or more components 
affects the operation of the system.

– Models can illustrate how complex a problem is.

Classes of 
models:

Conceptual, biophysical, physiological, mathematical, computational, … 
perceptual models, depending on which aspects are considered. 
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Example for a perception model
(from an engineering point of view)

Model focusses on limitations in resolution
rather than predictions of sensations.

Jepsen et al. (2008)

Nonlin.

Focus on the simulation of perception data 
(inspired by physiology)

(based on Dau et al., 1997)
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Overview

• Key aspects of nonlinear cochlear processing for 
auditory perception

• Across-channel processing and coincidence detection

• Adaptation: Steady-state compression and dynamic 
contrast enhancement

• Processing of temporal and spectral modulations
and consequences for speech perception

• Computational auditory scene analysis: An approach 
based on coherence



• Amplification and compression only at 
the characteristic frequency (CF).

• Linear response properties for off-freq. 
stimulation.

• Frequency selectivity is level 
dependent.

• Largest gain at low stimulation levels
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Cochlear damage
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Spectral masking patterns (NH)
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On- versus off-frequency 
forward masking (NH)

freq

S
M

freq

S
M

time
or

M S

Data 
new model
orig. model

 Model accounts for effects of BM processing
on forward masking (NH).



Intensity discrimination, signal 
integration and AM detection (NH)

Intensity discrimination

Jepsen et al. (2008)

Signal integration

… and modulation detection

… resulting from the properties of 
optimal detector, adaptation stage 
and modulation filterbank

t
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Modulation transfer functions



Modelling variability in the data?

So far so nice. Preprocessing has also been 
successful as front end in certain applications 
- for mean NH listeners.

However, a model is missing that accounts for the 
variability in the data (particularly in HI listeners).

Strelcyk and Dau (2009)

1. step: Characterisation of HI (”auditory profile”). 

2. step: Prediction of individual HI (”basic” functions).

3. step: Evaluation in other tasks (e.g. speech).

(Example: Frequency selectivity @750 Hz in listeners 
with normal audiogram at low frequencies.)  



Modelling individual 
hearing impairment?

Measures of basic auditory functions provide 
information about individual deficits

Later stages:

– Reduced compression
– Change of frequency selectivity
– Reduced sensitivity
– Degraded fine-structure processing
– …

– Deficits in modulation coding
– ”Sub-optimal” processing
– Central/cognitive deficits?

Peripheral stages: 

 Modifications in the model (based on 
auditory profile)



Relations between functions
in impaired hearing
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Relations between functions
in impaired hearing

Audibility

Speech reception

Outer hair cell
loss?

Inner hair cell loss
or subsequent?

in two-talker and lateralized noise,
but not in modulated noise

 Important for spatial segregation and talker separation?

! Temporal 
deficits

Reduced frequency 
selectivity 

Strelcyk and Dau (2009)
(at low frequencies)



Overview

• Key aspects of nonlinear cochlear processing for 
auditory perception

• Across-channel processing and coincidence detection

• Adaptation: Steady-state compression and dynamic 
contrast enhancement

• Processing of temporal and spectral modulations

• Computational auditory scene analysis: An approach 
based on coherence



Across-channel processing

Spatio-temporal 
models:

Principal scheme:

Phase locking

Idea: To extract information from the spatio-temporal pattern of 
cochlear activity.

Hypothesis:

Reduced frequency selectivity thus represents only one impairment factor. 
Probably not sufficient to explain the major problems in noisy environments.  

Across-channel processing is important for robust signal 
encoding (Loeb et al., 1981; Carney et al., 2002).



Across-channel model 
for signal-in-noise detection

Detection of formants and tones in noise (e.g., Deng & Geisler, 1987; Carney et al., 2002) 

Presence of the signal (e.g., formant): Reduction
in the rate of cross-frequency coincidence.

Response pattern is very robust to overall level 
changes (as long as the 3 ”components” are intact).



Cochlear damage and 
across-channel processing

Typical consequences of cochlear damage:

i)    Reduced precision of phase locking in AN fibers
2. Deterioration of the encoding of temporal fine structure, by:

1. Reduced frequency selectivity as a consequence of loss or reduction of 
compression (outer hair cells) 

ii)   Reduced number of cochlear hair cells  reduction of converging inputs
iii)  Loss of coincidence detectors

Effect on the output of spatio-temporal processing:



How can we measure 
phase locking in humans?

Evoked 
potentials

Left ear:

Right ear: 



Ross et al. (2007) ResponsesSound stimulation



Phase locking in normal 
versus impaired hearing

Physiological results
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 Good correspondence between physiological and behavioral estimates
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 Most hearing-impaired listeners show a lower frequency limit - either due 
to degraded monaural phase locking or deficits in the ”binaural operator”.  
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Auditory-evoked potentials 
(ABR)

Relation between speech intelligibility 
and measures of temporal processing 

The amount of neural synchronization across 
frequeny is correlated with speech intelligibility 
(but not with audibility). 

Cochlear 
patterns

Click Chirp

Recorded 
EEG-signal:

Time

V V

Location Location

Time
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TimeTime
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Papakonstantinou et al. (2011)



Overview

• Key aspects of nonlinear cochlear processing for 
auditory perception

• Across-channel processing and coincidence detection

• Adaptation: Steady-state compression and dynamic 
contrast enhancement

• Processing of temporal and spectral modulations
and consequences for speech perception

• Computational auditory scene analysis: An approach 
based on coherence



We can hear sounds extending over a huge range of sound levels (of 120 dB).

Level adaptation

However: 

At the same time, we can hear level changes of about 1 dB across entire level range.

The neural dynamic range of individual neurons is very limited as 
studied extensively in the cochlea (auditory nerve).

Which mechanisms exist that extend the range of coding? 

Possible 
solution:

 Adaptive processes of neurons throughout the auditory system (here: brainstem). 

Dean et al. (2005)



Firing patterns of many neurons show a form of 
adaptation to a sudden change in stimulus level.

Auditory nerve: rapid adaptation

Steady-state compression 
and contrast enhancement



Pickles (2007)

Temporal pattern of adaptation is similar throughout auditory 
pathway but ‘’time constants’’ change from ms to s.

Phenomenological
model of adaptation:

Siebert (1968); 
Dau et al.(1996)

Dynamic changes: 

Dynamic adaptation

y(t)x(t) 

h(t)

x(t)/z(t)

z(t)

input output

Impulse response of linear system



Model including an adaptation circuit

+ Simple circuit that accounts for large 
variety of behavioral data

+ Provides robust internal 
representation in model applications

– No explanation of the mechanisms
underlying adaptation

Jepsen et al. (2008)
(based on Dau et al., 1997)



Overview

• Key aspects of nonlinear cochlear processing for 
auditory perception

• Across-channel processing and coincidence detection

• Adaptation: Steady-state compression and dynamic 
contrast enhancement

• Processing of temporal and spectral modulations 
and consequences for speech perception

• Computational auditory scene analysis: An approach 
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How is the envelope coded
in the auditory system?



Speech sound time

time

time

”Fine structure”
”Envelope”



Modulation selectivity

Evidence from physiological and perceptual data: Decomposition of the temporal 
envelope at the output of each cochlear filter.

Dau et al. (1997); 
Ewert & Dau (2000)

Psychophysical data
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Speech perception:

(1-D) Modulation filterbank model

• Modulation filterbank consistent with con-
cept of speech transmission index (STI) 
(e.g., Houtgast and Steeneken, 1985). 

• RASTA algorithm (Hermansky, 1994) in 
speech recognition systems: filters out 
“irrelevant” temporal modulations.

Dau et al. (1997); Jepsen et al. (2008)



Speech intelligibility prediction: 
The STI concept

Modulation spectra

Speech signal
(1/3 oct. filtered @ 2kHz)

• Noise reduction (via spectral subtraction) increases
the SNR (in the audio domain) and the STI. 

• However, data typically show a decreased speech 
intelligibility.

No processing
Noise reduction via 
spectral subtraction

 Prediction of increase in intelligibility.

 Noise reduction paradox

• STI accounts for effects of additive noise.



Speech-based envelope power 
spectrum model (sEPSM)

• Based on the EPSM (Ewert and Dau, 2000) used for prediction of modulation 
detection and masking.   

• Key component: Metric based on the signal-to-noise ratio in the envelope 
domain (SNRenv).  

Jørgensen and 
Dau (2011; JASA)



Components of the framework

The ideal observer makes assumptions about the 
response alternatives and redundancy (m, ) of a 
given speech material  shape of psych. function.

However, the ”key” measure affected by the 
transmission channel is considered to be SNRenv.  



Data and simulations

Reverberation Spectral subtraction

 In conditions of reverberation, STI and sEPSM perform similarly (and 
successfully).

 In conditions of spectral subtraction, the sEPSM accounts for the data  
while the STI fails completely (Jørgensen and Dau, 2011).



Model analysis 
(for spectral subtraction)

Modulation spectra  @ 1 kHz SNRenv()

• No contributions from modulations ≥ 32 Hz (consistent with earlier work).

• The envelope power of the noisy speech increases with ; However, the 
envelope power of the (estimated) noise floor increases more strongly with .

 Thus, SNRenv decreases with  as does the measured speech intelligibility.



Further model analysis

Is frequency selectivity in audio 
and envelope frequency domain 
critical?  

Additional simulations with:

– one ”broad” auditory filter

– a 150-Hz modulation LP filter 

In both cases, the modified model fails to account for the data. 

 The integration of SNRenv information after frequency-selective processing 
(in both domains) is crucial for speech-intelligibility prediction. 

However, the model does not reflect, which modulations contribute at which 
time and (carrier) frequency to speech intelligibility.  



Speech masking releaseFesten and Plomp (1990)

Steady noise
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Speech masking release 
in modulated interferers 

Speech perception in fluctuating noise enhanced 
compared to a stationary noise interferer

Large masking release (MR) observed due to the 
ability to ”listen in the dips”.

MR

Hypothesis: The SNRenv might be
increased in the dips. 

”Short-term” SNRenv calculation 
required





“Multi-resolution” sEPSM

Channel-dependent
analysis windows
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@ 1000-Hz

(Jørgensen, Ewert and Dau)
JASA 2013



Modulated-noise 
and speech-like interferers
SSN - as the stationary reference condition
SAM - 8-Hz modulated noise (e.g., Festen, 1987)
ISTS - International speech test signal (Holube et al., 2010).

Three conditions:

SNRenv increased in the 
dips of the interferer

In fact, the simulations suggest that high-frequency modulations (>30 Hz) contribute 
effectively to speech intelligibility in the case of the SAM and ISTS interferers. 



The role of 
fast modulations

Model-output from 
audio-filter @1 kHz



Another challenge:
Phase jitter (nonlinear) distortion

• Temporal modulations appear not to be sufficient. 

• Spectro-temporal modulation index (STMI) was 
defined to account for the degraded spectral
(ripple) representation.

Elhilali et al.
(2003)



Phase jitter distortion

Internal representation
at output of 4-Hz modulation filter

sEPSM predictions
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Modulation-
filter CF

Across audio-frequency variance
decreases with increasing phase jitter

As the STI, the sEPSM 
fails in this condition.

Both models are insensitive 
to across-frequency
distortions



data



sEPSMx predictions (incl. weighting) 
provide good agreement with 
measured data

Across-frequency variance

Similar results as with STMI
predictions by Elhilali et al. (2003)

Weigthing of SNRenv by across-channel 
variance (Chabot-Leclerc et al., 2015):





- Conceptually related to correlation of neural activity across sensory channels that 
has been proposed in connection to auditory streaming (Elhilali et al., 2009) and 
CMR (Piechowiak et al., 2007).   

- Different from STRF concept on which STMI is based.



Recent focus points

Current focus: - Expansion towards two ears: Prediction of spatial release 
from masking due to ”true” binaural unmasking vs ”better-
ear” listening (Chabot-Leclerc et al., 2016). 

- Combination of modulation-based preprocessing with 
correlation-based decision metric (Iborra et al., 2017).
(Back to the template-matching approach)?

- Prediction of consequences of hearing loss on speech 
intelligibility (e.g., consequences of IHC vs. OHC loss).

- Analysis of ”distortion vs attenuation” component of a 
hearing loss (Plomp, 1986) in a modeling framework.

- …



Implications and applications

The model is based on the concept of modulation masking. It even accounts for 
conditons with interfering talkers – often associated with ”informational masking”.

However, the model fails if it does not have a priori information about the signal 
and the masker. It cannot provide stream segregation. 

Unfortunately, stream segregation is one of the major challenges of hearing-
impaired people. 

Hearing-impaired listeners often show highly 
reduced speech masking release. 

Fast envelope fluctuations may be inaudible 
or distorted.

Interesting input for models of impaired speech 
perception and the evaluation of hearing aids.   

Figure here
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Towards a model of 
stream segregation



Tone repetition time (TRT)
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Grouping due to synchrony

• Tones with a sufficiently large 
frequency separation always split into 
separate streams (van Noorden, 1975).

• Unless the tones are synchronized! 
Then they merge into a single stream
despite tonotopic separation (Bregman, 
1990; Elhilali et al., 2009).
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Grouping due to synchrony

• How strict is the ”synchrony” grouping
mechanism? 

• Can the tones be slightly asynchronous
(∆T≠0) and still be fused?

• Experiment investigating the 
influence of:

– Tone repetition time (TRT)
– Tone duration (tdur)

tdurTRT

∆T
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Grouping due to synchrony

Results:

• The tones can fuse together without
perfect synchrony (∆T = 0).

• Fusion occurs if the asynchrony is less
than ~ 20 ms.

• No significant effect of TRT and tdur.
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Step 1: Decomposition of acoustic stimuli into a collection of sensory
elements (following the concepts of Bregman, 1990):

 Using a physiologically inspired model of the auditory periphery,
CASP (e.g., Dau et al., 1997).

 The model has earlier been evaluated in various conditions of 
spectro-temporal masking in the auditory system. 
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Step 2: Grouping of sensory elements:

• Based on synchrony of neural activity (including conditions with 
distant spectral components).

• Utilizing a correlation process across tonotopic channels, e.g.,       
a ”temporal coherence analysis” similar to Elhilali et al. (2009).

• Correlation between each pair of frequency channels  Dynamic 
coherence matrix C that evolves over time. 
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Analysis of model output

Frequency (kHz)
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=> Only 1 stream => At least 2 streams

• Diagonal entries of the matrix shows the correlation 
of a given peripheral channel with itself.

• Off-diagonal entries reflect correlation across 
separate channels.

• To quantify the coherence matrix, an eigenvalue 
decomposition is performed.

• The ratio of the second largest to the largest 
eigenvalue (λ2/λ1) shows the strength of the ”two-
stream percept”.



Synchrony simulation
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Synchrony simulation

Applying the model on the same experimental setup 
as used in the psychoacoustic experiment:

– Similar overall behaviour

– However, the model shows some 
dependency on TRT 
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Van Noorden simulation
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Van Noorden simulation

• Spread of excitation causes a high 
cross-frequency correlation

• For short TRTs: forward masking 
reduces spread of excitation
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Consistent with physiological studies
(e.g., Bee and Klump, 2005).



Implications and applications

• Temporal coherence may be the organizing principle behind primitive stream 
segregation. 

• However, this requires an appropriate preprocessing (i.e., realistic frequency-
selective filtering in the cochlea; an adaptive process accounting for forward 
masking and onset enhancement, and a modulation filterbank).

• The concept of coherence may be generalizable to other sensory channels      
(e.g., binaural processing).

• A model of auditory stream segregation might be useful for:

- Source separation algorithms (ideally performing as well as NH listeners)

- Classification of the number of sources in complex acoustic scenes

- Evaluation of hearing-aid processing (e.g., does the processing “corrupt” 
acoustic cues necessary for stream segregation?)



Overall discussion

• Modeling can be helpful to test specific hypotheses. It allows to quantify the 
effects of individual components in the framework. 

• The presented examples have highlighted several features that seem 
important for robust auditory signal analysis. 

• Despite the different methods and ”outcome measures” illustrated here, 
similar features and processes were found to be essential. 

• Combination of  approaches might be interesting; e.g. to model target-
interferer confusion in stream segregation could help interpret the speech-
in-noise problem for the hearing impaired. 

• Some of the model insights might be useful for applications:

- mostly regarding objective evaluations of the effects of hearing-
instrument processing (“analysis approach”).

- and maybe less in terms of applying the signal-processing directly in 
compensation strategies


