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What principles govern the design of 
nervous systems?

• Efficient Coding (Barlow)

• Inferential Computation (Helmholtz)





(Neural Computation, 1993)
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Abstract
Soon after Shannon defined the concept of redundancy it was suggested that it
gave insight into mechanisms of sensory processing, perception, intelligence
and inference. Can we now judge whether there is anything in this idea, and
can we see where it should direct our thinking? This paper argues that the
original hypothesis was wrong in over-emphasizing the role of compressive
coding and economy in neuron numbers, but right in drawing attention to the
importance of redundancy. Furthermore there is a clear direction in which
it now points, namely to the overwhelming importance of probabilities and
statistics in neuroscience. The brain has to decide upon actions in a competitive,
chance-driven world, and to do this well it must know about and exploit the
non-random probabilities and interdependences of objects and events signalled
by sensory messages. These are particularly relevant for Bayesian calculations
of the optimum course of action. Instead of thinking of neural representations
as transformations of stimulus energies, we should regard them as approximate
estimates of the probable truths of hypotheses about the current environment,
for these are the quantities required by a probabilistic brain working on Bayesian
principles.

1. History

The idea that the statistics of the sensory stimuli we receive from the environment are important
for perception and cognition is not new, and surprisingly clear statements about it can be
found before 1950 in the writings of Mach (1886), Pearson (1892), Helmholtz (1925), Craik
(1943) and others. But Shannon’s definition of channel capacity, information and redundancy
(Shannon and Weaver 1949) was a landmark. The relations between these quantities, the
probabilities of individual signals and the statistics of ensembles of signals, are not intuitively
obvious, and they were a revelation to me—particularly as brought out in Shannon’s wonderful
paper on the redundancy of written English (Shannon 1951). I was then at an early stage in my
scientific career, and since these measurable quantities were obviously important to anyone
who wanted to understand sensory coding and perception, I eagerly stepped on the boat.

Fred Attneave (1954) had got there before me with his article in Psychological Reviews,
which I heard about when I presented my ideas to a discussion group in Cambridge in the

0954-898X/01/030241+13$30.00 © 2001 IOP Publishing Ltd Printed in the UK 241

INSTITUTE OF PHYSICS PUBLISHING NETWORK: COMPUTATION IN NEURAL SYSTEMS

Network: Comput. Neural Syst. 12 (2001) 241–253 www.iop.org/Journals/ne PII: S0954-898X(01)24263-8

Redundancy reduction revisited

Horace Barlow

Physiological Laboratory, Downing Site, Cambridge CB2 3EG, UK

E-mail: hbb10@cam.ac.uk

Received 31 November 2000

Abstract
Soon after Shannon defined the concept of redundancy it was suggested that it
gave insight into mechanisms of sensory processing, perception, intelligence
and inference. Can we now judge whether there is anything in this idea, and
can we see where it should direct our thinking? This paper argues that the
original hypothesis was wrong in over-emphasizing the role of compressive
coding and economy in neuron numbers, but right in drawing attention to the
importance of redundancy. Furthermore there is a clear direction in which
it now points, namely to the overwhelming importance of probabilities and
statistics in neuroscience. The brain has to decide upon actions in a competitive,
chance-driven world, and to do this well it must know about and exploit the
non-random probabilities and interdependences of objects and events signalled
by sensory messages. These are particularly relevant for Bayesian calculations
of the optimum course of action. Instead of thinking of neural representations
as transformations of stimulus energies, we should regard them as approximate
estimates of the probable truths of hypotheses about the current environment,
for these are the quantities required by a probabilistic brain working on Bayesian
principles.

1. History

The idea that the statistics of the sensory stimuli we receive from the environment are important
for perception and cognition is not new, and surprisingly clear statements about it can be
found before 1950 in the writings of Mach (1886), Pearson (1892), Helmholtz (1925), Craik
(1943) and others. But Shannon’s definition of channel capacity, information and redundancy
(Shannon and Weaver 1949) was a landmark. The relations between these quantities, the
probabilities of individual signals and the statistics of ensembles of signals, are not intuitively
obvious, and they were a revelation to me—particularly as brought out in Shannon’s wonderful
paper on the redundancy of written English (Shannon 1951). I was then at an early stage in my
scientific career, and since these measurable quantities were obviously important to anyone
who wanted to understand sensory coding and perception, I eagerly stepped on the boat.

Fred Attneave (1954) had got there before me with his article in Psychological Reviews,
which I heard about when I presented my ideas to a discussion group in Cambridge in the

0954-898X/01/030241+13$30.00 © 2001 IOP Publishing Ltd Printed in the UK 241



V1 is highly overcomplete
Temporal reconstruction o f  the image 

The homunculus also has to face t'he problem that  the image is often nioving 

continuously, but is only represented by impulses a t  discrete moments in time. I n  

these days he often has to deal with visual images derived from cinema screens and 

television sets tha t  represent scenes sampled a t  quite long intervals, and we know 

IVb 

0 1mm
C I 

FIGURE8. A tracing of the outlines of the granule cells of area 17 in layers IVb  and IVc of 

monkey cortex, where the incoming geniculate fibres termmate (from fig. 3 c of Hubel & 

Wiesel 1972) The dots at the top lndlcate the calct~lated separation of the sample points 

coming In from the re t~na ,  allowing tmo per cycle of the higllest spatial frequency 

resolved. The misaligned vernier a t  rlght has a displac~ment corresponding to one sixth 

of the sample separation, or 5' for 60 cycle/deg optimum aclutp The 'grain' in the 

cortex appears to be much finer than In the retlna. 

that  he does a good job a t  interpreting them even when the sample rate is only 

16 s-l, as in amateur movies. One only has to watch a kitten playing, a cttt hunt- 

ing, or a bird alighting a t  dusk among the branches of a tree. to appreciate the 

importance and difficulty of the ~ ~ i s u a l  appreciation of motion. Considering this 

overwhelming importance it is surprising to find how slow are the receptors and 

how long is the latency for the message in the optic nerve, and e~-en  more surprising 

to find how well the system works in spite of this slowness. 

Recent psychophysical work has improved our understanding of these problems. 

At one time i t  was thought that image motion aided resolution (Narshall SI Talbot 

1942),but this was hard to believe because of the bll~rring effect of the eye's long 

LGN 
afferents

layer 4 
cortex

Barlow (1981)
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Limited capacity
units

Bottleneck may also be in the form of limited capacity units.  
Optimal strategy in this case is to whiten.
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Sparse codes impose a different type of bottleneck
by limiting the number of active units



Dense codes
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Sparse, 
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natural images

natural sounds

sparse coding/ICA

sparse coding/ICA

V1 receptive fields

auditory nerve filters



Sparse coding of natural sounds
(Smith & Lewicki 2006)
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58 CHAPTER 4. HUMAN HEARING OVERVIEW

Figure 4.8: Period histograms of auditory nerve fiber firings in response to a periodic vowel sound show
pitch-synchronized activity, for fibers of all CFs (Delgutte, 1997). Even fibers that primarily synchronize to
the formant (vocal tract resonance) frequencies (here F1, 8 cycles per pitch period, and F2, 14 cycles per pitch
period) show a pattern that repeats at the pitch rate. Synchrony to the formant frequencies spreads to fibers
of higher CF. Fibers with CF above 2 kHz show synchrony to a wide range of lower frequencies, in a pattern
prominently synchronized to the pitch rate. The pitch here, 100 Hz, is quite low relative to the cat’s auditory-
system tuning, so we do not see the resolved low harmonics (2 through 5 cycles per pitch period) that would
likely be apparent in human auditory nerve data.

Delgutte (1997)

But this doesn’t really look like sparse coding
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Let’s go back to that bottleneck idea…
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About Chapter 4

In this chapter we discuss how to measure the information content of the
outcome of a random experiment.

This chapter has some tough bits. If you find the mathematical details
hard, skim through them and keep going – you’ll be able to enjoy Chapters 5
and 6 without this chapter’s tools.

Notation

x ∈ A x is a member of the
set A

S ⊂ A S is a subset of the
set A

S ⊆ A S is a subset of, or
equal to, the set A

V = B ∪A V is the union of the
sets B and A

V = B ∩A V is the intersection
of the sets B and A

|A| number of elements
in set A

Before reading Chapter 4, you should have read Chapter 2 and worked on
exercises 2.21–2.25 and 2.16 (pp.36–37), and exercise 4.1 below.

The following exercise is intended to help you think about how to measure
information content.

Exercise 4.1.[2, p.69] – Please work on this problem before reading Chapter 4.

You are given 12 balls, all equal in weight except for one that is either
heavier or lighter. You are also given a two-pan balance to use. In each
use of the balance you may put any number of the 12 balls on the left
pan, and the same number on the right pan, and push a button to initiate
the weighing; there are three possible outcomes: either the weights are
equal, or the balls on the left are heavier, or the balls on the left are
lighter. Your task is to design a strategy to determine which is the odd
ball and whether it is heavier or lighter than the others in as few uses
of the balance as possible.

While thinking about this problem, you may find it helpful to consider
the following questions:

(a) How can one measure information?

(b) When you have identified the odd ball and whether it is heavy or
light, how much information have you gained?

(c) Once you have designed a strategy, draw a tree showing, for each
of the possible outcomes of a weighing, what weighing you perform
next. At each node in the tree, how much information have the
outcomes so far given you, and how much information remains to
be gained?

(d) How much information is gained when you learn (i) the state of a
flipped coin; (ii) the states of two flipped coins; (iii) the outcome
when a four-sided die is rolled?

(e) How much information is gained on the first step of the weighing
problem if 6 balls are weighed against the other 6? How much is
gained if 4 are weighed against 4 on the first step, leaving out 4
balls?

66

From:  D.J.C. MacKay,  Information Theory, Inference, and Learning Algorithms
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Efficient coding model of retina 
(Karklin & Simoncelli 2012)replacements
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Figure 1: a. Schematic of the model (see text for description). The goal is to maximize information
transfer between images x and the neural response r, subject to metabolic cost of firing spikes. b.
Information about the stimulus is conveyed both by the arrangement of the filters and the steepness
of the neural nonlinearities. Top: two neurons encode two stimulus components (e.g. two pixels of
an image, x1 and x2) with linear filters (black lines) whose output is passed through scalar nonlinear
functions (thick color lines; thin color lines show isoresponse contours at evenly spaced output
levels). The steepness of the nonlinearities specifies the precision with which each projection is
represented: regions of steep slope correspond to finer partitioning of the input space, reducing the
uncertainty about the input. Bottom: joint encoding leads to binning of the input space according to
the isoresponse lines above. Grayscale shading indicates the level of uncertainty (entropy) in regions
of the input (lighter shades correspond to higher uncertainty). Efficient codes optimize this binning,
subject to input distribution, noise levels, and metabolic costs on the outputs.

Parameter λj specifies the trade-off between information gained by firing more spikes, and the cost
of generating them. It is difficult to obtain a biologically valid estimate for this parameter, and
ultimately, the value of sensory information gained depends on the behavioral task and its context
[26]. Alternatively, we can use λj as a Lagrange multiplier to enforce the constraint on the mean
output of each neuron.

Our goal is to adjust both the filters and the nonlinearities of the neural population so as to maximize
the expectation of (3) under the joint distribution of inputs and outputs, p(x, r). We assume the
filters are unit norm (∥wj∥=1) to avoid an underdetermined model in which the nonlinearity scales
along its input dimension to compensate for filter amplification. The nonlinearities fj are assumed
to be monotonically increasing. We parameterized the slope of the nonlinearity gj =dfj/dyj using
a weighted sum of Gaussian kernels,

gj(yj |cjk, µjk,σj) =
K
∑

k=1

cjk exp

(

−
(yj − µjk)2

2σ2
j

)

, (4)

with coefficients cjk≥0. The number of kernelsK was chosen for sufficiently flexible nonlinearity
(in our experimentsK = 500). We spaced µjk evenly over the range of yj and chose σj for smooth
overlap of adjacent kernels (kernel centers 2σj apart).

2.1 Computing mutual information

How can we compute the information transmitted by the nonlinear network of neurons? Mutual
information can be expressed as the difference between two entropies, I(X ;R) = H(X)−H(X |R).
The first term is the entropy of the data, which is constant (i.e. it does not depend on the model) and
can therefore be dropped from the objective function. The second term is the conditional differential
entropy and represents the uncertainty in the input after observing the neural response. It is computed
by taking the expectation over output values H(X |R) = Er

[

−
∫

p(x|r) ln p(x|r)dx
]

. In general,
computing the entropy of an arbitrary high dimensional distribution is not tractable. We make several
assumptions that allow us to approximate the posterior, compute its entropy, and maximize mutual
information. The posterior is proportional to the product of the likelihood and the prior, p(x|r) ∝
p(r|x)p(x); below we describe these two functions in detail.

3

Objective function:
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Figure 2: In the presence of biologically realistic level of noise, the optimal filters are center-
surround and contain both On-center and Off-center profiles; the optimal nonlinearities are hard-
rectifying functions. a. The set of learned filters for 100 model neurons. b. In pixel coordinates,
contours of On-center (Off-center) filters at 50% maximum (minimum) levels. c. The learned non-
linearities for the first four model neurons, superimposed on distributions of filter outputs.
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Figure 3: a. A characterization of two retinal ganglion cells obtained with white noise stimulus
[31]. We plot the estimated linear filters, horizontal slices through the filters, and mean output as
a function of input (black line, shaded area shows one standard deviation of response). b. For
comparison, we performed the same analysis on two model neurons. Note that the spatial scales of
model and data filters are different.

in the number of On-center neurons (bottom left panel). In this case, increasing the number of
neurons restored the balance of On- and Off-center filters (not shown). In the case of vanishing
input and output noise, we obtain localized oriented filters (top left panel), and the nonlinearities are
smoothly accelerating functions that map inputs to an exponential output distribution (not shown).
These results are consistent with previous theoretical work showing that optimal nonlinearity in the
low noise regime maximizes the entropy of the output subject to response constraints [11, 7, 17].

How important is the choice of linear filters for efficient information transmission? We compared
the performance of different filtersets across a range of firing rates (Fig. 5). For each simulation, we
re-optimized the nonlinearities, adjusting λj’s for desired mean rate, while holding the filters fixed.
As a rough estimate of input entropyH(X), we used an upper bound – a Gaussian distribution with
the covariance of natural images. Our results show that when filters are mismatched to the noise
levels, performance is significantly degraded. At equivalent output rate, the “wrong” filters transmit
approximately 10 fewer bits; conversely, it takes about 50% more spikes to encode the same amount
of information.

We also compared the coding efficiency of networks with variable number of neurons. First, we
fixed the allotted population spike budget to 100 (per input), fixed the absolute output noise, and

6
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Figure 5: Information transmitted as a function of spike rate, under noisy conditions (8dB SNRin,
−6dB SNRout). We compare the performance of optimal filters (W1) to filters obtained under low
noise conditions (W2, 20dB SNRin, 20dB SNRout) and PCA filters, i.e. the first 100 eigenvectors
of the data covariance matrix (W3).

varied the number of neurons from 1 (very precise) neuron to 150 (fairly noisy) neurons (Fig. 6a).
We estimated the transmitted information as described above. In this regime of noise and spiking
budget, the optimal population size was around 100 neurons. Next, we repeated the analysis but
used neurons with fixed precision, i.e., the spike budget was scaled with the population to give 1
noisy neuron or 150 equally noisy neurons (Fig. 6b). As the population grows, more information is
transmitted, but the rate of increase slows. This suggests that incorporating an additional penalty,
such as a fixed metabolic cost per neuron, would allow us to predict the optimal number of canonical
noisy neurons.

4 Discussion

We have described an efficient coding model that incorporates ingredients essential for computa-
tion in sensory systems: non-Gaussian signal distributions, realistic levels of input and output noise,
metabolic costs, nonlinear responses, and a large population of neurons. The resulting optimal solu-
tion mimics neural behaviors observed in the retina: a combination of On and Off center-surround
receptive fields, halfwave-rectified nonlinear responses, and pronounced asymmetries between the
On- and the Off- populations. In the noiseless case, our method provides a generalization of ICA
and produces localized, oriented filters.

In order to make the computation of entropy tractable, we made several assumptions. First, we
assumed a smooth response nonlinearity, to allow local linearization when computing entropy. Al-
though some of our results produce non-smooth nonlinearities, we think it unlikely that this sys-
tematically affected our findings; nevertheless, it might be possible to obtain better estimates by
considering higher order terms of local Taylor expansion. Second, we used the global curvature of
the prior density to estimate the local posterior in Eqn. 7. A better approximation would be obtained

7
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Information in the Zero Crossings 
of Bandpass Signals 

By B. F. LOGAN, JR. 

(Manuscript received October 4, 1976) 

An interesting subclass of bandpass signals \h \ is described wherein 
the zero crossings of h determine h within a multiplicative constant. 
The members may have complex zeros, but it is necessary that h should 
have no zeros in common with its Hilbert transform fi other than real 
simple zeros. It is then sufficient that the band be less than an octave 
in width. The subclass is shown to include full-carrier upper-sideband 
signals (of less than an octave bandwidth). Also it is shown that full-
carrier lower-sideband signals have only real simple zeros (for any ratio 
of upper and lower frequencies) and, hence, are readily identified by 
their zero crossings. However, under the most general conditions for 
uniqueness, the problem of actually recovering h from its sign changes 
appears to be very difficult and impractical. 

I. INTRODUCTION 

Voelcker and Requicha1 raised the question, among others, as to when 
a bandpass signal h(t) might be recovered (within a multiplicative 
constant) from sgn \h(t)\, that is, from its zero crossings. There are really 
two questions here that should be treated separately: the question of 
uniqueness and the question of recoverability. Recoverability implies 
that there is an effective (stable) way of recovering the signal from the 
data. Uniqueness does not always imply recoverability. For example, 

4 8 7 
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18 CHAPTER 1. INTRODUCTION

1. Auditory periphery – nonlinear filterbank model

2. Brainstem – stabilized auditory image extraction

3. Application-dependent feature extraction

4. Meaning extraction by machine learning

Sound

Meaning

optional
top-down
feedback
paths

Figure 1.5: The four-layer model of machine hearing systems developed in this book—from sound to mean-
ing, and sometimes back the other way. The big feedback loop from meaning to sound is for a system that
can make sound and hear itself, for example, a speech conversation system.

3. A feature extraction layer to convert auditory images to a form more suited to the particular application
and tailored to the machine learning system chosen, as developed in part five;

4. A machine learning system that is trained to extract the kind of decisions or meaning needed for the
target application, as addressed also in part five.

This layering will focus us on a known-working and factored structure, based closely on human hearing
where possible, not specific to the higher-level properties of speech and music, that is open-ended enough
to allow expansion into arbitrary applications. From the point of view of many applications, such as speech
recognition, most of the action is at the top, in level 4, and the lower three levels just make a black-box front
end. The challenge there will be to make sure that the features that come out of level 3 are what the recognizer
needs.

Our machine hearing systems are characterized by several special features, in the first two modular layers:
the cascade filterbank structure with nonlinearities, and the auditory image approach. Hence, much of our
emphasis is on developing an understanding of these hearing-based ideas and their historical precedents, in
the corresponding book parts.

These special features are not new or radical, but are not yet widely enough appreciated and used in
hearing systems. Both were discussed in the middle of the twentieth century. The notion of a cascade as an
alternative to the more common parallel-resonator filterbank was presented by Licklider (1956) as a model
of cochlear filtering. He also adopted what we now call auditory images in his “duplex theory of pitch
perception” and combined this approach with Je↵ress’s “place theory of sound localization,” to form his
“triplex theory” of pitch perception (Licklider, 1956):

. . . It outlines a mechanism that accounts for the three ways in which acoustic stimulation can
give rise to subjective pitch and, at the same time, brings into mutual relation a number of facts
from other parts of auditory experience. . . . If the aim is to understand the process of perception,
the inquiry must extend into the higher centres of the brain. At the present time, this is sure to
lead one into speculation. However, if there is a lack of anatomical and physiological facts, there
is an abundance of psychophysical ones.

It took a few more decades for the understanding of the auditory nervous system, and of the cochlear non-
linearity, to evolve. Auditory image maps in the auditory nervous system are now known and being actively
investigated (Knudsen, 1982; Sullivan and Konishi, 1986; Schreiner, 1991; Langner et al., 1997; Velenovsky

The approach of Dick Lyon



Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

‘Deep learning’ 
(Hinton, Ng, Bengio, Lecun, Google brain, etc.)
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an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.
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Hierarchical Bayesian inference in visual cortex 
(Lee & Mumford, 2003)

areas of the image are in shadow. Second, the high-level
knowledge of the identity of an individual suggests that a
face should have certain proportions, as measured from
the low-level data in V1. Both sets of information would
go into the full explanation of the image.

This basic formulation can also capture the interaction
among multiple cortical areas, such as V1, V2, V4, and
the inferotemporal cortex (IT). Note that although feed-
back goes all the way back to the LGN and it is simple to
include the LGN in the scheme, the computational role of
the thalamic nuclei could potentially be quite different.30

Hence we decide not to consider the various thalamic ar-
eas, the LGN, and the nuclei of the pulvinar, in this pic-
ture at present. The formalism that we introduce applies
to any set of cortical areas with arbitrary connections be-
tween them. But for simplicity of exposition, we assume
that our areas are connected like a chain. That is, we as-
sume that each area computes a set of features or beliefs,
which we now call xv1 , xv2 , xv4 , and xIT , and we make
the simplifying assumption that if, in the sequence of
variables (x0 , xv1 , xv2 , xv4 , xIT), any variable is fixed,
then the variables before and after it are conditionally in-
dependent. This means that we can factor the probabil-
ity model for these variables and the evidence x0 as

P!x0 , xv1 , xv2 , xv4 , xIT"

! P!x0!xv1"P!xv1!xv2"P!xv2!xv4"P!xv4!xIT"P!xIT"

and make our model an (undirected) graphical model or
Markov random field based on the chain of variables:

x0 ↔ xv1 ↔ xv2 ↔ xv4 ↔ xIT .

From this it follows that

P!xv1!x0 , xv2 , xv4 , xIT" ! P!x0!xv1"P!xv1!xv2"/Z1 ,

P!xv2!x0 , xv1 , xv4 , xIT" ! P!xv1!xv2"P!xv2!xv4"/Z2 ,

P!xv4!x0 , xv1 , xv2 , xIT" ! P!xv2!xv4"P!xv4!xIT"/Z4 .

More generally, in a graphical model one needs only po-
tentials #(xi , xj) indicating the preferred pairs of values
of directly linked variables xi and xj , and we have

P!xv1!x0 , xv2 , xv4 , xIT"

! #!x0 , xv1"#!xv1 , xv2"/Z!x0 , xv2" ,

P!xv2!x0 , xv1 , xv4 , xIT"

! #!xv1 , xv2"#!xv2 , xv4"/Z!vv1 , xv4",

P!xv4!x0 , xv1 , xv2 , xIT"

! #!xv2 , xv4"#!xv4 , xIT"/Z!xv2 , xIT",

where Z(xi , xj) is a constant needed to normalize the
function to a probability distribution. The potentials
must be learned from experience with the world and con-
stitute the guts of the model. This is a very active area
in machine learning research.4,6,8,19,20

In this framework each cortical area is an expert for in-
ferring certain aspects of the visual scene, but its infer-
ence is constrained by both the bottom-up data coming in
on the feedforward pathway (the first factor in the right-
hand side of each of the above equations) and the top-
down data feeding back (the second factor) [see Fig. 2(a)].

Each cortical area seeks to maximize by competition the
probability of its computed features (or beliefs) xi by com-
bining the top-down and bottom-up data with use of the
above formulas (the Z’s can be ignored). The system as a
whole moves, game theoretically, toward an equilibrium
in which each xi has an optimum value given all the other
x’s. In particular, at each point in time, a distribution of
beliefs exist at each level. Feedback from all higher ar-
eas can ripple back to V1 and cause a shift in the pre-
ferred beliefs computed in V1, which in turn can sharpen
and collapse the belief distribution in the higher areas.
Thus long-latency responses in V1 will tend to reflect in-
creasingly more global feedback from abstract higher-
level features, such as illumination and the segmentation
of the image into major objects. For instance, a faint
edge could turn out to be an important object boundary
after the whole image is interpreted, although the edge
was suppressed as a bit of texture during the first
bottom-up pass. The long-latency responses in IT, on the
other hand, will tend to reflect fine details and more-
precise information about a specific object.

The feedforward input drives the generation of the hy-
potheses, and the feedback from higher inference areas

Fig. 2. (a) Schematic of the proposed hierarchical Bayesian in-
ference framework in the cortex: The different visual areas
(boxes) are linked together as a Markov chain. The activity in
V1, x1 , is influenced by the bottom-up feedforward data x0 and
the probabilistic priors P(x1!x2) fed back from V2. The concept
of a Markov chain is important computationally because each
area is influenced mainly by its direct neighbors. (b) An alter-
native way of implementing hierarchical Bayesian inference by
using particle filtering and belief propagation: B1 and B2 are
bottom-up and top-down beliefs, respectively. They are sets of
numbers that reflect the conditional probabilities of the particles
conditioned on the context that has been incorporated by the be-
lief propagation so far. The top-down beliefs are the responses
of the deep layer pyramidal cells that project backward, and the
bottom-up beliefs are the activities of the responses of the super-
ficial layer pyramidal cells that project to the higher areas. The
potentials # are the synaptic weights at the terminals of the pro-
jecting axons. A hypothesis particle may link a set of particles
spanning several cortical areas, and the probability of this hy-
pothesis particle could be signified by its binding strength via ei-
ther synchrony or rapid synaptic weight changes.
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Figure 2: Illustration of the hierarchical spike coding model. Second-layer spikes S(2) associ-
ated with 3 features (indicated by color) are sampled in time and frequency according to a Poisson
process, with exponentially-distributed amplitudes (indicated by dot size). These are convolved
with corresponding rate kernels Kr (outlined in colored rectangles), summed together, and passed
through an exponential nonlinearity to drive the instantaneous rate of the first-layer spikes on a
coarse scale. The first-layer spike rate is also modulated on a fine scale by a recurrent component
that convolves previous spikes with coupling kernelsKc. At a given time step (vertical line), spikes
S(1) are generated according to a Poisson process whose rate depends on the top-down and the
recurrent terms.

where the equality in Eq. (7) holds in the limit ∆t∆f → 0. Maximizing the data likelihood re-
quires integrating L over all possible second-layer representations S(2), which is computationally
intractable. Instead, we choose to approximate the optimal Θ by maximizing L jointly over Θ and
S(2). If S(2) is known, then the model falls within the well-known class of generalized linear models
(GLMs) [9], and Eq. (6) is convex in Θ. Conversely, if Θ is known then Eq. (6) is convex in S(2)

except for the L0 penalty term corresponding to the prior on S(2). Motivated by these facts, we
adopt a coordinate-descent approach by alternating between the following steps:

S(2) ← arg max
S(2)

L(Θ, S(2)) (8)

Θ ← Θ + η∇ΘL(Θ, S(2)) (9)
where η is a fixed learning rate. Section 4 describes a method for approximate inference of the
second-layer spikes (solving Eq. (8)). The gradients used in Eq. (9) are straightforward to compute
and are given by

∂L
∂br

f

= (# 1′ spikes in channel f) −
∑

t

eRt,f ∆t∆f (10)

∂L
∂ba

f

=
1

σ2

∑

t

(

log S(1)
t,f − At,f

)

(11)

∂L
∂Kr

τ,ζ,i

=
∑

(t,f)∈S(1)

S(2)
i (t − τ, f − ζ) −

∑

t,f

eRt,f S(2)
t−τ,f−ζ,i∆t∆f (12)

∂L
∂Kc

τ,f,f ′

=
∑

t∈S
(1)
f

1
S

(1)

t−τ,f′

−
∑

t

eRt,f 1
S

(1)

t−τ,f′

∆t∆f (13)
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Hierarchical spike coding of sound
(Karklin, Ekanadham & Simoncelli, 2012)



Main points
• The theory of efficient coding has provided important 

insights about neural representations in the early visual 
pathway. 

• Attempts to apply efficient coding models to the auditory 
pathway thus far are incomplete and need to be 
revisited.

• Perception is the problem of inferring a model of the 
world sufficient for guiding behavior - not well described 
as a simple input-output chain.

• Hierarchical Bayesian inference provides a promising 
framework for studying and understanding cortical 
information processing.


