Eigenvectors and

eigenvalues in biology:

Principal Component
Analysis (PCA)
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/- Principal Component Analysis determines the directions of
maximum variation in a data cloud, from the eigenvectors

of a symmetric correlation matrix.~  _ Zra s _< >

« Eigenvalues of the correlation matrix in the remaining
directions determine the residual. |,7|2 =A+4, R=4,

It can be easier to determine epistatic interactions between

OoR

4 2 0 2

genes by looking along the principal components



Eigenvalues and Eigenvectors in Neural Networks

» Non-Hermitian, i.e., asymmetric matrices, with
complex eigenvalues, arise naturally in simple
models of networks containing both excitatory
and inhibitory neurons (or species!)

» Localized eigenvectors dominate the eigenvalue Ariel Amir
Harvard/SEAS
spectra for sparse random neural networks.

» An intricate eigenvalue spectrum controls the
spontaneous activity and induced response.
Directed rings of neurons lead to a hole
centered on the origin in the density of states in
the complex plane.

» All states are extended on the rim of this hole, Naomichi Hatano
while the states outside the hole are localized. University of Tokyo

Advice from Y. Lue,
Venki Murthy and

Physical Review E93, 042310 (2016) Haim Sompolinsky



Eigenvectors and eigenvalues R mutualism
in biology: rabbits vs. sheep 2 ¢ 5 o<
sheep \ (3,2)
¥ ax =3x(1-x/3 [ 1
D O =n-x/3)
g - —> -
¥ d bbi x(1)
ﬂ _y:2y(1_y/2) rabbits 3
| dt
decoupled model: x(t) = number of rabbits
two logistic equations y(t) = number of sheep
linearize about the fixed point at (3,2) Im 4
x'()=x@)=3, y'(t)=y(t)-2
dx'(t) I dt N =3 0\ x'(2)
&' ldt) {0 -2/ ') PR
—eo Re A

x'(£) =x'(0)e ™, y'(t) = y'(0)e ™
two real eigenvalues:
A, =-3, A, =2, stable fixed point




Eigenvectors and eigenvalues competitive exclusion
in biology: rabbits vs. sheep

sheep
d. . ?
D 3x(l-x/3-2y/3)
dt ¥ 1
ﬁ VS.
dy " |
—=2y(1-y/2-x/2) ) |
dt i g é 3 rabbits
or.... two coupled inhibitory neurons
v, = firing rate deviation from the
background rate of the i neuron
T% =—v, +tanh [M11V1 + Mlzvz]
o (]
r% =—v, +tanh [M21V1 +M22v2]

M 0 -—s
B —g 0 S. H. Strogatz, Nonlinear dynamics and chaos. with applications to
physics, biology, chemistry, and engineering. Westview press, 2014.



Eigenvectors and eigenvalues
in biology: Rabbits vs. Sheep

§=3x(1—x/3—2y/3)
dt ¥

dy
& o2v(=v/2—x]2
» yAd-y x/2)

® .
) =

either sheep or rabbits win
or “fix” at long times...

| R

1

2 3 rabbits

Four fixed points are obtained: (0,0), (0, 2), (3,0), and (1,1).

linearize about the fixed point at (1,1)
x'(1)=x@) -1, y'(r)=»(r)-1

dx'(t) I dt -1 -2\(x'(¢)
(a’y )/ dtj N [—1 —1)( y'(t)]
two real eigenvalues control dynamics:
A =—1+~2, 1, =-1-/2

due to interactions, there is now one
stable and one unstable eigendirection

Ay

Im A

° Re A

S. H. Strogatz, Nonlinear dynamics and chaos. with applications to
physics, biology, chemistry, and engineering. Westview press, 2014.



Rabbits vs. Foxes: complex Y, () = number of rabbits
eigenvalues lead to oscillations... Y,(t) = number of foxes

X =const. density of grass
IT. LOTKA-VOLTERRA EQUATION

dY, -
=1 XY — e 1Y . . 3 O
T 1 1 2X1 12 =) 2 fixed leI‘ltLﬂe 0) fké" ;*2 )
dY. .
— = ahiYs — Y,
Stability matrix: M (Y,Ys) = ( Er]h{fz‘}ff " f.'ﬂ’fllgf Ir:.‘:_s )
. - C1X 0
1%t fixed point: M (0,0) = 0 . or.... coupled
. *3

excitatory &
m=) eigenvaluesare X, —C3 mm) Saddle Point mhlbltory

ey o1 X ( 0 _FR) neurons
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Fray-Predator Cycles

II. LOTKA-VOLTERRA EQUATION

lojep=ld




Random matrix theory applied to N-species ecology models (N >> 1)

1. Assume each species in isolation would obey a stable logistic equation
with stable eigenvalue -1 then switch on random interactions of either sign

dx. .
dtl =xl.(l—x,-)—ZB,]x,X], Letx (¢) =x,(f) —x*=x-1 R. M. May. Nature,
J=1

238 413 (1972)

N
2. a, (t ~ZA X, '(¢), x'(¢) 1s an N-component vector of species
j=1

2

deviations from the logistic fixed point (x,*x,*,...,x,*) =(11,...,1)

3. A~-I —C, where C is an N-component interaction matrix with zero | unstable modes

mean for each element and each with standard deviation o \

The spectrum of C is a uniform distribution
of complex eigenvalues in unit circle

In the complex plane of radius oV N.
Universal density of states for large N!
"Girko's Law"

Any ecological system becomes
unstable for sufficiently large N!




Random Matrices in Neuroscience

Spike rate r(t) o
depends on Rk s o
orientation of bar — C

moving across the

Visual stimulus s(t)
transferred from retinal
neurons > LGN -
V1 region of the visual
coretex

lateral

/—' geniculate (LGN)

visual field nucleus
60 e === Gl
spike rate « * , agortex
. tP ) \4@ g b
uning Ny ——~"
40 curve r(t) 2 j
lateral
geniculate
30+ _ hucleus
20 ]
Pathway from the retina through
10 the lateral geniculate nucleus
0 e . | | | (LGN) to the primary visual cortex

signal S(t): orientation in degrees Dayan and Abbott: Theoretical Neuroscience



Random matrix models of the brain (H. Sompolinsky, L. Abbott et alia)

» Random neural connections can be formed during development, with many
stochastic attachments of axons and dendrites to other neurons.

» Over time, pruning and strengthening/weakening of connections allow
neural circuits to "learn" various functions. .
Girko’s Law

» The spectra and eigenfunctions of completely
random neural networks with a mixture of inhibitory
and excitatory connections, can describe neural
activity during the early stages of development.
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K. Rajan, 2009 Spontaneous and Stimulus-driven Network

Dynamics. Doctoral Dissertation, Columbia University. | LS




Time scales and eigenfunctions of sparse neural networks

» The simplest models of neural networks assume long range connectivity between
Individual neurons in the brain, leading to synaptic matrices M(i,j) with statistical
properties independent of the separation r;;= |r; —r;| In three dimensions.

» The eigenvalue spectrum of M(i,j) controls the spontaneous activity and induced
response of the network, and much is known when its elements are chosen from
simple random matrix ensembles. Vary asymmetry, M(i,j)# M(j,i).

\
(o LS i g ¥ Y
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Dales Law: K. Rajan
and L. Abbott, Phys.
Rev. Lett. 97, 188104

(2006)
H. J. Sommers, et al., Phys. Rev.

Lett. 60, 1895 (1988)

» What happens when M(i,j) ~ exp[-|r;—r,| /&] , where ¢ Is a length spanning
spanning as many as 50 neurons? On scales larger than &, the relevant
random matrices are banded about the diagonal.

» Will localized eigenfunctions dominate the dynamics?

“all states are localized in
1d disordered systems”




Random matrix model of a sparse neural network

Sensory inputs, possibly

after a processing step, are

ua2) Sentvia feed forward
couplings into a circular

2 ring of N neurons Note that
M(1,2) and M(2,1) can not
only be unequal, but also of
opposite sign, if one
direction is excitatory and
the other inhibitory.

v, = firing rate deviation from background of the i” neuron in recurrent network

u; = Input firing rate of the 7™ neuron in the input (feed forward) network

dv, N 3
r—’:—vl-+tanh ZMijvj"'hi ’ hi:ZWijuJ

dt j= =

@,

N
~-v,+ > M, +h (linear approximation)
j=1

T
dt



Non-Hermitian neural networks with random excitatory
(M(i,j) > 0) and Inhibitory (M(i,j)< 0) connections

N
M == [sie | )(i+1 +s7e [+ D{]
j=1

g provides a systematic clockwise (g > 0) or
counterclockwise (g < 0) directional bias

Study eigenvalues and eigenvectors of directed,
banded non-Hermitian random matrices

0 se 0 sye ®
. Ling sse 0 s,€f 0
s, s, ==x1, Indep. _ . :
2= TR ey o) 0 et . 0
random variables; _ 0 : b g
: ' Sy_1€
Set g = 0 for now = random L
g =0f syet .. 0 s,.e° 0

sign model of J. Feinberg and
A. Zee, PRE 59 6433 (1999)



Eigenvalue distribution in the complex plane A = 4, +i4,
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Result of exact diagonalization of 10,000 N x N matrices with N=5000andg=0

How localized are the eigenfunctions??



Eigenfunctions within circle on right side

What does are highly localized w/real eigenvalues
“localization” mean? A
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What Is the effect of
the bias parameter g?

0 s 0 sye *
se 0 s,ef 0
M= 0 s,ef . . 0
0 - Sy_q1€*
sye .. 0 sy.ef 0

s; =*1, s; =+1with equal probability
0<g<ow (noDale's law for now)

Hidden

>» Excitatory (glutamate)

— — — = Inhibitory (GABA)

g>0

- -\'
/ R

As g increases from 0, it tunes down the
amount of feedback in a “feed clockwise”
recurrent network...

Similar layered neural nets
used for image & sound
classification, etc. in machine
learning algorithms.

Many layers = “deep learning”



Effect of a directional bias around the chain (g > 0)

N =5000, g=0.0

12




Effect of a directional bias around the chain (g > 0)

N =5000, g=0.002




Effect of a directional bias around the chain (g > 0)

N =5000, g=0.01

12




Effect of a directional bias around the chain (g > 0)

N =5000, g=0.05

12

As the network becomes
increasing feed-clockwise,
a gap or hole appears in
the eigenvalue spectrum
in the complex plane...



Effect of a directional bias around the chain (g > 0)

N =5000, g=0.1

2




Effect of a directional bias around the chain (g > 0)

N =5000, g=0.2

12




Effect of a directional bias around the chain (g > 0)

N =5000, g=0.5

12

These states move
around the ring —
they delocalize...




Localization lengths and effect of boundary conditions
extended state: ¢, ~1/ /N, V;

Define inverse participation ratio IPR = Z\@\“ /sz U N <l
4 2 J J

IPR = ;MJ‘ /;‘¢j‘ localized state, ¢, ~ exp[-|x, —x, | /&,,.]

IPR ~ inverse localization length IPR = Z\(ﬁjr /Z\cﬁj\z =0(1)

—~0.15

Tmag[A]

0.1

Real[A]

Eigenvalue spectrum forg=0 N Eigenvalue spectrum for g = 0.1
(or, for any g with open boundary conditions!) with periodic boundary conditions

> Localization length diverges on the rim of the hole when g > 0 = extended states



What about Dale’s @

v/ \v N=5¢g=0.0
law? All neurons Aoa
must be purely G- \~@ e

excitatory or

Inhibitory.... - -
- N — i . .
M = —Zl [Sj e ‘j+1> <]‘ tS,e ) ‘]><J +1[| \IjaegLabCIZszvltl/i’:fxnoanI\r/nN of

= l

them...
N

G =—;ak e [k +1) (k| + e |k —1)(k]]

The spectra and eigenfunctionsof M and G are essentially identical! The spectral
properties are determined in both cases by above/below diagonal products such as
M(j,j+)-M(j+1 j)=ss; and G(j,j+1)-G(j+Lj)=0,0,,,

which have identical statistics!!



Large g spectra: perturbation theory about a “delay ring”
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Large g limit: Plane wave states, all eigenfunctions delocalized

..........
0. .0
+* *

» Trajectories of eigenvalues for N=100 _
and values of g decreasing from 1 I
down to zero.

» Eigenvalues "flow" in the complex
plane. :; ;:

» Motion stops once eigenvalues i ) :
localize

.
R

* *
0000000




Im A

The gap rimmed by extended states Is robust...

st =+1 s, =+, N=1000,

Single box distribution
N=1000,g=0.5

N
g = 0.1, but with diagonal randomness P(s)
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Energy gap 4 ! ‘ ' I T 4— T [
and rings of
extended states

also appear for 2|
coupled neural

clusters ~<
— o
i extended [

1000 triangular P . states
neural clusters, —2 r YARN 25N &

obeying Dale’s law, Y

and coupled together e é : “Band theory” for

to form a ring v neural networks?

Layered neural - =’ 0 2

network with tunable
back propagation RP A




Sparse non-Hermitian random matrices and
a model of short term memory

Memory traces in dynamical systems
S. Ganguli, D. Huh & H. Sompolinsky

» Recent proposals have suggested that
PNAS, 105, 18970 (2008)

recurrent networks could store information
in their transient dynamics, even if the
network does not have information- e
bearing attractor states. Downstream ' e
readout networks can then be trained to
extract relevant functions of the past input
stream to guide future actions.

» A useful analogy is the surface of a liquid.
Even though this surface has no attractors,
(save the trivial one in which it is flat),
transient ripples on the surface can
nevertheless encode information about
when and where past objects that were
thrown in.




Fisher memory curves for neural nets

x.(n) = iMi].xj (n=D+vs(m)+&(n); (E(m-k)E (n-k') = 5,0,

where x,(n) Is the firing rate of a neuron placed at the ith site at
discrete time », v, Is the feedforward connection between a signal
iInput s(z) and the ith neuron, and & (n) represents Gaussian white noise.

® Ability to recover the signal s(n)
downstream depends on the properties
of the matrix M;

® What happens when the excitatory
and inhibitory connections in the
recurrent network of neurons in, say, the
higher auditory cortex are chosen at
random? Can we improve the efficiency
by adjusting the {v;}?

®Do localized eigenvalues and
eigenfunctions of M;; play a role?




Fisher memory Curves (Ganguli, Huh & Sompolinsky, PNAS 2008)

P(x(n) | s+d 32)

P(x(n) | s)

Conversion of temporal to spatial information.

Three scalar signals: a base signal, s(k), and two
more signals obtained by perturbing s by the
addition of an identical pulse centered at time n-10
and n-20. At time n, the temporal structure of
each signal is encoded in the spatial distribution of
the network state x(n).

As both perturbations recede into the past, both
perturbed memory traces decay, and the three
distributions become identical.

Given a probability distribtution of
firing rates x(») at time n in a recurrent
network P(x(n)|s) conditioned on a
signal history s ={s(n—k) | k > 0},

the Fisher memory curve J (k) can be
extracted from the Kullback-Leibler
divergence between P(x(n)|s)
P(xX(n)|5s +05) as

—0?

5,05,

J(k) = < In P(3(n)]| §)>

P(E(n)l5)
J(k), the Fisher memory curve, gives the

information retained about a pulse
entering the network k steps in the past.

figure of merit: J,, = > J(k)
k=1



Kulhbeck-Leibler Information

(x|s + 0s)
plx|s)

Dia (p(ala)ltals + 39) = — [ do plals)tos!

Expand for small o5...

D (p(]s)|[p(x]s + ds)) = — /Do dx p(x|s)log p(il(i;;fS)

1 Ip(x|s) N 1 1 9p(x|s)
S; - . :
plx|s) JIs; 2p(x|s) 0Os;0s;

o -
Ji={( — g ]
? < T~ lohp<a:(n>|s)>

1+ 0si05; + O(55")

— / dx p(x|s)log

p(a(n)|s)



Fisher memory curves & 1d sparse random matrices

J(k)y=J, =V MTC My *For normal networks, (i.e., [,W'] = 0),
il 2k 2
N JE) =YV Al A-A])
C,=cy |M'M"] JZ; Tl el
k=0

& dependence on eigenvectors of 7 drops out;

1% tot

also, J,, =Y J(k)=1
k=1

*However for non-normal networks, we must

optimize J,, =v' J*v, where the spatial Fisher

o0

memory matrix is J; = Z[MkTC;lM"],, . J, <N.
ij

Maximize J,, with the principal eigenvector of J..

J;; 1s symmetric with *real* eigenvalues.
What is the role of localization?



Example: delay ring vs. delay line

0O 099 0 .. O
0 0 099 O
M=| 0 0 ' ' 0
, 0 0.99
099 .. 0O 0 O

If the connectivity matrix W is non-
normal, then J,.; depends on the
feedforward connection v. Following
Ganguli et al, we compare J,, for

(1) without optimization, where each
component of v is drawn from a
uniform distribution [0, 1] and
then normalized and

(2) with optimization, where we use
the principal eigenvector of J5;.

delay ring is s00 Delay ring
a normal 3_2 I Not optimized
. © 150} == Optimized
matrix =
=
— 5 1oof
@
O
E™ N=100
=
=z
0 ‘
0 1 2 3 4 5
Jrot
200 Delay Iing
3:: I Not optimized
O 150 0 Optimized
2
@)
=z
5 100
@
O
= 50
e N=100 “
0 L L 1
0 1 3 4 5
Jrot
0 099 O 0
0O 0 099 O
M={0 0 0
0 0.99
0 0 0 0

delay
ring is
non-
normal




Fisher memory curves and
localization in one-dimension

non-Hermitian random matrices

How does localization
manifest itself?

0.4M, N =300,f=0.5

o

D

o
~

g=0.0

o
w

o
N

o
s

o

0

Principal eigensvector of 0.4M

0 50 100 150 200 250 300
site
Principal eigenvector of M

Hidenori Tanaka & drn

s 0.45M,N =100,v=0.5,f=05,9g=0

_;coj 120 I I Not optimized
o io0 & Optimized
Q
= 80}
= B
| . 80 .
g Histograms
40
£ of J s
= 20
0 N | . .
0 1 2 3 4 5
Jror

The difference between J,,, with optimal
and non-optimal feedforward connections,
consistent with non-normality of the
recurrent network when f = 0.5 and a = 0.0

7O.4M, N =300,f=0.5

o

g=0.0

B~ o

Principal eigenvector of J°
o O O O O o o O

o = N W

o

50 100 150 200 250 300
o _ site
Principal eigenvector of J,,,



Non-Hermitian Localization in Neural Networks

» Non-Hermitian matrices, with complex
eigenvalue spectra, arise naturally in simple J ﬁank #Ou ,,
models of complex ecosystems, and neural
networks.

» Striking departures from the conventional
wisdom about localization arise in the one-
dimensional non-Hermitian random matrices
that describe sparse neural and ecological
networks.

» An intricate eigenvalue spectrum controls the
spontaneous activity and induced response.
Directed rings of neurons lead to a hole
centered on in the density of states in the
complex plane.

» All states are extended on the rim of this hole,
while the states outside the hole are localized.

Naomichi Hatano



