ENERGETICS OF SENSORY TRANSDUCTION

Hearing: ± 0.3 -nm vibration $\Delta G \approx 0.3 \text{ kJ} \cdot \text{mol}^{-1}$ per cycle $\approx 0.5 \text{ zJ}$ per molecule per cycle (~0.1 \cdot \text{kT} per cycle)

THE ACTIVE PROCESS OF HAIR CELLS

MANIFESTATIONS OF THE EAR'S ACTIVE PROCESS BY INDIVIDUAL HAIR BUNDLES

At any time,

$$F_{\text{EXTERNAL}} + F_{\text{INERTIAL}} + F_{\text{DRAG}} + F_{\text{ELASTIC}} + F_{\text{ACTIVE}} = 0$$

$$F_{\text{ACTIVE}} = -K_{\text{SF}}(X_{\text{B}} - X) - (m_{\text{HB}} + m_{\text{SF}}) \cdot \frac{d^2 X}{dt^2} - (\xi_{\text{HB}} + \xi_{\text{SF}}) \cdot \frac{d X}{dt} - K_{\text{HB}} X$$

Over an average cycle,

$$\overline{W}_{\text{EXTERNAL}} + \overline{W}_{\text{INERTIAL}} + \overline{W}_{\text{DRAG}} + \overline{W}_{\text{ELASTIC}} + \overline{W}_{\text{ACTIVE}} = 0$$

$$\overline{W}_{\text{ACTIVE}} = -K_{\text{SF}} \oint (X_{\text{B}} - X) \cdot dX - (\xi_{\text{HB}} + \xi_{\text{SF}}) \oint \frac{dX}{dt} \cdot dX$$

 $\overline{W}_{ACTIVE} = -\overline{W}_{DRAG} - \overline{W}_{FIBER}$ $\overline{W}_{ACTIVE} = +79 \text{ zJ}$

Outset of experiment

After hair-bundle fatigue

DYNAMICAL DESCRIPTION OF HAIR – BUNDLE MOTION AND ADAPTATION

Equation for a generic Hopf bifurcation with stimulation by a force $Fe^{i\omega t}$:

$$\frac{dz}{dt} = (\mu + i\omega_0)z - |z|^2z + Fe^{i\omega t}$$

z, displacement (complex variable: z = x + iy) ω_0 , natural (characteristic) frequency μ , control parameter

During stimulation near bifurcation ($\mu \approx 0$) and near resonance ($\omega \approx \omega_0$), response R \approx F^{1/3}, amplification with compressive nonlinearity sensitivity S = $\frac{R}{F} \approx$ F^{-2/3}

In the absence of stimulation,

 $\mu < 0$, z=0, a quiescent system

μ>0,

 $z = \sqrt{\mu} e^{i\omega_0 t} = \sqrt{\mu} [\cos(\omega_0 t) + i \cdot \sin(\omega_0 t)]$, a stable limit cycle

ADVANTAGES OF OPERATION NEAR A HOPF BIFURCATION

spontaneous otoacoustic emissions (SOAEs)	unprovoked production of one or more pure tones	
Epiphenomena combination tones	generation of responses at nonharmonic frequencies $e a 2f_{1} - f_{2}$	
	near that of spontaneous oscillation	
Frequency constancy	frequency of resonant responsiveness	
Entrainment	easy phase-locking to periodic stimuli	active proc
local	to traverse bifurcation bifurcation about a fixed point	characteris of the coch
codimension-1	and oscillation adjustment of only one parameter required	Definin
Simplicity two-dimensional	minimal requirement for resonant tuning	
compressive nonlinearity	1,000,000-fold amplitude range in humans	
amplification frequency tuning	 100-fold to 1000-fold gain in humans 0.2 % frequency discrimination in humans 	
Principal virtues		

THE MECHANICAL LOADS OF HAIR BUNDLES

Cupular organs lateral-line organs and semicircular canals

Zebrafish's lateral-line organ

Otolith organs utricles and saccules Tectorial organs cochleas and basilar papillas

Bullfrog's sacculus

Mouse's cochlea

DYNAMICAL DESCRIPTION OF HAIR – BUNDLE MOTION AND ADAPTATION

MECHANICAL - LOAD CLAMP

THEORETICAL STATE DIAGRAM

EXPERIMENTAL STATE DIAGRAM

EXPERIMENTAL STATE DIAGRAM

EXPERIMENTAL STATE DIAGRAM

SELF - TUNED CRITICALITY

Control parameter A

HOMEOSTATIC REGULATION OF HAIR - BUNDLE SENSITIVITY

0.30 0.15 0.00 -0.15 -0.30 2.0 2.2 2.4 2.6 2.8 Stiffness

Homeostasis on

ADVANTAGES OF HAIR CELLS FOR BIOPHYSICAL INVESTIGATION

Stereotyped cells with high reproducibility

Experimental accessibility

Ability to measure and control conjugate variables displacement and force of hair bundle voltage and current across cellular membrane

Few relevant degrees of freedom hair-bundle motion along axis of symmetry state of adaptation

Evolutionary pressures on system threshold near level of thermal noise energetic efficiency

Geological regime

Representative contemporary species

