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Today

• Delay embeddings for nonlinear dynamics (math)
• Closed loop optogenetic stimulation (electrophysiology)
• Denoising and speech intelligibility (psychophysics)
• Later on request:

Real time computer vision for 
automated patch clamping in slices

EEG BMIs for controlling complex 
behavior in robot swarms
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• Delay embeddings for nonlinear dynamics (math)
• Closed loop optogenetic stimulation (electrophysiology)
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Observing dynamical systems: neural systems

All GECIs use a Ca 2!-induced conformational change in a
sensing domain, typically calmodulin or troponin. FRET-based
GECIs offer the prospect of increased accuracy through ratiomet-
ric sensing (Thestrup et al., 2014), but the reliance on two fluo-

rophores may require too much spectral
bandwidth for easy combination with op-
togenetic actuators. Single-fluorophore
GECIs, one recently useful example of
which is the GCaMP6 family (Chen et al.,
2013), have become popular for their sen-
sitivity, brightness, and robust two-
photon (2P) signals.

With the advent of red-shifted optoge-
netic actuators such as C1V1 (Yizhar et al.,
2011), ReaChR (Lin et al., 2013), and
Chrimson (Klapoetke et al., 2014), one can
combine these actuators with GCaMP Ca2!

indicators (spectrally similar to EGFP) for
simultaneous stimulation and recording.
However, cross talk remains a problem: all
channelrhodopsin variants have a long tail
on the blue side of their action spectrum,
leading to 20–30% of peak activation at
wavelengths used to excite EGFP (Venka-
tachalam and Cohen, 2014). Two-photon
stimulation and imaging can minimize this
cross talk by taking advantage of the differ-
ent subcellular distributions of the GECI
and the channelrhodopsin.

Several groups have worked on devel-
oping red-shifted Ca 2! indicators, with
the aim to combine them with blue-
shifted optogenetic actuators or with
EGFP-based reporters. The R-GECO1 re-
porter (Zhao et al., 2011) shows good sen-
sitivity, but experiences photoconversion
into a bright state upon blue light illumi-
nation (Wu et al., 2013), hindering its use
with optogenetic actuators. Recently,
a flurry of new red-shifted GECIs have
been developed. R-CaMP2 shows good
sensitivity and speed, and an expanded
dynamic range compared to other single-
fluorophore GECIs (Inoue et al., 2015).
Other improved variants jRGECO1a,
jRCaMP1a, and jRCaMP1b are available
on Addgene (http://www.addgene.org/
browse/article/9406/), but are not yet pub-
lished (see http://janelia.org/sites/default/
files/SfN2014_red_GECIs_ver6.pdf). It is
not yet established whether these report-
ers are excited sufficiently far to the red
and have sufficiently small blue light pho-
toactivation for robust cross-talk-free all-
optical neural interfacing.

Finally, recently developed luminescent
Ca2! indicators suggest an alternate route
to cross-talk-free interfacing (Takai et al.,
2015). These reporters do not require opti-
cal excitation, and can therefore be readily
paired with optogenetic actuators. Further
advances in brightness will likely be neces-
sary for this approach to become practical.

In all neurons, spiking leads to an increase in Ca 2! concen-
tration. But not all increases in Ca 2! concentration come from
spiking, and moreover, subthreshold but functionally important
changes in membrane voltage often have no corresponding Ca 2!

Figure 2. All-optical electrophysiology. A, Comparison of fluorescence signals recorded simultaneously from a GECI, GCaMP6f,
and a GEVI, QuasAr2, expressed as a fusion construct in a rat hippocampal neuron. Subthreshold depolarizations, such as indicated
by the arrow, do not have a correlate in the Ca 2! signal. B, Spatially resolved all-optical electrophysiology in a cultured rat
hippocampal neuron. The blue region indicates the optically stimulated patch of dendrite. The action potential initiated in an
unstimulated process and propagated back into the soma and into the dendritic arbor. Movie frames were calculated by sub-
Nyquist interpolation of data acquired at a 1 s exposure time. Scale bar, 50 !m. Bottom right, Immunostaining of the same cell
with anti-EGFP (EGFP; green) and anti-AnkyrinG (AnkG; magenta). Scale bar, 25 !m. Magenta arrows, Site of action potential
initiation; distal end of the axon initial segment. C, Single-trial optical recordings of APs initiated by pulses of blue illumination (10
ms, 7.5 mW/cm 2). Signal represents whole-soma fluorescence without photobleaching correction or background subtraction
(modified from Hochbaum et al., 2014).
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(Scholvin et al. 2015; Emiliani et al. 2015)

target acquisition tasks. Participants attempted to move a cursor from the center of a computer
screen to one of eight peripheral targets, with the cursor’s position controlled by index finger
movements on a computer touchpad (see ‘Materials and methods’).

We first tested whether an underlying dynamical structure existed in the neural activity. If present,
a population-level analysis should reveal orderly rotational structure that is consistent across
conditions (i.e., independent of the direction of movement). To search for rotational patterns in the
neural population state, we used a three-step procedure: first, for each condition (i.e., for a given
target), we averaged the activity on each electrode across all trials. Next, we performed principal
components analysis (PCA) on the high-dimensional population data. We restricted the data to the
top 6 PCs, that is, we only preserved the six response patterns most strongly present in the data.
Finally, for this reduced-dimensional data set, we applied the jPCA method (Churchland et al., 2012),
which searches the data for 2-dimensional planes that capture the strongest rotational tendencies.
Restricting the jPCA analysis to the dimensionality-reduced data (6-D) ensured that any rotational
structure revealed by the analysis was present in the most prominent response patterns in the data.

For both participants, the population activity exhibited strong rotational dynamics (Figure 1B,C).
Each trace shows the population activity in the top jPC plane for a single condition. 250 ms of data are
shown, beginning with the rapid change in neural activity that precedes movement onset (the
evolution of the neural state over time for each participant is shown in Video 1). Rotations proceeded
in the same direction across conditions, following from the initial pre-movement state. The top jPCA
plane captured 61% (T6) and 27% (T7) of the variance of the high-dimensional neural data (for
comparison, the macaque study reported 28% for the top plane on average).

One potential concern is that the jPCA method might be powerful enough to find rotatory patterns
in state space for any set of responses that contains complex, multiphasic patterns. To test for this
possibility, we performed three control analyses, following Churchland et al., 2012. In these controls,
the data were shuffled to disrupt underlying rotational structure across response patterns, while
preserving the complexity of the individual response patterns. If the previously found rotational
structure were simply a by-product of the analysis technique, then the shuffled data sets should still
show prominent rotations in the top jPCA planes. This was not the case. Rotations were no longer
qualitatively seen in the projected responses after shuffling (Figure 2, top row). We next measured the
fraction of variance of the changes in neural state (6-D) that could be explained by rotational activity
alone (see ‘Materials and methods’) and found that this greatly decreased after shuffling

Figure 1. Neural population responses show rotational activity during movement epochs. (A) Projections of the

neural population response onto the first jPCA plane for a monkey during an arm-reaching task (monkey N,

108 conditions; adapted from Churchland et al., 2012). Each trace plots the first 200 ms of activity during the

movement epoch for a given condition. Traces are colored based on the preparatory state projection onto jPC1.

a.u., arbitrary units. (B) Projections for participant T6 during an 8-target center-out task controlled by index finger

movements on a computer touchpad. Each trace plots the 250 ms of activity during the movement epoch (‘Materials

and methods’) for a given condition. (C) Same as (B), for participant T7. Video 1 shows the evolution of the neural

state over time for each participant.
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learning was fitting underlying structure in the neural population
activity rather than simply fitting noise, as further supported by
cross-validating the model likelihoods (Supplementary Fig. 2).
Thus, for our parameters, linear dynamics explained 35–50% of
how the neural population responses evolve through time.
Further, we found that these contributions were consistent across
experimental days within subject, but differed between subjects
(due to different cell sampling). This suggests that there is
consistent structure in how observed neural population responses
evolve that can be robustly captured by a linear dynamics process.
Moreover, we found that the single-trial neural dynamics had
consistent eigenvalue characteristics that were qualitatively
similar to previous reports in non-human primates5 and
humans with ALS7 (Supplementary Figs 3 and 4).

We emphasize that our estimate of the neural state
incorporates a dynamics process in contrast to other dimension-
ality reduction techniques based on PCA5,14,15,25 and factor
analysis26,27. For example, jPCA5,7 (trajectories shown in Fig. 2a)
does not use a dynamics process, but rather finds a rotation of the
principal components showing rotational structure in the neural
population activity. In the cannonball example, this is analogous
to systems identification (that is, characterizing the dynamical
laws governing the movement of the cannonball), whereas we
actively use the dynamics to infer a new trajectory (that is,

denoising the observed trajectory of the cannonball). To visualize
the neural state trajectories of an LDS, we learned a highly
constrained LDS with a 2-dimensional (2D) (rather than a 20-
dimensional) latent state, since it is infeasible to visualize
dynamics of a 20-dimensional space. We stress that the 2D
LDS is only shown for visualization purposes and is a very limited
model because it does not capture a substantial proportion of the
neural variance. Moreover, because these 2D dynamics are far less
rich than those of a 20-dimensional system, it is prone to
underfitting and may not fully model different portions of the
reach where dynamics differ14,15. Nevertheless, as shown in
Fig. 2b using cross-validation neural activity (where trajectories
are condition-averaged across single trials), we observed that the
neural state trajectories travelled along directions guided by the
neural dynamics, as depicted by the flow fields, during the center-
out and hold epochs of the reach. This was also the case on single
trials, as shown in Fig. 2d (with the corresponding behavior
shown in Fig. 2c).

Neural dynamics are slower during holding than reaching. In a
dynamical system, the position of the state predicts the velocity of
the state, as depicted by the flow fields in Figs 1e,f and 2b,d.
Therefore, we asked: do the modelled neural dynamics capture
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Figure 2 | Trajectories of the neural state. (a) Trajectories of the condition-averaged neural data are shown using jPCA, which finds planes that capture
rotational structure in the data. The jPCs are rotations of the principal components. (b) Trajectories of a dynamical neural state, inferred by a Kalman filter
using cross-validation data, for center-out-and-back reaching. These trajectories are the averages of single trials (s.e.m. shown in shading). Also shown are
the dynamics of the learned dynamical system. During the center-out epoch, the trajectories appear to follow the dynamical flow fields. Moreover, during
the hold epoch, the strength of the flow field appears weaker. It is worth noting that because the dynamics shown are only 2-dimensional, they are far less
rich than the 20-dimensional dynamics and may not adequately capture the dynamics of all portions of the reach (such as during the back-to-center
epoch). (c) Behavioural kinematics (hand position) on single trials of Monkey J performing the center-out-and-back task (Methods). (d) The single-trial
neural trajectories corresponding to the same single-trial reaches in c.
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Abstract— Objective: Neural recording electrodes are 

important tools for understanding neural codes and brain 
dynamics. Neural electrodes that are close-packed, such as in 
tetrodes, enable spatial oversampling of neural activity, which 
facilitates data analysis. Here we present the design and 
implementation of close-packed silicon microelectrodes, to enable 
spatially oversampled recording of neural activity in a scalable 
fashion. Methods: Our probes are fabricated in a hybrid 
lithography process, resulting in a dense array of recording sites 
connected to submicron dimension wiring. Results: We 
demonstrate an implementation of a probe comprising 1000 
electrode pads, each 9 x 9 µm, at a pitch of 11 µm. We introduce 
design automation and packaging methods that allow us to 
readily create a large variety of different designs. Significance: 
We perform neural recordings with such probes in the live 
mammalian brain that illustrate the spatial oversampling 
potential of closely packed electrode sites. 
 

Index Terms— Microelectrodes, Neural Recording, Spatial 
Oversampling, Electrode Array, Silicon Probe 
 

I. INTRODUCTION 
HE need for close-packed neural recording electrodes 
arises from the desire to record the activity of a single 

neuron from multiple points in space, which facilitates the 
data analysis [1],[2]. Stereotrodes and tetrodes, which contain 
2 and 4 tightly twisted wires respectively, are commonly used 
in neuroscience and provide examples of the value that close-
packed recordings can have, even when small-scale: such 
spatial oversampling helps greatly with the “spike sorting” 
problem in which recorded electrical events are attributed to 
individual neurons [3],[4]. Silicon based microelectrodes, 
developed over the past few decades [5]-[8], have recently 
been designed to include denser arrays of electrodes than in 
the past [9]-[11], including active probes with the ability to 
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record a subset of points from a dense array [12]-[15]. In this 
paper, we demonstrate a close-packed silicon microelectrode 
technology that enables a tight continuum of recording sites 
along the length of the shank, rather than discrete 
arrangements of tetrode-style pads or widely spaced sites. This 
arrangement thus enables tetrode-like spatial oversampling 
continuously running down the shank, so that sorting of spikes 
recorded by such densely packed electrodes can be facilitated 
for all the sites of the probe simultaneously. We use advanced 
lithography tools to create these close-packed arrangements in 
a scalable fashion, demonstrating probes with 1000 electrode 
pads situated on 5 shanks with 200 recording sites per shank. 
A key challenge with traditional silicon electrode designs has 
been that wiring to the recording sites occupied a large 
fraction of the available shank area. This is problematic 
because scaling up the number of recording sites forces the 
shank geometry to widen, placing an upper bound on the 
number of sites practical for a single shank of a given width. 
We here reduced the wire geometry, and thus the overhead 
that the wiring places on the shank width, by creating 
submicron wires with high-speed electron beam lithography 
(EBL). Contact mask lithography enables us to create feature 
sizes of 2 µm, while in contrast our EBL feature sizes are 200 
nm. This gives us an order of magnitude increase in the 
number of wires for a given shank width. The accuracy of this 

Close-Packed Silicon Microelectrodes for Scalable 
Spatially Oversampled Neural Recording 

Jörg Scholvin, Member, IEEE, Justin P. Kinney, Jacob G. Bernstein, Caroline Moore-Kochlacs, 
Nancy Kopell, Clifton G. Fonstad, Fellow, IEEE, and Edward S. Boyden, Member, IEEE 

T

 
Fig. 1. Close-packed recording sites on a silicon shank, for spatially 
oversampled neural recording. Scanning electron micrograph (SEM) of the 
tip of a recording shank with two columns of 100 rows each. The close-
packed recording sites of 9 x 9 µm have a pitch of 11 µm, and are visible as 
the light squares. Insulated metal routing runs along the length of the shank, 
visible as dark lines flanking the rows of light squares. The shank itself has a 
width of ~50 µm in the region shown, and is 15 µm thick.  

50 µm 
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Setup
• Hidden state x(t) exists in N dimensional space
• Deterministic dynamics observable at interval Ts

• Evolution captured according to invertible flow:

• Contained within a low-dimensional attractor that we 
(for now) assume to be smooth submanifold:

• State is only observed through scalar function h(x(t))
• Past M time-series observations: delay coordinate map

�T (x(t)) = x(t+ T ) =) �

�1
T (x(t)) = x(t� T )

x(t) 2 M ⇢ R

N with dim(M) ⌧ N
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Embedology: Takens’ Embedding Theorem

s(t)

t
t0 − 3Ts t0 − 2Ts t0 − Ts t0

State Space
RN

M

Reconstruction Space
RM

F (M)

F

x(t)

h h

F (x(t0))F (x(t0 − Ts))

F (x(t0))

F (x(t0 − Ts))· · ·· · ·

One-to-one, 
Topology preserving

(Takens, 1981)
(Sauer et al., 1991)

Delay coordinate map (DCM)
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Reconstruction problems
• Widely used: time-series prediction, dimensionality 

estimation

• Practical problems:
– Concern about embedding sensitivity to noise, etc.
– Heuristic methods for choosing parameters (e.g., h,T,M)
– Effect of parameters on embedding quality unclear

x1

x
3

x2 i

s
i

si

s
i−

1

Original state Measurement Reconstruction
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One-to-one vs. Stable Embedding
State Space
RN

M

Reconstruction Space
RM

F (M)

F

State Space
RN

M

Reconstruction Space
RM

F (M)

F

One-to-one =>
topology preservation

Stable embedding => 
geometry preservation
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Theorem (Eftekhari, Yap, Wakin, R., 2017):
Under some regularity assumptions, if 

then with high probability over measurement functions,

for all 

✏l(M)  kF (x1)� F (x2)k22
Mkx1 � x2k22

 ✏u(M)

Stable Takens’ Embedding: Result

x1, x2 2 M.

R(MH,T,M ) > dim(M) · log

0

@vol(M)

1

dim(M)

rch(M)

1

A

geometric regularityStable rank:
May scale like M?

Depends on regularity of flow, attractor 
curvature and measurement operator. 
Monotonic functions of M that may plateau.

linear in dimension
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Irrelevancy vs. Redundancy

• This result helps justify design rules that are commonly 
employed in constructing DCMs.
– (e.g., Casdagli et al., 1991; Kugiumtzis, 1996; Uzal et al., 2011)

• Irrelevancy 
– If 𝑇 is too large the rows of the stable rank matrix may have 

widely differing lengths, especially for chaotic systems.

• Redundancy
– If 𝑇 is too small, the rows of the stable rank matrix may not span 

a diverse set of directions.

• Both situations can cause the stable rank to plateau 
when 𝑀 is increased, leading to a poor embedding.
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Today

• Delay embeddings for nonlinear dynamics (math)
• Closed loop optogenetic stimulation (electrophysiology)
• Denoising and speech intelligibility (psychophysics)
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Stimulation for functional dissection
• All-or-nothing inputs with uncertain input-output map

• How do we disentangle neural coding in coupled circuits?
• Proposal: use closed-loop optogenetic control (CLOC) to fix 

one subsystem output to study another in isolation

(Carter & de Lecea, 2011)
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• Hodgkin & Huxley investigated 
action potential generation

• Problem: coupled ionic and 
capacitive currents

• Solution: use feedback control to 
clamp membrane potential and 
decouple current sources

An old problem
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• Can we disentangle circuits at the systems level?
• Example: active sensing in a somatosensory pathway

– Combines sensory drive, self-motion, and motor efferents

A new light: loop de-loop

(Ahissar et al., 2013)
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Why not open-loop stimulation?

• Artificial stimulation yields 
high variance in critical range 
due to bimodal response

• Single trials unpredictable 
due to varying system state

(Millard, Whitmire, Gollnick, R., & Stanley, 2015)
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CLOC of firing rate

• Major steps:
– Design observer à causal exponential filter
– Model neural system à linear-nonlinear-Poisson model
– Design controller à proportional-integral controller

Firing rate target LED input power Spiking output

Estimated rate

(Bolus, Willats, Whitmire, R. & Stanley. in prep)
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In vivo experimental preparation
• Somatosensory thalamus of 

anesthetized rat (fentanyl 
cocktail)

• Expression of channelrhodopsin 
in excitatory neurons via viral 
injection (ChR2-CaMKII)

• Graded optical stimulation of 
population (200 µm optic fiber)

• Extracellular recording of single 
units (80 µm tungsten 
electrode)

• Tucker Davis Technologies 
(TDT) system for real-time 
processing

(Newman et al. 2015)
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Tracking a simple 1Hz modulation
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Disturbance Rejection
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Tracking Complex Desired Trajectories

variance/mean
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Reduced Response Variability
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Neural	
Systems

CLOC with Neural State-switching

• How to maintain control during state changes?
– NOT pretend it’s one system and design single controller
– Switch between multiple models inferred with HMMs
– Design controllers with robustness to multiple models
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Today

• Delay embeddings for nonlinear dynamics (math)
• Closed loop optogenetic stimulation (electrophysiology)
• Denoising and speech intelligibility (psychophysics)
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My Ulysses contract: auditory research

Ulysses and the Sirens, JW Waterhouse (1891)
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Speech intelligibility in noise

• Speech in noise is difficult 
to understand, especially 
for impaired listeners

• Traditional single channel 
speech denoising can 
improve quality but do not 
improve intelligibility

• Ideal binary mask (IBM)
– Threshold noise-dominated 

TF bins; keep target-
dominated

– Requires oracle knowledge
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IDEAL BINARY MASK (IBM) 

(Roman, Wang & Brown 2003)
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IBM intelligibility benefits

(Li & Loizou 2008)
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Binary mask estimation
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How accurate is necessary?

BINARY MASK ESTIMATION ERROR TOLERANCE

Criteria for maximum intelligibility: 
 

1. FP rate < 20% when FN=0 
2. FN rate ≤ 60% when FP=0 

3. Overall rate < 10% 
[Li and Loizou, 2008]

[Li and Loizou, 2008]

FN errors

FP errors

6

CONCLUSION:  
FP ERRORS ARE MORE DETRIMENTAL
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BINARY MASKING ALGORITHMS 
Flaws in criteria

Conclusions:
FP rate < 20% when FN=0
FN rate < 60% when FP=0
Overall rate < 10%

(Li & Loizou, 2008)

points for both modulated and non-modulated maskers.
Overall, there seems to be a strong !and negative" correlation
between the amount of error introduced in the binary mask
pattern and the intelligibility scores attained. In fact, the
computed correlation coefficient between the binary mask
error !percentage" and intelligibility score for the 15 condi-
tions tested was quite high, !=−0.98 !p"0.005". We should
acknowledge, however, that this correlation was computed
using the IdBM stimuli from which we can compute the
overall error.

Regarding the question posed in this experiment as to
how accurate do binary-mask estimation algorithms need to
be, we observe from Fig. 4 that the answer depends on the
type of masker and the set expectations. If the goal is to
restore speech intelligibility !to the level attained in quiet",
then the algorithm needs to produce at most 10% error when
estimating the binary mask. This applies for all three types of
maskers tested. If the goal is to improve speech intelligibility
relative to that of the unprocessed mixtures, then different
amounts of error can be tolerated depending on the type of
masker. For the 20-talker masker, the overall error needs to
be less than !or equal to" 30%, whereas for the 2-talker
masker and steady-state noise, the error needs to be less than
!or equal to" 20%.

V. EXPERIMENT 4: EFFECT OF TYPE OF BINARY
MASK ERROR

In the previous experiment, we assessed the effect of the
overall error in the binary mask pattern making no distinc-
tion between the two types of error that can occur. The first
type of error occurs when a T–F unit that was originally
labeled as 0 !i.e., local SNR of T–F unit is less than thresh-
old T" is purposefully modified to 1. The second type of error
occurs when a T–F unit that was originally labeled as 1 !i.e.,
local SNR of T–F unit is greater than threshold T" is pur-
posefully modified to 0. From signal detection theory, we can
say that the first type of error is similar to type I error !false
alarm" and the second type of error is similar to type II error1

!miss". Hence, for the purpose of discussion, we will refer to
these two errors as type I and type II errors. The type I error

will possibly introduce more noise distortion or more target-
masker confusion, as T–F units that would otherwise be
zeroed-out !presumably belonging to the masker or domi-
nated by the masker" would now be retained. The type II
error will likely introduce target speech distortion, as it will
zero out T–F units that are dominated by the target signal
and should therefore be retained. The perceptual effect of
these two types of errors introduced in the binary masking
pattern is likely different, and this is assessed in the present
experiment.

A. Methods

1. Subjects and material

The same subjects used in experiment 3 participated in
this experiment on a different day. Same speech material
!IEEE, 1969" was used as in Experiment 1. None of the
sentence lists was repeated.

2. Signal processing

The ideal binary mask is first computed as in experiment
1 with the use of the FFT operating on 20-ms segments of
the signals !target, masker and mixture". To create stimuli
with varying degrees of type I and type II binary mask errors,
we followed a procedure similar to that in experiment 3. As
we wanted to assess independently the effect of type I and II
errors, we kept for the type-II stimuli all T–F units originally
labeled as 0 !according to the ideal binary mask" and intro-
duced varying degrees of error only to units originally la-
beled as 1. Hence, we created type-II stimuli by introducing
a fixed percentage of errors only to the T–F units labeled as
1 !according to the ideal binary mask". No errors were intro-
duced to the T–F units originally labeled as 0. Similarly, we
created type-I stimuli by introducing a fixed percentage of
errors only to the T–F units labeled as 0. No errors were
introduced to the T–F units originally labeled as 1. We var-
ied the percentage of type I / II errors introduced to the T–F
units in each 20-ms frame, from 20% to 95%. More specifi-
cally we tested the following amounts of error !in percentage
of T–F units available in each frame": 20%, 40%, 60%,
70%, 80%, 85%, 90%, and 95%. In the 20% type-II error
condition, for instance, 20% of the T–F units in each 20-ms
frame that were originally marked as 1 were flipped to 0,
whereas the remaining units were kept intact. That is, no
errors were introduced to the T–F units originally labeled as
0. The new binary mask pattern containing fixed amounts of
type I / II error was applied to the mixtures. The same method
described in experiment 1 was used to synthesize the stimuli.

Given the limited number of lists available in the IEEE
corpus, we applied the above technique only to mixtures em-
bedded in 20-talker babble at −5 dB SNR. As the local SNR
threshold of T=0 dB was found to be quite effective in the
previous experiments for all types of maskers and SNR lev-
els, we assessed the effect of type I and II errors using T
=0 dB.

3. Procedure

The procedure was identical to that used in experiment
1. Subjects participated in a total of 17 conditions !=2 types

FIG. 4. Performance !percent of words identified correctly" as a function of
the overall percentage of binary mask error introduced for three types of
maskers: steady-state speech-shaped !SSN" noise, 2-talker masker, and 20-
talker masker. Performance obtained with unprocessed mixtures !at −5 dB
SNR" is indicated as UN. Error bars indicate standard errors of the mean.

1678 J. Acoust. Soc. Am., Vol. 123, No. 3, March 2008 N. Li and P. C. Loizou: Perception of binary-masked speech
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Binary mask estimation error structure

• Real algorithms make errors that:
– Have significant TF structure
– Have both FP/FN errors simultaneously

• How do these factors affect intelligibility?
• Develop investigation framework to test the impact of 

structure in IBM estimation errors
• Idea: develop statistical model of estimation errors
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Ising graphical modelGRAPHICAL MODEL FOR BINARY MASKS

False positive 
error rate

False negative
error rate

Structure  
(clustering over time and frequency)

12

yi
(IBM)

xi
(non-ideal mask)

Training approach:
1. Generate speech mixtures
2. Estimate IBMs (e.g., GMM)
3. Estimate model parameters (MLE)

Testing approach:
1. Generate speech mixture
2. Calculate IBM
3. Draw a sample from p(x|y)
4. Test intelligibility with mask x

(Kressner & R., 2015)
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Example sampled masks
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Example sampled masks
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Experimental setup

• Determine typical parameters
• Test word errors in 10 NH listeners for speech in babble (-5dB)
• Perform parametric exploration over:

– FP and structure
– FN and structure
– FP, FN and structure

E
st
im

a
te
d
p
a
ra
m
et
er
s

2.1 2.2 2.1

2.6

2.1

A1 A2 A3 A4 A5

1.0

2.0

3.0

γ

TYPICAL ERROR PROFILES 
Clustering

16

β (%)

α
(%

)

A1
A2 A3

A4

A5

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

A1

A2

A3

A4

A5

TYPICAL ERROR PROFILES 
Error rates

17



Christopher J. RozellBuilding algorithmic foundations

Clustering is detrimental
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[Li and Loizou, 2008]

INFLUENCE OF STRUCTURE 
Experiment 1 results

(Kressner & R., 2015)
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Also, FN can be as detrimental as FP
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INFLUENCE OF STRUCTURE 
Experiment 2 results

[Li and Loizou, 2008]

(Kressner & R., 2015)
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Individual criteria insufficient

• Significant interactions: FN/structure and 
FP/FN/structure

• FM just as bad as FP even without structure
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INFLUENCE OF STRUCTURE 
Experiment 3 results

(Kressner & R., 2015)
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Changing criteria

• Effect of clustering not captured by H-FA metric
• Effect of clustering qualitatively captured by STOI 

metric but with underprediction of error rates
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(Kressner & R., 2015;
Kressner, May & R., 2016)
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Cochlear implant intelligibility

• Test word errors in 8 CI wearers for speech in 
babble (delivered electrically)

Committee and conformed in all respects to the Australian
government’s National Statement on Ethical Conduct in
Human Research. The age of the participants ranged from 32
to 84 yr with an average age of 62 yr. Implant use on the tested
ear ranged from 0.9 to 8.7 yr with an average of 5.9 yr, and all
but P2 were post-lingually deafened. The stimulation rate for
all participants was 900 Hz, and the pulse width for all partici-
pants except P7 was 25 ls (P7 had a pulse width of 37 ls).
Table I outlines the biographical data for the participants.

D. Setup

The study was conducted using a computer system that
emulates a basic version of each participant’s sound proces-
sor with their own personal fitting settings. The system
included a performance real-time “target” machine from
Speedgoat

TM

(Liebefeld, Switzerland), which was responsible
for executing the real-time model of a sound processor, and
a “host” computer, which was used to program the target
computer and run the testing software. The host computer
interfaced with the target computer using the Mathworks#

(Natick, MA) Simulink# and xPC target framework in a
similar manner to the hearing aid system described by
Buchholz (2013). The Simulink# model mimicked the
behavior of the NucleusVR 5 and 6 systems (Cochlear Ltd.,
New South Wales, Australia) without the directional micro-
phone technology, the automatic scene classifier, and the

latest noise and wind reduction technologies (Goorevich and
Batty, 2005; Mauger et al., 2014). Thus, the primary compo-
nents included a spectral flattening filter, T-F decomposition,
n-of-m channel selection using the Advanced Combination
Encoder (ACE

TM

, Cochlear Ltd., New South Wales, Australia)
stimulation strategy, and loudness growth and current level
mapping. The hardware required to connect the xPC system to
the CI was purpose-built and provided by Cochlear Limited.

The input signal to the target computer was acquired in
one of two ways: either through a lapel microphone worn by
the researcher conducting the study or from a RME (Audio
AG, Haimhausen, Germany) Fireface UC sound card on the
host computer that relays the playback of audio signals from
the testing software. The lapel microphone allowed the
researcher to communicate with the participant during the
session, but the microphone was silenced whenever the test-
ing software playback was active.

To illustrate the relationship between the binary masks
generated during the preprocessing with the T-F representa-
tion of energy after acoustically reconstructing the signal for
playback, the spectrograms from within the CI model during
playback are shown in Figs. 1(d)–1(f) for the masks in Figs.
1(a)–1(c), respectively. Although there was inevitably some
mismatch between the intended binary mask and the result-
ing representation of the T-F energy in the CI model because
of the acoustic reconstruction, the level of mismatch appears
to be relatively small considering that the general properties

FIG. 1. (a) Example ideal mask, (b) example MGM with unstructured error, (c) example MGM with structured error, (d)–(f) spectrograms from inside the CI
model (using P1’s sound processor settings) of the sentence that was mixed at 2 dB with babble and then binary-masked with the masks in (a)–(c), respectively,
and (g)–(i) the resulting stimulation sequences (i.e., electrodograms) for those sentences, respectively.

TABLE I. Biographical data for the CI recipients who participated in this study.

Participant Age (yrs) Implant age (yrs) Implant type Processor Maxima Number of channels SRT (dB)

P1 40 6.5 CI24RE(ST) CP900 8 22 þ2

P2 32 8.5 CI24RE(ST) CP900 8 22 þ6

P3 72 4.7 CI512 CP900 10 22 þ2

P4 66 8.7 CI24RE(ST) CP900 8 22 þ8

P5 56 0.9 CI422 CP900 8 22 þ6

P6 84 8.5 CI24RE(CA) CP900 12 20 þ3

P7 73 1.6 CI422 CP810 8 22 þ10

P8 75 7.5 CI24RE(ST) CP900 10 22 þ4

J. Acoust. Soc. Am. 139 (2), February 2016 Kressner et al. 803

(Kressner, Westermann, Buchholz & R., 2015)
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Consistent conclusions
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INFLUENCE OF STRUCTURE 
Experiment 4 results

(Kressner, Westermann, Buchholz & R., 2015)
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More stringent criteria

(Kressner, Westermann, Buchholz & R., 2015)
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