Building the algorithmic foundations for interfacing, understanding and exploiting neural systems

Christopher J. Rozell

Georgia Institute of Technology

Acknowledgments

- Aurele Balavoine
- Nick Bertrand
- Michael Bolus
- Greg Canal
- Adam Charles
- Marissa Connor
- Allison Del Giorno
- Pavel Dunn
- Magnus Egerstedt
- Stefano Fenu
- Abbie Kressner
- John Lee
- Matt O'Shaughnessy
- Garrett Stanley
- Clarissa Whitmire
- Adam Willats
- Han Lun Yap
- Mengchen Zhu

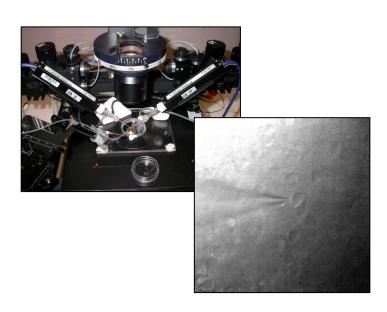
"I not only use all the brains I have, but all I can borrow."

-Woodrow Wilson

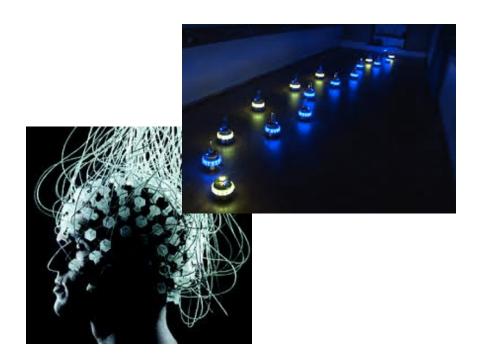
James S. McDonnell Foundation

Today

- Delay embeddings for nonlinear dynamics (math)
- Closed loop optogenetic stimulation (electrophysiology)
- Denoising and speech intelligibility (psychophysics)
- Later on request:



Real time computer vision for automated patch clamping in slices

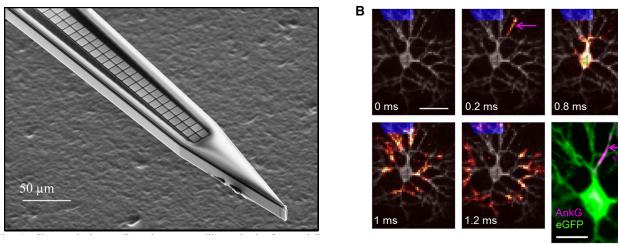


EEG BMIs for controlling complex behavior in robot swarms

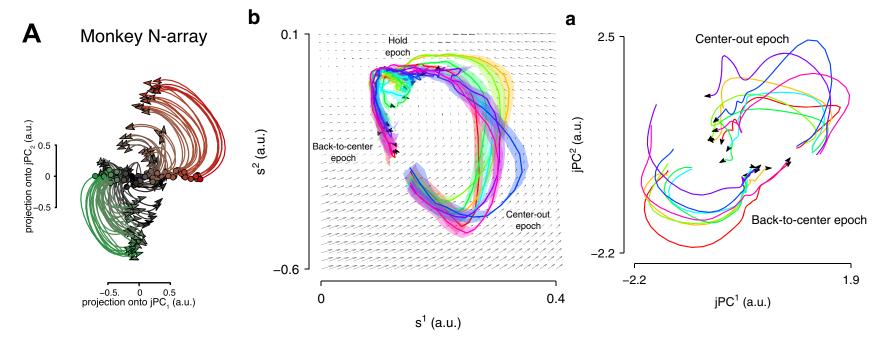
Today

- Delay embeddings for nonlinear dynamics (math)
- Closed loop optogenetic stimulation (electrophysiology)
- Denoising and speech intelligibility (psychophysics)

Observing dynamical systems: neural systems



(Scholvin et al. 2015; Emiliani et al. 2015)



(Churchland et al. 2012; Kao et al. 2015; Pandarinath et al. 2015)

Setup

- Hidden state x(t) exists in N dimensional space
- Deterministic dynamics observable at interval T_s
- Evolution captured according to invertible flow:

$$\phi_T(x(t)) = x(t+T) \implies \phi_T^{-1}(x(t)) = x(t-T)$$

 Contained within a low-dimensional attractor that we (for now) assume to be smooth submanifold:

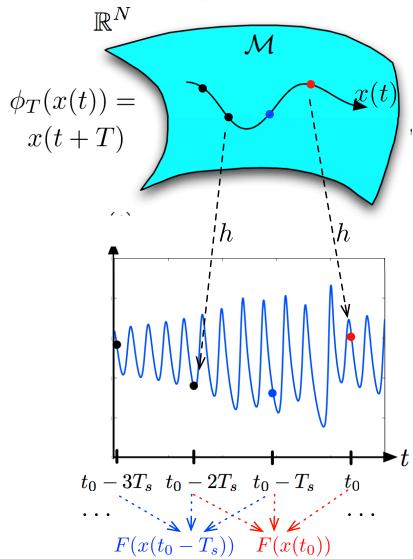
$$x(t) \in \mathcal{M} \subset \mathbb{R}^N \text{ with } \dim(\mathcal{M}) \ll N$$

- State is only observed through scalar function h(x(t))
- Past M time-series observations: delay coordinate map

$$F(x(t)) = \begin{bmatrix} h(x(t)) \\ h(\phi_T^{-1}(x(t))) \\ \vdots \\ h(\phi_T^{-(M-1)}(x(t))) \end{bmatrix}$$

Embedology: Takens' Embedding Theorem

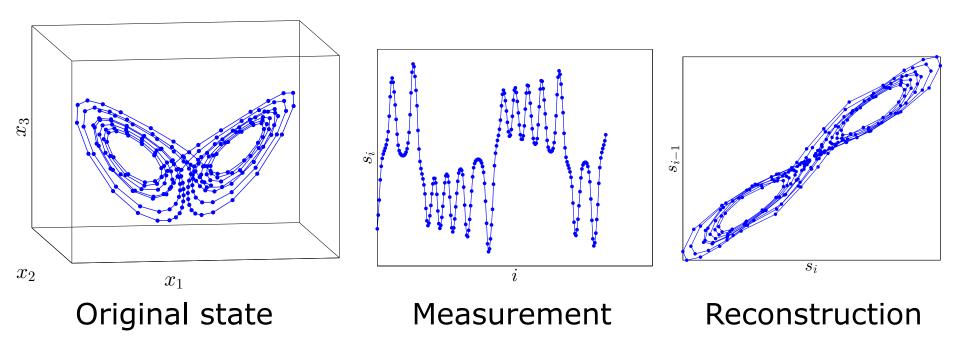
State Space



Delay coordinate map (DCM)

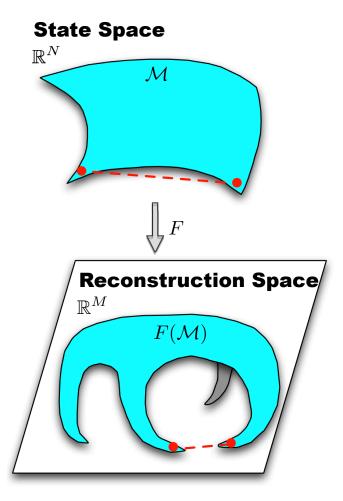
Reconstruction problems

Widely used: time-series prediction, dimensionality estimation



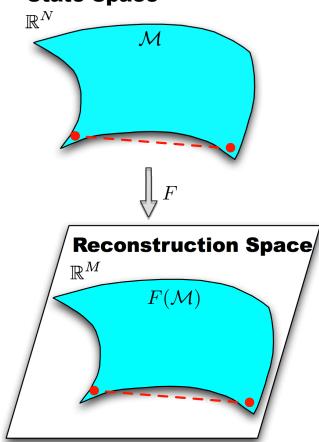
- Practical problems:
 - Concern about embedding sensitivity to noise, etc.
 - Heuristic methods for choosing parameters (e.g., h,T,M)
 - Effect of parameters on embedding quality unclear

One-to-one vs. Stable Embedding



One-to-one => topology preservation

$$x_1 \neq x_2 \implies F(x_1) \neq F(x_2)$$



Stable embedding => geometry preservation

$$||F(x_1) - F(x_2)||_2 \propto ||x_1 - x_2||_2$$

Stable Takens' Embedding: Result

Theorem (Eftekhari, Yap, Wakin, R., 2017):

Under some regularity assumptions, if

$$R(\mathcal{M}_{H,T,M}) > \dim(\mathcal{M}) \cdot \log \left(\frac{\operatorname{vol}(\mathcal{M})^{\frac{1}{\dim(\mathcal{M})}}}{\operatorname{rch}(\mathcal{M})} \right)$$
 Stable rank: linear in dimension geometric regularity May scale like M ?

then with high probability over measurement functions,

$$\epsilon_l(M) \le \frac{\|F(x_1) - F(x_2)\|_2^2}{M\|x_1 - x_2\|_2^2} \le \epsilon_u(M)$$

Depends on regularity of flow, attractor for all $x_1, x_2 \in \mathcal{M}$. Sepands on regularity of flow, attractor curvature and measurement operator. Monotonic functions of *M* that may plateau.

Irrelevancy vs. Redundancy

- This result helps justify design rules that are commonly employed in constructing DCMs.
 - (e.g., Casdagli et al., 1991; Kugiumtzis, 1996; Uzal et al., 2011)

Irrelevancy

 If T is too large the rows of the stable rank matrix may have widely differing lengths, especially for chaotic systems.

Redundancy

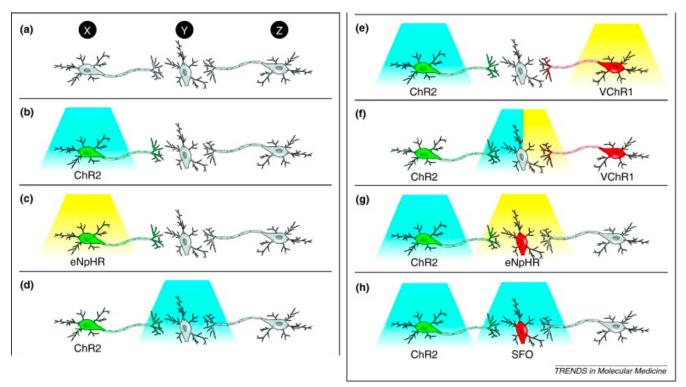
- If T is too small, the rows of the stable rank matrix may not span a diverse set of directions.
- Both situations can cause the stable rank to plateau when M is increased, leading to a poor embedding.

Today

- Delay embeddings for nonlinear dynamics (math)
- Closed loop optogenetic stimulation (electrophysiology)
- Denoising and speech intelligibility (psychophysics)

Stimulation for functional dissection

All-or-nothing inputs with uncertain input-output map



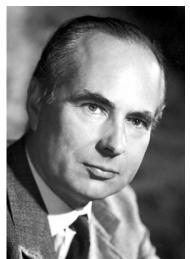
(Carter & de Lecea, 2011)

- How do we disentangle neural coding in coupled circuits?
- Proposal: use closed-loop optogenetic control (CLOC) to fix one subsystem output to study another in isolation

An old problem

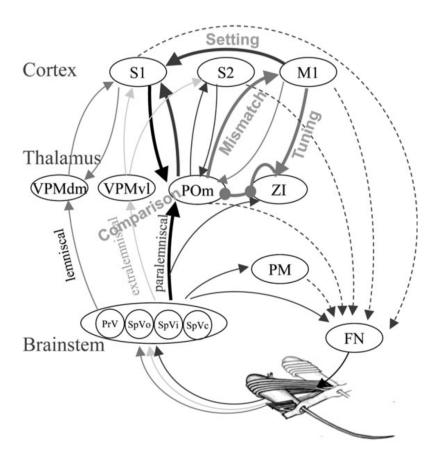
- Hodgkin & Huxley investigated action potential generation
- Problem: coupled ionic and capacitive currents

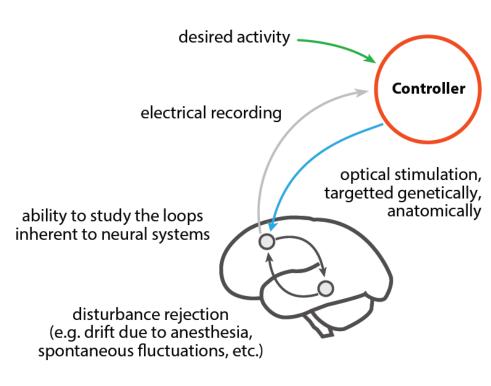
 Solution: use feedback control to clamp membrane potential and decouple current sources



A new light: loop de-loop

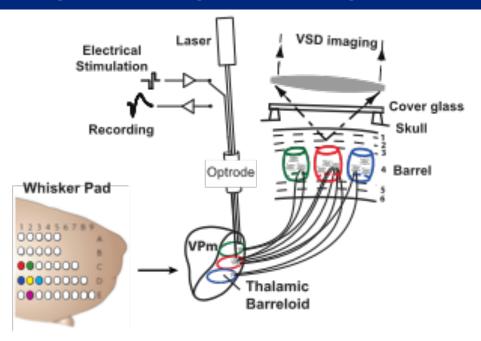
- Can we disentangle circuits at the systems level?
- Example: active sensing in a somatosensory pathway
 - Combines sensory drive, self-motion, and motor efferents





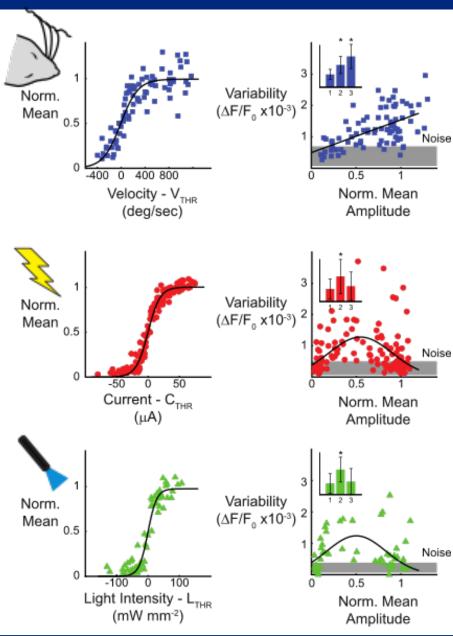
(Ahissar et al., 2013)

Why not open-loop stimulation?

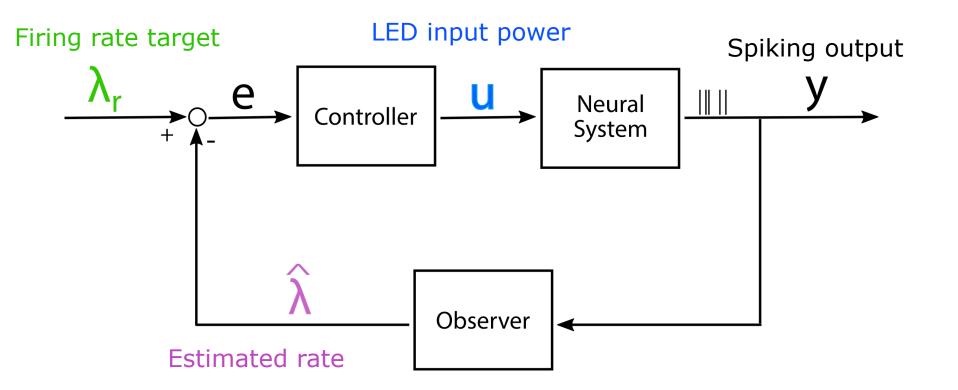


- Artificial stimulation yields high variance in critical range due to bimodal response
- Single trials unpredictable due to varying system state

(Millard, Whitmire, Gollnick, R., & Stanley, 2015)



CLOC of firing rate

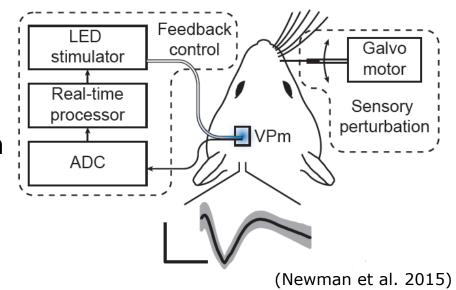


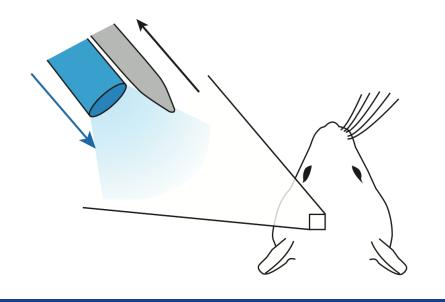
- Major steps:
 - Design observer → causal exponential filter
 - Model neural system → linear-nonlinear-Poisson model
 - Design controller → proportional-integral controller

(Bolus, Willats, Whitmire, R. & Stanley. in prep)

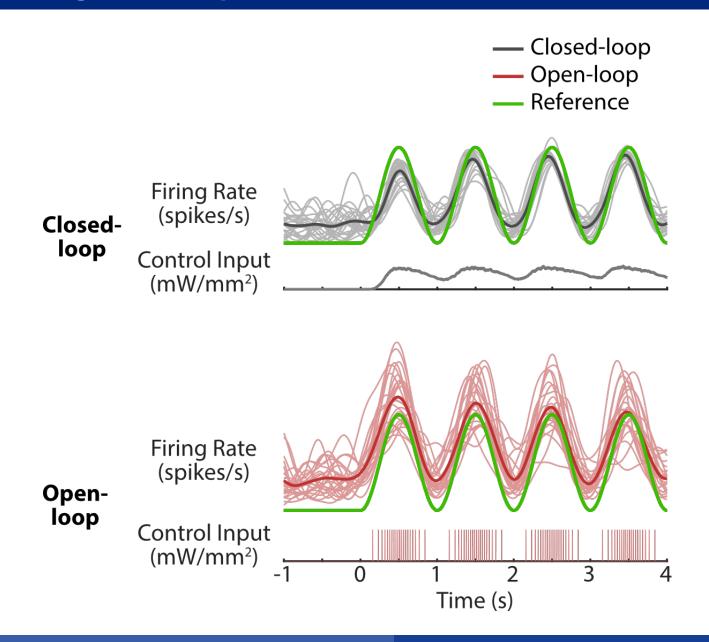
In vivo experimental preparation

- Somatosensory thalamus of anesthetized rat (fentanyl cocktail)
- Expression of channelrhodopsin in excitatory neurons via viral injection (ChR2-CaMKII)
- Graded optical stimulation of population (200 µm optic fiber)
- Extracellular recording of single units (80 µm tungsten electrode)
- Tucker Davis Technologies (TDT) system for real-time processing

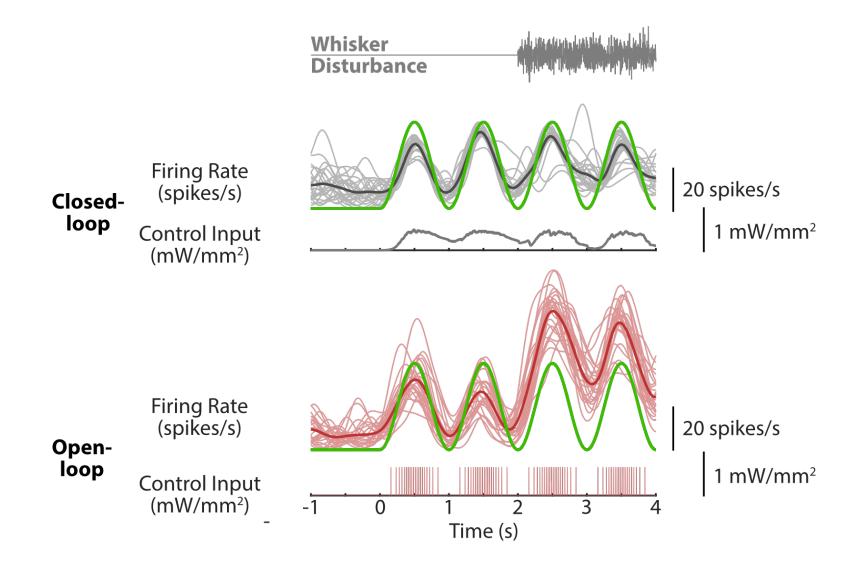




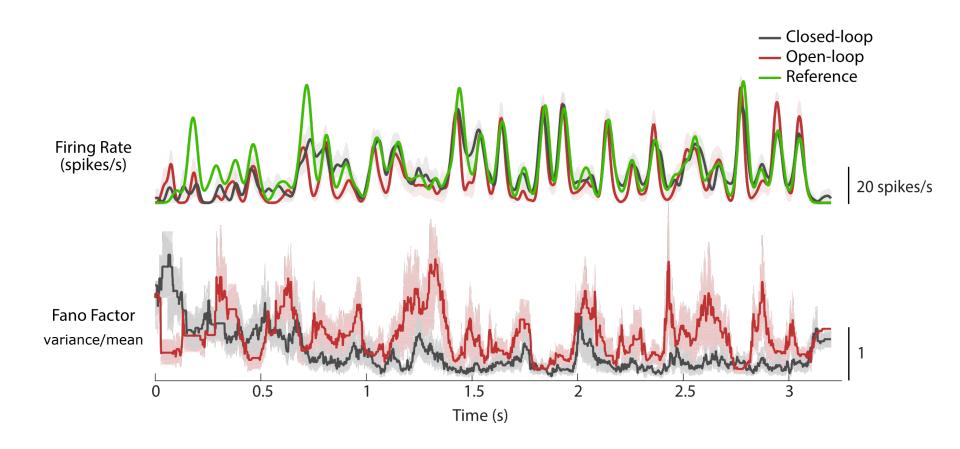
Tracking a simple 1Hz modulation



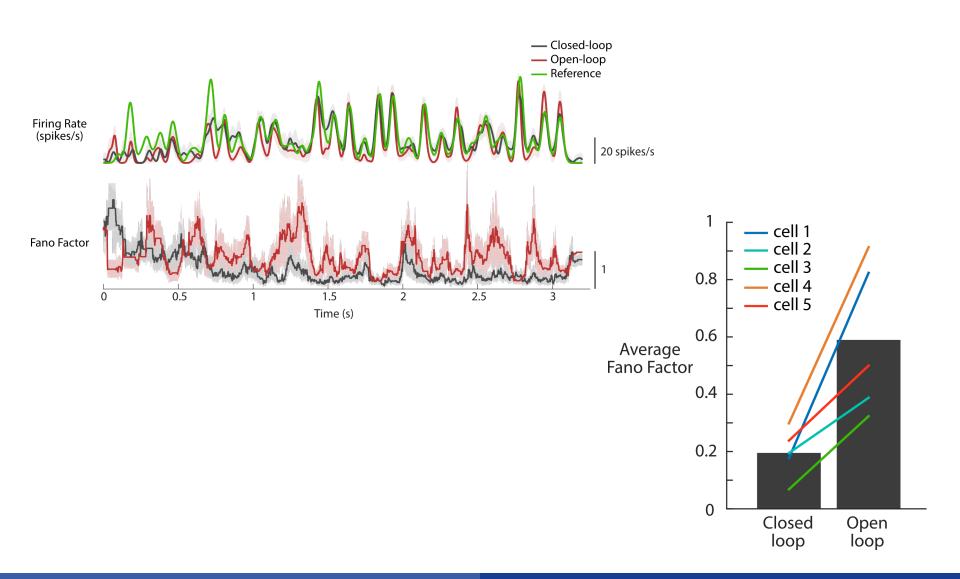
Disturbance Rejection



Tracking Complex Desired Trajectories

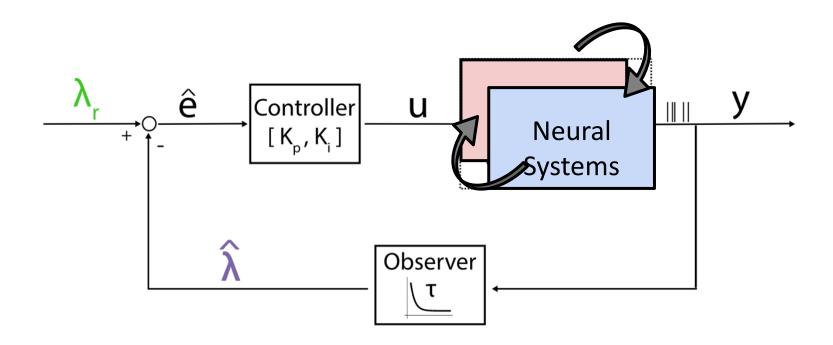


Reduced Response Variability



CLOC with Neural State-switching

- How to maintain control during state changes?
 - NOT pretend it's one system and design single controller
 - Switch between multiple models inferred with HMMs
 - Design controllers with robustness to multiple models



Today

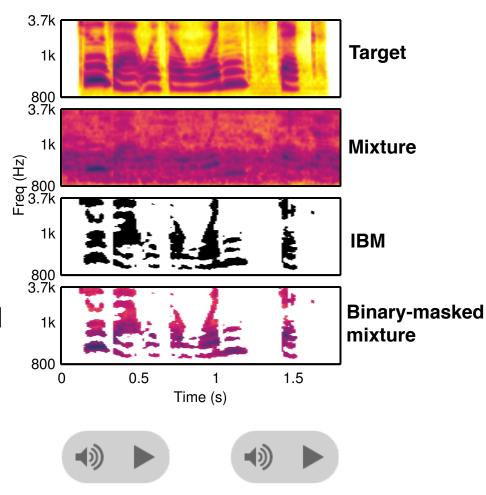
- Delay embeddings for nonlinear dynamics (math)
- Closed loop optogenetic stimulation (electrophysiology)
- Denoising and speech intelligibility (psychophysics)

My Ulysses contract: auditory research

Ulysses and the Sirens, JW Waterhouse (1891)

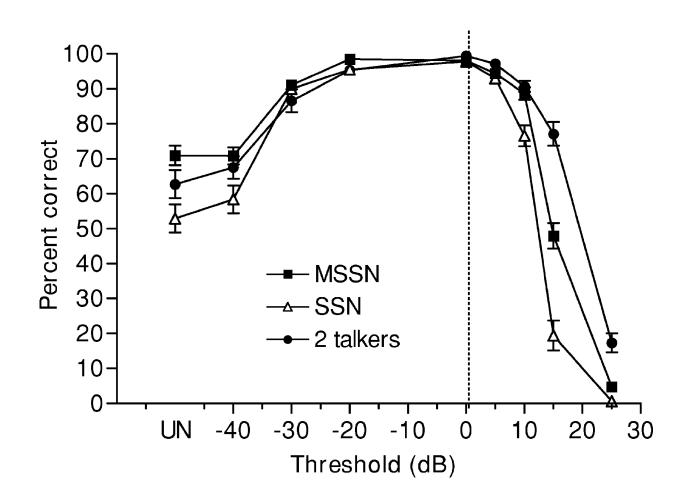
Speech intelligibility in noise

- Speech in noise is difficult to understand, especially for impaired listeners
- Traditional single channel speech denoising can improve quality but do not improve intelligibility
- Ideal binary mask (IBM)
 - Threshold noise-dominated
 TF bins; keep targetdominated
 - Requires oracle knowledge



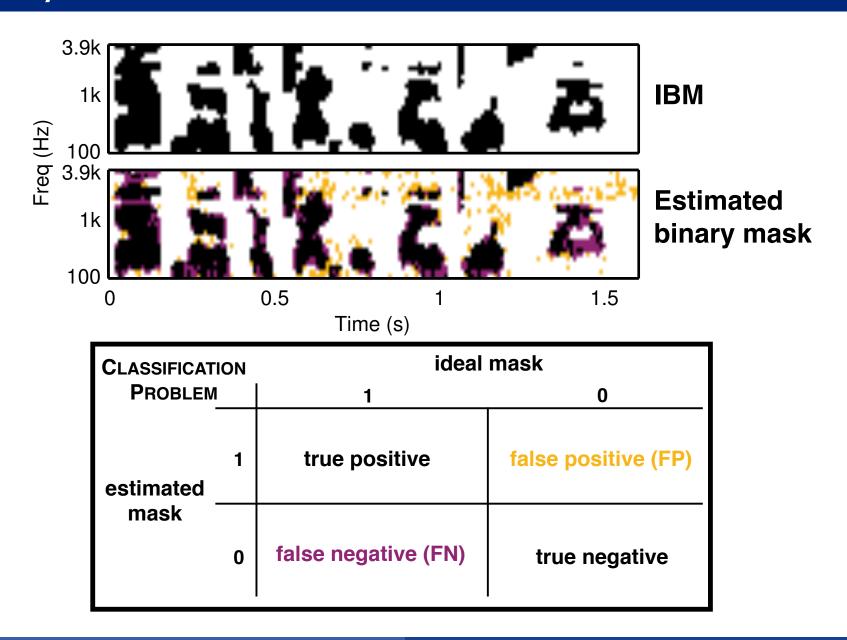
(Roman, Wang & Brown 2003)

IBM intelligibility benefits

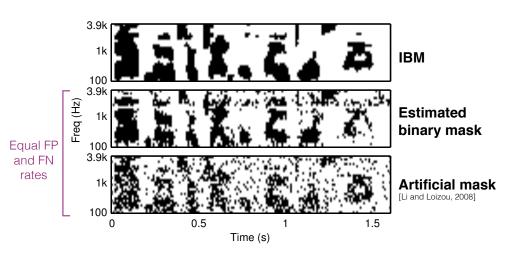


(Li & Loizou 2008)

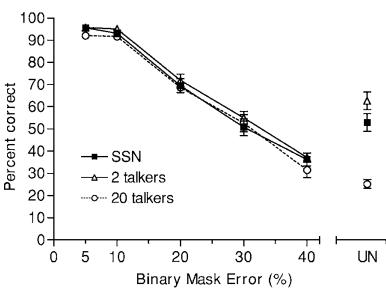
Binary mask estimation

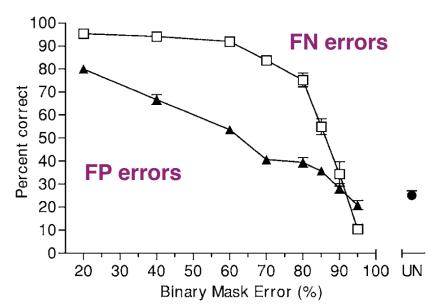


How accurate is necessary?



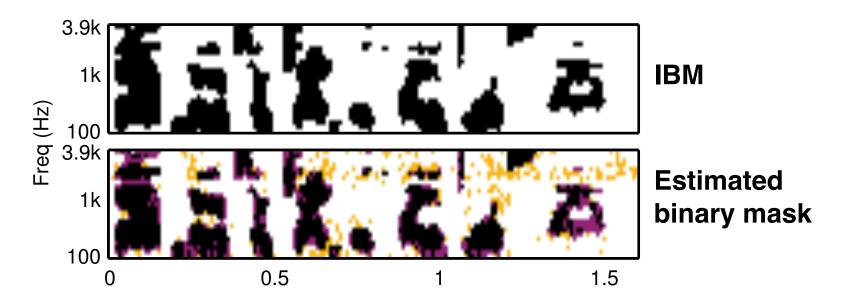
FP rate < 20% when FN=0 FN rate < 60% when FP=0 Overall rate < 10%





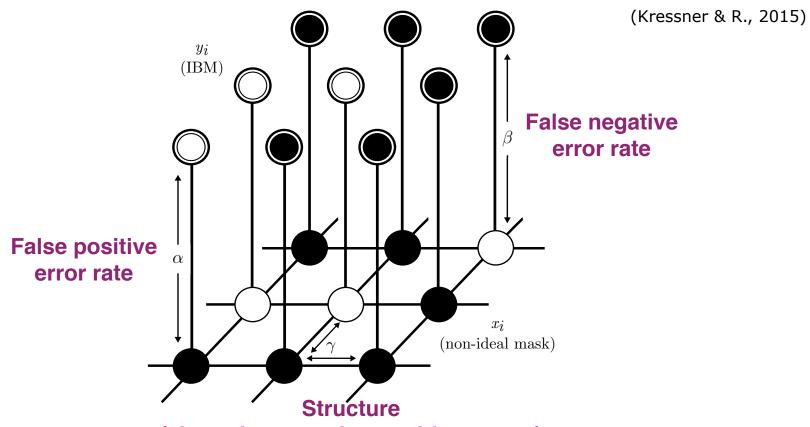
(Li & Loizou, 2008)

Binary mask estimation error structure



- Real algorithms make errors that:
 - Have significant TF structure
 - Have both FP/FN errors simultaneously
- How do these factors affect intelligibility?
- Develop investigation framework to test the impact of structure in IBM estimation errors
- Idea: develop statistical model of estimation errors

Ising graphical model



(clustering over time and frequency)

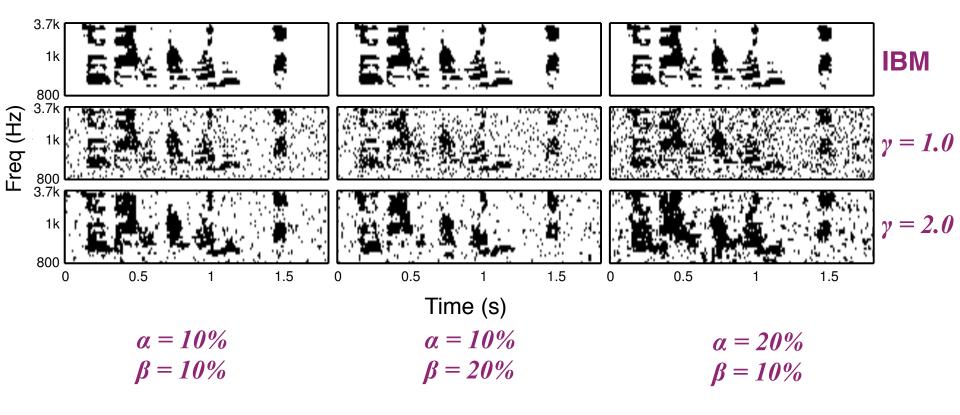
Training approach:

- 1. Generate speech mixtures
- 2. Estimate IBMs (e.g., GMM)
- Estimate model parameters (MLE)

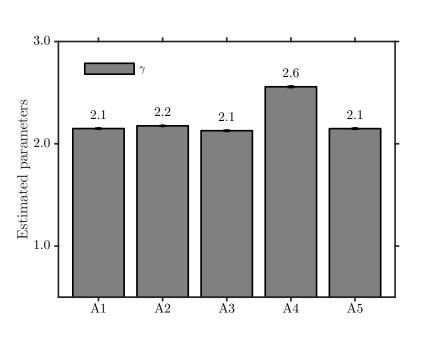
Testing approach:

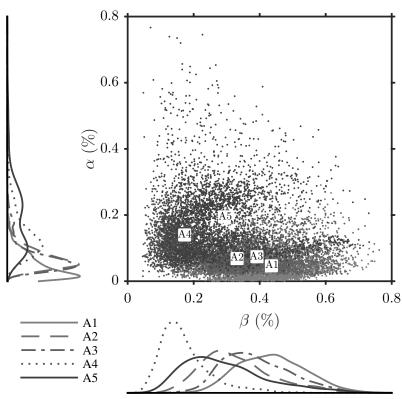
- 1. Generate speech mixture
- 2. Calculate IBM
- 3. Draw a sample from p(x|y)
- 4. Test intelligibility with mask *x*

Example sampled masks



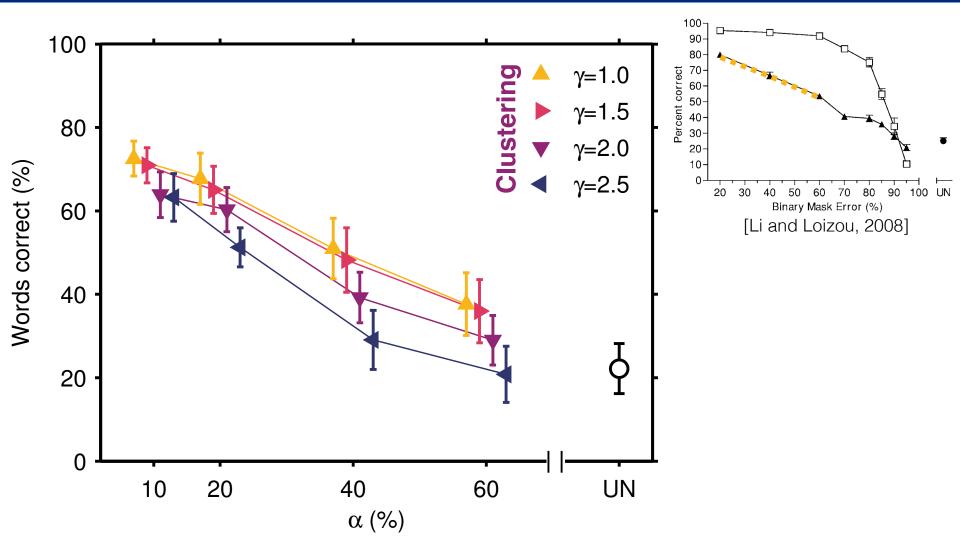
Experimental setup





- Determine typical parameters
- Test word errors in 10 NH listeners for speech in babble (-5dB)
- Perform parametric exploration over:
 - FP and structure
 - FN and structure
 - FP, FN and structure

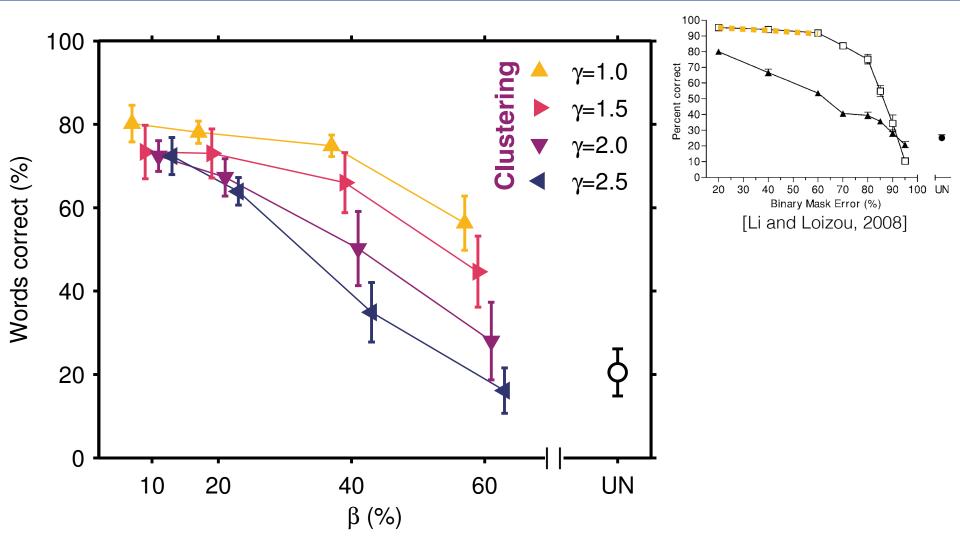
Clustering is detrimental



False positive error rate

(Kressner & R., 2015)

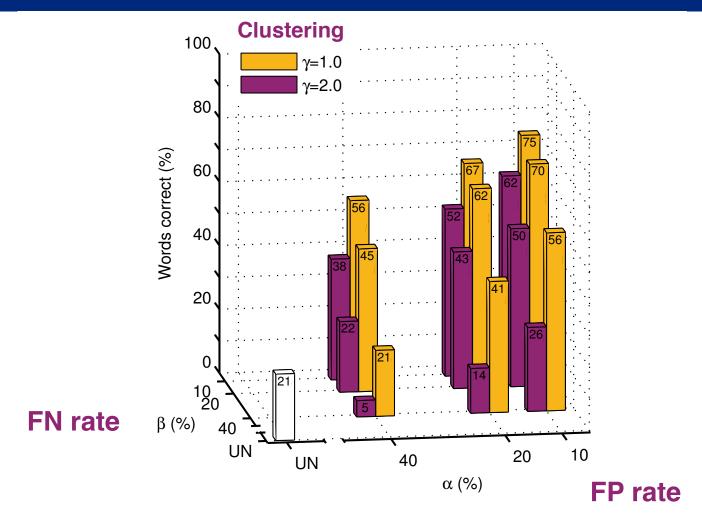
Also, FN can be as detrimental as FP



False negative error rate

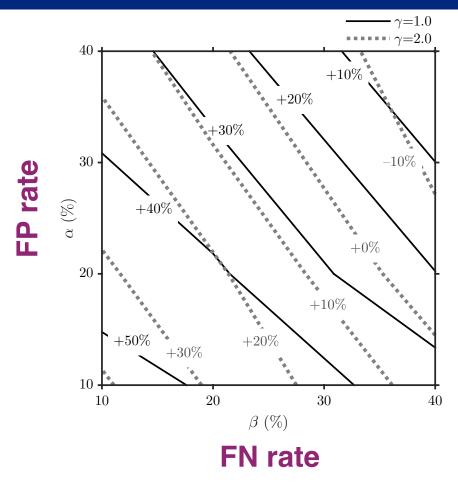
(Kressner & R., 2015)

<u>Individual criteria</u> insufficient



- Significant interactions: FN/structure and FP/FN/structure
- FM just as bad as FP even without structure (Kressner & R., 2015)

Changing criteria

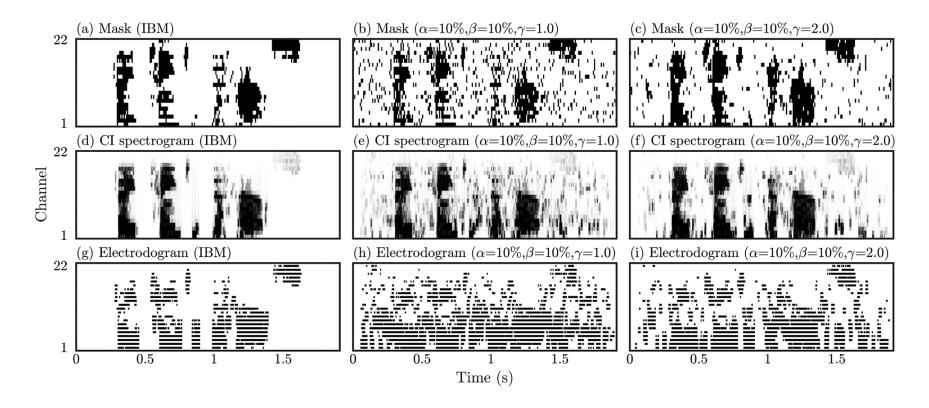


- Effect of clustering not captured by H-FA metric
- Effect of clustering qualitatively captured by STOI metric but with underprediction of error rates

(Kressner & R., 2015; Kressner, May & R., 2016)

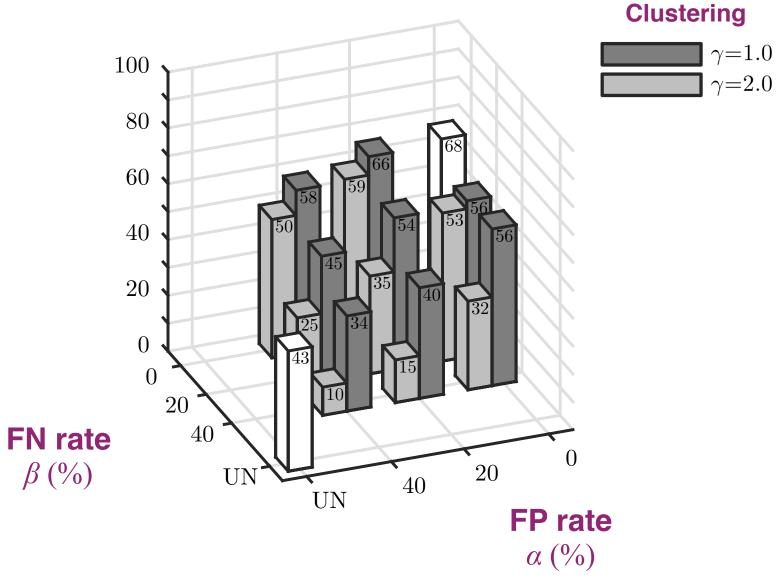
Cochlear implant intelligibility

 Test word errors in 8 CI wearers for speech in babble (delivered electrically)



(Kressner, Westermann, Buchholz & R., 2015)

Consistent conclusions

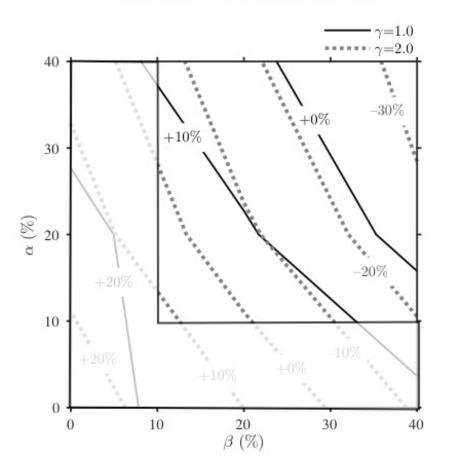


(Kressner, Westermann, Buchholz & R., 2015)

More stringent criteria

NORMAL HEARING

COCHLEAR IMPLANT



FN rate

(Kressner, Westermann, Buchholz & R., 2015)

Sensory Information Processing Lab

http://siplab.gatech.edu

crozell@gatech.edu