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Audiovisual speech perception

Human speech perception utilizes video information

One piece of evidence:

© Myles and Alex Dainis,
Bite Sci-zed

is the “McGurk Effect” [McGurk1976]
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Audiovisual speech perception

Early, extensive intelligibility tests:
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[Sumby1954] Sumby, Pollack: Visual Contribution to Speech Intelligibility in Noise,
JASA, 1954,
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Introduction & Overview

Idea:

Integrate video information in machine listening

Useful for two purposes:
* Multimodal speech recognition

e Audiovisual Speech Enhancement (to improve intelligibility)
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Introduction & Overview

Outline:
- Audiovisual speech recognition

- Methods and models for audiovisual integration
- Stream weighting
- Audiovisual Speech Enhancement

- Conclusions and perspectives
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Audiovisual Speech Recognition

Levels of integration
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Levels of integration

Graphical models [Whittaker1990, Jordan1999]

Describe statistical dependencies of multiple variables
“Visible” /”Measureable” variables are often denoted by shaded circles
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Levels of integration

Graphical models [Whittaker1990, Jordan1999]

Describe statistical dependencies of multiple variables
“Hidden” variables are often denoted by empty circles

q,

O
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Levels of integration

Graphical models [Whittaker1990, Jordan1999]

Specifically in “Bayesian Networks”, direct statistical dependencies are denoted by

q,
i
Ot
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Levels of integration

Graphical models [Whittaker1990, Jordan1999]

Specifically in “Bayesian Networks”, direct statistical dependencies are denoted by
arrows:

qt—l qt

!

O

t
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Levels of integration

Graphical models [Whittaker1990, Jordan1999]

Specifically in “Bayesian Networks”, direct statistical dependencies are denoted by

. 4. 4,
L

t-1 t
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Levels of integration

Graphical models [Whittaker1990, Jordan1999]

Specifically in “Bayesian Networks”, direct statistical dependencies are denoted by

alrrows:
o

O

t-1
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Levels of integration

Graphical models [Whittaker1990, Jordan1999]

Specifically in “Bayesian Networks”, direct statistical dependencies are denoted by

alrrows:
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Levels of integration

Graphical models [Whittaker1990, Jordan1999]

Specifically in “Bayesian Networks”, direct statistical dependencies are denoted by
arrows:
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Levels of integration

Graphical models [Whittaker1990, Jordan1999]

Indirect statistical dependencies are not:

Y

e S
[ ]
O

This model encodes the dependency assumptions of (1%t order ) Hidden Markov
Models in speech recognition.

EIII Audiovisual Speech Recognition and Enhancement 16



RUHR-UNIVERSITAT BOCHUM

Levels of integration

Multimodal speech recognition can take place at three levels

a) Early integration = Feature fusion

U
Ll

O O O

t-1 t t+1
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Levels of integration

Multimodal speech recognition can take place at three levels

a) Early integration = Feature fusion

Graphical Model of Audiovisual Speech Recognition with Feature Fusion
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Levels of integration

Multimodal speech recognition can take place at three levels
a) Early integration = Feature fusion
b) Late integration = combine multiple recognition results (ROVER) [Fiscus1997]

Graphical model for audiovisual speech recognition with late integration
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Levels of integration

Multimodal speech recognition can take place at three levels

a) Early integration = Feature fusion
b) Late integration = combine multiple recognition results (ROVER) [Fiscus1997]

System for late integration
Two “standard” ASR systems, whose outputs are later combined

Audio
features ENIRTRYCT 121l Recognized
Recognition R
\1ii1: g Recognized
Video ST 1) N Text Overall

features RVITYR-T13 | Recognized
Recognition RE:Y4=]
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Levels of integration

Multimodal speech recognition can take place at three levels

a) Early integration = Feature fusion
b) Late integration = combine multiple recognition results (ROVER) [Fiscus1997]
c) Intermediate integration = within the classifier/DNN

Graphical model, intermediate integration
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Levels of integration

Multimodal speech recognition can take place at three levels

a) Early integration = Feature fusion
b) Late integration = combine multiple recognition results (ROVER) [Fiscus1997]
c) Intermediate integration = within the classifier/DNN

Graphical Model q A q A q A
t-1 t t+1

\" A"
thl q t+1
® o o
\" \" A"
O t-1 O t O t+1

Most successful model in wide range of experiments [Nefian2002a, Zeiler 2016,
Receveur2016]
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Coupled Hidden Markov Models

An example of intermediate
integration
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Coupled HMMs for asynchronous Audio- & Video Streams

Cartesian qQ.=1 2 m
product of
audio and video
HMM can cope
with time-
varying delay of
audio and
video.

HMM for
+«— Stream 2

Coupled HMM

[Luettin2001]

J. Luettin, G.
Potamianos and C.
Neti: "Asynchronous
Stream Modelling for
Large Vocabulary
Audio-Visual Speech
Recognition", Proc.
ICASSP, pp. HMM for Stream 1
169-172, May 2001.
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Audiovisual speech recognition

tay blue in o 8 now.
oef blue by h 1 soon.
t: Bin blue at s 1 soon.

-

S

[Vorwerk2011] A. Vorwerk, S. Zeiler, D. Kolossa, R. Fernandez Astudillo and D. Lerch: “Use of Missing and Unreliable Data
for Audiovisual Speech Recognition”, in: D. Kolossa, R. Haeb-Umbach (eds.): ,Robust Speech Recognition of Uncertain or
Missing Data - Theory and Applications”, Springer Verlag, pp. 345-375, July 2011.
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Coupled HMMs for asynchronous Audio- & Video Streams

Audiovisual Speech Recognition

* Audiovisual recognition using coupled HMMs always outperforms audio-only
and video-only ASR when stream weights (more later!) are appropriately set.

_ Keyword Error Rates (%) on CHIME 2 Corpus

SNR -6dB -3dB 0dB 3dB 6dB 9dB avg.
Video 27.8 27.8 27.8 27.8 27.8 27.8 27.8
Audio 27.9 23.0 18.1 15.4 12.8 10.4 17.9
Audiovisual CHMM 17.2 14.1 12.0 10.1 9.0 7.7 11.7

[Zeiler2016] S. Zeiler, R. Nickel, N. Ma, G. J. Brown, D. Kolossa: “Robust audiovisual speech recognition
using noise-adaptive linear discriminant analysis,” Proc. ICASSP 2016, Shanghai, March 2016.
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Coupled HMMs for asynchronous Audio- & Video Streams

Audiovisual Speech Recognition

* Audiovisual recognition using coupled HMMs always outperforms audio-only
and video-only ASR when stream weights (more later!) are appropriately set.
* Best results are achieved with noise-adaptive LDA + ground truth uncertainties

_ Keyword Error Rates (%) on CHIME 2 Corpus

SNR -6dB -3dB 0dB 3dB 6dB 9dB avg.
Video 27.8 27.8 27.8 27.8 27.8 27.8 27.8
Audio 27.9 23.0 18.1 15.4 12.8 10.4 17.9
Audio + NALDA 17.3 13.2 11.5 9.3 7.8 7.6 11.1
Audiovisual CHMM 17.2 14.1 12.0 10.1 9.0 7.7 11.7
Audiovisual CHMM 12.7 10.8 8.7 7.4 6.3 6.1 8.7
+ NALDA

[Zeiler2016] S. Zeiler, R. Nickel, N. Ma, G. J. Brown, D. Kolossa: “Robust audiovisual speech recognition
using noise-adaptive linear discriminant analysis,” Proc. ICASSP 2016, Shanghai, March 2016.
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Coupled HMMs for asynchronous Audio- & Video Streams

Audiovisual speech recognition always outperforms audio-only and
video-only ASR when stream weights are appropriately set, even under
complete mismatch, here, training on clean & testing on noisy data.
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Stream weighting

Can’t live with it, can’t seem to
live without It...
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Stream Weighting for Audiovisual Speech Recognition

Emission probabilities of coupled HMM:

A 1-4
p(o|q)=b,(o,]q,)"b,(0,]q,)
The b, (0, | qa/v)/l are observation likelihoods, A the stream weight.

Stream weighting not only applicable in coupled model but in all early and
intermediate integration schemes including deep neural network-based
ones.

Question: Is this really necessary?

Most recently, e.g. [Ninomiya2015, Ngiam2011,Tamura2015, Noda2015,
Meutzner2017]

Question 2: If yes, how?
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Stream Weighting for Audiovisual Speech Recognition

Idea of dynamic stream weighting system

Train neural network or logistic regression function to map some reliability
features onto stream weights, using optimal dynamic stream weights as
training targets.

During test time, this trained regression model or DNN will then map
reliability measures (frame by frame) onto frame-wise stream weights

Reliability measure features
* Estimated observation uncertainties
e Estimated SNR
* Soft and hard VAD cues based on IMCRA noise estimation
e Dispersion and entropy of audio and video HMM

[Abdelaziz2015] A. Hussen Abdelaziz, S. Zeiler and D. Kolossa: “Learning Dynamic Stream Weights For
Coupled-HMM-based Audiovisual Speech Recognition”, IEEE Trans. Audio Speech and Language Processing, 2015.
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Coupled HMMs for asynchronous Audio- & Videostreams

Results of dynamic stream weighting, comparing three strategies
* Equal weights, A=05 (“Bayes Fusion”)
* Exponential Function [Estellers 2012]
e MLP: Dynamic stream weight estimation using multiple reliability features

Noise SNR Audio Video | Audio-visual
Type [dB] only only Fusion
5 0.8516 0.9401
10 0.6853 0.8840
Babble 5 0.4675 0.7523
0 0.3065 0.6040
5 0.8399 0.9385
White 10 0.6819 08476 11 ggs4
5 0.5133 0.8130
0 0.3701 0.7296
Clean i 0.9886 0.9856
Avg. i 0.6339 0.8369

[Abdelaziz2015] A. Hussen Abdelaziz, S. Zeiler and D. Kolossa: “Learning Dynamic Stream Weights For
Coupled-HMM-based Audiovisual Speech Recognition”, IEEE Trans. Audio Speech and Language Processing, 2015
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Stream Weighting in Deep
Neural Networks
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Stream Weighting in Deep Neural Networks

Al

Fundamental question:
Shouldn’t we just train one large neural network?

Two considered alternatives

1) Concatenation of uncertainties
Train one large network with uncertainties as an additional input.

2) Explicit stream weighting
Train two networks and fuse their posterior probabilities according to

log p(0”" | q) = ylog(b” (0" | @) + (1-y)log(d" (0" | @)

Audiovisual Speech Recognition and Enhancement
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Stream Weighting in Deep Neural Networks

Evaluation:
Again, on the CHIME 2 data, as above.

Kaldi recipe based on Wall-Street-Journal training scripts*, using

1) Concatenation of uncertainties
2) Explicit stream weighting

https://qgithub.com/hmeutzner/kaldi-avsr

*Hybrid system, so the DNN estimates state posteriors. Trained starting by GMM/HMM
training, including LDA, fMLLR & speaker-adaptive training and continuing onto DNN/
HMM. For this purpose, we use a topology with 11 frames of context, for 440d input, 6
hidden layers with 2048 neurons each, 1453 neurons in softmax output layer.

RBM layer-wise pre-training is followed by minimum-cross-entropy training, followed by
minimum Bayes risk fine-tuning.

EIII Audiovisual Speech Recognition and Enhancement 35



RUHR-UNIVERSITAT BOCHUM M

Stream Weighting in Deep Neural Networks

Concatenation of uncertainties

Features -6dB  -3dB 0dB 3dB 6dB 9dB Avg.
Filter-bank|DCT 13.01 11.90 11.14 995 &833 9.10 10.57
Filter-bank| DCT|Uncertainty  13.86  12.59 10.80 893 7.40 7.23 10.14
MFCC|DCT 1794 16.67 15.73 14.63 13.27 12.33 15.09
MFCC|DCT|Uncertainty 1471 13.18 11.39 10.03 9.18 833 11.14
Rate-map|DCT 11.99 1148 10.29 808 791 8.08 9.64
Rate-map|DCT|Uncertainty 14.29 12.16 1063 7.65 7.65 6.97 9.89

may or may not help

Explicit stream weighting

Features -6dB -3dB 0dB 3dB 6dB 9dB Avg.
Rate-map 28.36  23.45 15.17 11.55 793 6.72 15.53
DCT 27.50  27.50 27.50 27.50 27.50 27.50 @ 27.50
Rate-map|DCT 13.79 12.76 10.00 8.88 888 879 10.52
Rate-map|DCT|Uncertainty 1491 1388 11.21 8.88 879 7.93 10.93
A set per sentence, oracle-SNR-based  27.67 18.10 11.12 6.64 5.86 6.72 12.69
A set per frame, uncertainty-based 13.28 11.12 810 6.81 5.60 4.22 8.19

does help
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Stream Weighting in Deep Neural Networks

Intermediate Conclusion
With appropriate stream weighting, audiovisual recognition can reliably give

accuracies that are equal to or better than the single best modality.

Stream weighting can be guided by reliability measures composed of recognition
confidence measures and observation uncertainties. The composition is better
than the single best measure.

Such stream weighting also appears to be helpful in the fusion of audiovisual
multi-stream DNNs.

Next question

How can such audiovisual recognition systems benefit speech enhancement (e.g.
for extremely noisy environments)?
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...and moving on to
the second part:

Audiovisual speech
enhancement
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...and many thanks
for your attention!
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Coupled HMMs for asynchronous Audio- & Video Streams

Block diagram of dynamic stream weighting system

Training

Train neural network or logistic ( — M )
regression function using oracle Audio- E E M
dynamic stream weights (ODSWs) y\el;tl::zs (3| ™ Algorithm Labels
as training targets. — =
Reliability measure features i ODSWs

 Estimated observation -

. . Reliability [ Mapping Function
uncertainties Measure [¥] Parameter
e Estimated SNR Features | e Estimation
e Soft and hard VAD cues based k — Parameters )

on IMCRA noise estimation
e Dispersion and entropy of
audio and video HMM

[Abdelaziz2015] A. Hussen Abdelaziz, S. Zeiler and

D. Kolossa: “Learning Dynamic Stream Weights For
Coupled-HMM-based Audio-visual Speech Recognition”,
IEEE Trans. Audio Speech and Language Processing, 2015.
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How can we recover speech from noise?
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How can we recover speech from noise?

clean: "bin white with L3 again”
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How can we recover speech from noise?

noisy: "bin white with L3 again”
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How can we recover speech from noise?

in white with L3 again”
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How can we recover speech from noise?

in white with L3 again”
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System Overview

video au.dio
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The Twin-HMM

features recognition model

= Selod

o0 0 OO >

synthesis output density functions output
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The Twin-HMM

features recognition model

g

synthesis output density functions output

AP: MMSE estimate of the clean speech amplitude spectrum

£(t) = E(zlo) ZP Ezelge =)
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The Twin-HMM

features recognition model

g

synthesis output density functions output

AP: MMSE estimate of the clean speech amplitude spectrum

£(t) = E(zlo) ZP Ezelge =)

BP: use the most probable state i} in each frame ¢

#(t) = E(wilqr = if)

Intro TurboTwin-HMM Twin-HMM Turbo Decoding Results Conclusion Steffen Zeiler 3/9
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Turbo Decoding!

IShivappa, Rao, Trivedi: Multimodal information fusion using the iterative decoding algorithm and its
application to audio-visual speech recognition, ICASSP 2008
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Turbo Decoding!
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’Iikelihood computation ‘ ’Iikelihood computation ‘
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’ posterior computation ‘ ’ posterior computation ‘
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ATAPp
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likelihood modification: ba(0alda) = ba(0alta) - 9a(da)
Ev (I=X7p)Ap

(Ov‘qv) = bv(0v|Qv> . .%J(Qv)

IShivappa, Rao, Trivedi: Multimodal information fusion using the iterative decoding algorithm and its
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Instrumental Measures

PESQ? STOI®
SNR 0dB -3dB -6dB -9dB 0dB -3dB -6dB -9dB
noisy 195 169 146 121 0.70 062 053 045
log-MMSE 190 158 136 1.06 0.66 057 049 041
E1AP 211 2.02 194 1.83 0.68 065 0.61 057
E1BP 202 192 18 171 066 063 059 0.54

E2AP 208 201 191 182 0.70 0.68 0.64 0.59
E2BP 199 1091 1.80 1.68 0.67 065 0.60 0.56

588 files per SNR

recognizer features clean speech estimation
E1 minimize synthesis distortions AP all path synthesis
E2 optimize recognition results BP best path synthesis

2pPESQ: Perceptual Evaluation of Speech Quality, 3STOI: Short Time Objective Intelligibility
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Listening Tests

100 —

[ Noisy

90 | I log-MMSE

[ Je1ap

[JEe2ap 79.35 81.58 8143

80|~ i e2ep 082 77.28 = 75.82
73.43 72.72

78.94

70.47

Word accuracy [%]

-3 0
SNR [dB] 260 utterances per column

large-scale listening experiment (CrowdFlower)

690 individual participants, 27.118 transcribed utterances

quality control to identify cheaters or language deficits
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Conclusion

B video assisted single channel speech enhancement works

B our best system [E2BP] improves word accuracy of human listeners for the
GRID task

e from 48.6% to 74.8% at -9dB

e from 77.2% to 84.6% at 0dB SNR

B predictions of reference-based objective speech intelligibility measures are
unreliable for non-linearly processed speech
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Perspectives

B better intelligibility estimators are needed - we are considering
speech-recognition-based measures

B AV speech enhancement needs to be extended to open vocabularies and
arbitrary recording conditions (taking video reliability information into
account)

W for this purpose, and others, we are working on large-vocabulary AV speech
recognition, combining our more general topologies with TensorFlow training
of convolutive/recurrent nets
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Recognition Accuracy for variants E1 and E2

Method -9dB -6dB -3dB 0dB codB

El 87.95% 90.27% 91.13% 93.38% 97.15%
E2 89.67% 91.81% 93.98% 95.34% 98.18%

E1 : optimized for minimal distortion during synthesis

E2 : optimized for best recognition results
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Listening Test Recognition Accuracy

Noisy  log-MMSE  EIAP E2AP E2BP
64.27 % 57.09 % 7430% 78.78% 80.10%

B average word accuracy over all SNRs

B Each score is based on 1037 utterances

Steffen Zeiler

9/9



	Kolossa2_Hearing17_KITP
	kolossa2-hearing17_zeiler
	How can we recover speech from noise?
	The Turbo-Twin-HMM, System Overview
	The Twin-HMM, Estimating Clean Speech Signals
	Turbo Decoding, Joint Audio-Visual Inference
	Results
	Instrumental Measures ( PESQ, STOI )
	Large Scale Crowdsourcing Listening Tests

	Conclusion
	Appendix


