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Preamble

« joint work with members of HLT & PR lab (Informatik 6):

— acoustic modeling: Patrick Doetsch, Pavel Golik, Tobias Menne, Zoltan Tuske, Albert Zeyer, ...

— language modeling: Martin Sundermeyer, Kazuki Irie, ...
— cf. hltpr.rwth-aachen.de/web/Publications

« toolkits used for our own results presented here are available on our web site:

— RASR: RWTH Automatic Speech Recognition toolkit (also handwriting)
— RWTHLM: RWTH neural network based Language Modeling toolkit (esp. LSTM)
— RETURNN: RWTH Extensible Training for Universal Recurrent Neural Networks (new!)

— cf. hltpr.rwth-aachen.de/web/Software
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Human Language Technology: Overview & History
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Human Language Technology: Overview & History

Terminology:
- speech: acoustic signal, spoken language

« language: text, sequence of characters,
written language
« scientific disciplines:
— NLP: natural language processing (in
the strict sense): written language only

— HLT: human language technology:
spoken and written language

Characteristic task properties:
- well-defined 'classification’ tasks:

— 5000-year history of (written!) language
— well-defined classes:
letters or words of the language

- easy task for humans (at least for natives!)

« hard task for computers
(as last 50 years have shown!)

Specific well-defined tasks in HLT:

« Automatic Speech Recognition (ASR)

« Text image recognition (printed and
handwritten text, offline) (HWR)

L Lreserve tLis Lreat
« Machine Translation (MT)
wir wollen diese grol3e Idee erhalten
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Human Language Technology: Overview & History

Speech and Language: Characteristic Properties

Typical situation:
input sequence — output sequence

Tasks:
« speech recognition: speech signal — words/letter sequence
« recognition of image text: text image — words/letter sequence

(printed /written characters)

* machine translation: source word /letter sequence — target words/letter sequence

Common property:
output sequence = natural language word/letter sequence

Terminology: elementary pattern classification
« compound decision theory and machine learning:
- contextual pattern recognition single class index
« structured output without any structure
G L
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Human Language Technology: Overview & History

Speech recognition

What is the problem?

SPEECH SIGNAL

ACOUSTIC ANALYSIS

« ambiguities at all levels

- interdependencies of decisions

Approach [CMU and IBM 1975]:

« hypothesis scores
« probabilistic framework

- statistical decision theory

Modern terminology:

« machine learning

SEGMENTATION AND

PHONEME

CLASSIFICATION

PHONEME

HYPOTHESES

WORD BOUNDARY DETECTION

MODELS

PRONUNCIATION

AND LEXICAL ACCESS

WORD
HYPOTHESES

SYNTACTIC AND

LEXICON

LANGUAGE

SEMANTIC ANALYSIS

SENTENCE
HYPOTHESES

MODEL

SEARCH: INTERACTION OF
KNOWLEDGE SOURCES

KNOWLEDGE SOURCES

RECOGNIZED SENTENCE
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Human Language Technology: Overview & History

History Speech Recognition 1975-2015

- steady increase of challenges:
— vocabulary size: 10 digits ... 1000 ... 10.000 ... 500.000 words
— speaking style: read speech ... colloquial /spontaneous speech
- steady improvement of statistical methods: HMM, Gaussians and mixtures, statistical trigram
language model, adaptation methods, discriminative sequence training, artificial neural nets, ...
« 1985-93: criticism about statistical approach

— too many parameters and saturation effect
— ... 'will never work for large vocabularies’ ...
- remedy(?) by rule-based approach:
— language models (text): linguistic grammars and structures
— phoneme models (speech): acoustic-phonetic expert systems
— limited success for various reasons:
huge manual effort is required!
problem of coverage and consistency of rules
lack of robustness

- evaluations, experimental tests:

— the same evaluation criterion on the same test data
— direct comparison of algorithms and systems
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Human Language Technology: Overview & History

Bayes Architecture for Speech Recognition (and other HLT tasks)

Statistical Models

Training

Criterion Optimization

Parameter
Estimates

Bayes Decision Rule

Evaluation

Speech Recognition = Modeling + Statistics + Efficient Algorithms
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Human Language Technology: Overview & History

Bayes Architecture for Speech Recognition (and other HLT tasks)
Error Measure -
Statistical Models

Training
Criterion

Optimization

Parameter
Estimates

Bayes Decision Rule

Evaluation

Speech Recognition = Modeling + Statistics + Efficient Algorithms
+ Performance Measure
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Human Language Technology: Overview & History

Statistical Approach

Ingredients:

- performance measure (often edit distance):
to judge the quality of the system output

- probabilistic models (with a suitable structure):
capture dependencies within/between input observation sequence X and output word sequence W
— elementary observations: Gaussian mixtures, log-linear models, SVMs, NN, ...
— sequence context: n-gram Markov chains, HMMs, CRFs, RNNs, ...
— effectively: discrimination function needed

- training criterion:
to learn the free parameters of the models
— ideally should be linked to performance criterion
— might result in complex mathematical optimization (efficient algorithms!)

- Bayes decision rule:
to generate the output word sequence
— combinatorial problem (efficient algorithms)
— should exploit structure of models

Examples: dynamic programming and beam search, A* and heuristic search, ...
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Human Language Technology: Overview & History

ASR Architecture

Speech Input

Samples

S,...S

1-SM

Statistical Approach to Automatic
_Feature Speech Recognition (ASR)
[Bahl & Jelinek™ 1983]

Feature Vectors

10T
A 4
e A
Global Search Process: P(Xp X [Wq W) _
« Acoustic Model
maximize

P Wy W) * Py X [ W W)

pWy..wy)
over w,..Wy x Language Model
L J
Recognized
Word Sequence
{w,..w }opt
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Human Language Technology: Overview & History

Bayes Decision Rule: Sources of Errors

Why does a 'Bayes’ decision system make errors?

To be more exact: Why errors in addition to so-called Bayes errors,
i.e. the minimum that can be achieved?

Reasons from the viewpoint of Bayes' decision rule:

« probability models:

— 'incorrect’ observation x: only incomplete part or

poor transformation of true observations used

— incorrect models, e.g. py(c|x) or py(cl'|x")
« training conditions:

— poor training criterion

— not enough training data

— mismatch conditions between training and test data
e training criterion + efficient algorithm:

— suboptimal algorithm for training (e.g. gradient descent)
« decision rule:

— incorrect error measure, e.g. MAP rule in ASR and MT
- decision rule + efficient algorithm:

— suboptimal search procedure, e.g. beam search or N-best lists
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Human Language Technology: Overview & History

1 . Speech Input .
QSR AIrI(\:IhltectlI:re. | neural feature transformation:
Samples .
eural Networks S;Sy - tandem [Hermansky & Ellis™ 2000]
Feature « bottleneck [Grézl & Karafidt™ 2007]
Extraction earlier introduced as non-linear LDA
F Vv : :
| exaitu;i eetors [Fontaine & Ris™ 1997]
Neural
Network
Y Yt
( = )
Global Search Process: Py Y IW W)
< Acoustic Model
maximize

PWy W) s Py [We W)

pW,..wy)
over wy..Wy “ Language Model

Recognized
Word Sequence
{w,..w }Opt
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Human Language Technology: Overview & History

H . S hi t . .
ASR Architecture: bese Snpu | neural acoustic modeling:
amples
Neural Networks Sl"F')SM « hybrid [Bourlard & Morgan 1993]

— LVCSR [Seide & Lit 2011]

Feature « connectionist temporal classification

Extraction (CTC) [Graves & Fernandez™ 2006]

Feature Vectors

Xl"'XT
v
( )
Global Search Process: PX X Wy W) _
« Acoustic Model
maximize
PWy W) Py X [Wq W)
pWw,..wy)
over wy..Wy “ Language Model
L J
Recognized
Word Sequence
{wy..wy }Opt
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Human Language Technology: Overview & History

ASR Architecture: Speech Input integrated learning of acoustic
Neural Networks samples model and feature extraction
*1m - single channel [Palaz & Collobert™ 2013]

[Tiske & Golik™ 2014]
[Golik & Tiiske™ 2015]

« multichannel  [Sainath & Weiss™ 2015]

A 4

Global Search Process: P(SqSpy | Wq- W) _
< Acoustic Model

maximize

PWy W) * P(Sq-Spy [ Wq W)

pWw,..wy)
over wy..Wy “ Language Model
L J
Recognized
Word Sequence
{w,..w }Opt
12 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change? Rm

KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
Schliiter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — June 26, 2017



Human Language Technology: Overview & History

ASR Architecture: Speech Input neural language modeling:
Neural Networks Szr:?:ﬂs - feed-forward (FF) [Schwenk 2007]

- recurrent [Mikolov & Karafiat™ 2010]
Feature « LSTM [Sundermeyer & Schliitert 2012]
Extraction
« long-context FF [Tiiske & Irie™ 2016]

Feature Vectors

X;...X

1 X7

A 4

Global Search Process: P(Xp X (W W)

Acoustic Model

maximize

PWy W) PXye X [Wq W)

pW,..wy)
over wy..Wy ) Language Model
- J
Recognized
Word Sequence
{w,..w }Opt
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Human Language Technology: Overview & History

: . Speech Input _
ASR Architecture: pese b integrated NN approach:
Neural Networks Samples .
S,..Sy, - attention, encoder/decoder approach
[Bahdanau & Chorowski* 2015]
Feature [Chan & Jai1:|yJr 2015]
=raction - segmental /inverted HMM

[Lu & Kong™ 2016]
[Doetsch & Hegselmann™ 2016]

Feature Vectors

X;..X

1 X7

4

Global Search Process:

maximize
) (XX Wy W) Integrated Model/
O (X e X Wy W) Discrimination

Function

over Wl"'WN

Recognized
Word Sequence
{w,..w }0pt
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Statistical Approach

Principles

Starting Points

« very complex problem: no perfect knowledge of the dependencies in speech and language:

— different from conventional computer science
— like a problem in natural sciences (cf. approximative modeling in physics)

« perfect solution will be difficult:

— we accept that the system will make errors
— but we try to find the best compromise

- fairly general view:

— input sequence (ASR: sequence over time t: X := xq...X;...xT)
— output sequence: W := wy...w,...wy of unknown length N

« we need a generation mechanism:

X = W = W(X)

« to this purpose, we assume a
— posterior distribution pr(W|X)
— which can be extremely complex: both arguments are sequences!
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Statistical Approach

Principles

Bayes Decision Rule for Sequences

- performance measure or cost function L[W, W] (e.g. edit distance)

between true output sequence W and hypothesized output sequence W.
« Bayes decision rule minimizes expected cost:

X = W(X) = argmin { N pr(WIX) - L[W, W]}

w
- standard decision rule uses sequence-level cost (MAP rule):

X — W(X) = arg mVan{pr(W|X)}

since [Bahl & Jelinek™ 1983], this simplified Bayes decision rule is widely used
for speech recognition, handwriting recognition, machine translation, ...
well-known inconsistency! [Jelinek 1997, pp. 4-5]

« however, standard decision rule works well, as often both decision rules agree,
which can be proven under certain conditions [Schliiter & Nussbaum™ 2012], e.g.:

—

LW, W] is a metric, and max pr(W|X)>05 = W(X)=W(X)

- approximative (second pass) sequence-level cost approaches provide good improvements
[Stolcke & Konig™ 1997, Mangu & Brill™ 1999, Goel & Byrne 2000, Wessel & Schliiter™ 2001]

Schliiter et al. — Human Language Technology and Pattern Recognition
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Statistical Approach

Principles

Generative vs. Discriminative Approach

Bayes Decision Rule:

X = W =W(X) = argmin { Zpr(WP() LW, W]}

w
practical considerations:
« unknown distribution pr(W|X):
remedy: replace true pr(W|X) by a model p(W|X)
and learn its free parameters from a HUGE set of examples
« important problem:

— compositional modelling for p(W|X) is needed since W and X are sequences

— units smaller than the whole sequence are needed (e.g. phrases/word groups, words, letters)
« two principal approaches:

— generative approach: p(W, X) = p(W) - p(X|W)
language model p(W), trained on text data
acoustic model p(X|W), trained on (transcribed) audio data

— discriminative (or direct) approach: p(W|X) = p(W, X)/ > p(W, X)
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Statistical Approach

Principles

Generative vs. Discriminative Training

Starting point:

 models pg(W) and py(X|W) with unknown parameters 6

- training data: set of (audio, sentence) pairs (X,, W,),r=1,..., R
Training:

- generative model: maximum likelihood (along with EM /Viterbi algorithm):

F(0) = logps(Ws, X,) =) log ps(W,) + Y _log po(X:|W;)

nice property: decomposition into two separate problems (also: separate training data):
— language model py(W): without annotation!
— acoustic model py(X|W): with annotation!
« discriminative model: discriminative training
— optimizes decision boundaries, e.g. maximum mutual information (MMI)
— ideally: optim. error rate, e.g. minimum classification error (MCE), minimum phone error (MPE)
— in practice:
initialization by maximum likelihood
complex optimization problem: sum over all sentences in denominator
approximation: word lattice, many shortcuts, ...
experiments: relative improvement by 5-10% over maximum likelihood
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Statistical Approach

Acoustic Features
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Statistical Approach

Acoustic Features
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Statistical Approach

Acoustic Features

Hierarchical MRASTA Filtering

 Long-term features:
— Representations relAtive SpecTrA (RASTA) filtering [Hermansky & Fousek 2005].
— Modulation frequency range (/21-20Hz) relevant for speech perception.
« Multi-resolutional smoothing of temporal trajectories of critical band energies (CRBE)
« Filtering with first and second derivatives of Gaussians, g1, g
— o varying in the range 8-60 ms
— E.g. 12 temporal filters applied on 20 CRBEs + derivatives in freq.
« Processing fast and slow modulation spectrum by hierarchical MLPs

1 C T
1".1_ 0
(@]
fast mod. 9x frames
-1t spectrum LDA
slow mod.
1 spectrum
~ 0
-1t | Remarks:
2| 1 1 1 1 « FF MLPs: currently best results using MRASTA
03 02 01 0 01 02 - LSTM RNNS: filter banks sufficient, though
Time [s]
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Statistical Approach
Acoustic Modeling
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Statistical Approach
Acoustic Modeling

Speaking Rate Variation

« fundamental problem in ASR:

variation in speaking rate,
necessitates non-linear time alignment
« stochastic finite state machine:

— linear chain of states s =1,..., S
— transitions: forward, loop and skip

. trellis:
— unfold over time t =1,..., T
— path: state sequence s/ = s;...5;...57

— observations: x;/ = x...x;...xT

STATE INDEX

TIME INDEX
general view:
- two sequences without synchronization: acoustic vectors and states (with labels)

« mechanism that takes care of the synchronization (=alignment) problem

Schliiter et al. — Human Language Technology and Pattern Recognition
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Statistical Approach
Acoustic Modeling

Hidden Markov Models (HMM)

The acoustic model p(X|W) provides the link between
sentence hypothesis W and observations sequence X = x;{/ = x...X¢...xT:

- acoustic probability p(x;" | W) using hidden state sequences s, :

P(X1T| W) = Z P(X1T> 51T| W) = Z H[p(5t|5t—17 W) - p(xt|st, W)]

« two types of distributions:
— transition probability p(s|s’, W): not important
— emission probability p(x;|s, W): key quantity
realized by GMM: Gaussian mixtures models (trained by EM algorithm)

« phonetic labels (allophones, sub-phones): (s, W) — o = agw

p(xt|s, W) = p(xt|asw)
- typical approach: models for phonemes with left and right phonetic context (triphones):
decision tree (CART) clustering for finding equivalence classes
- temporal context: augment feature vector with context window around position t
« exploit first-order HMM structure for efficient search and training
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Statistical Approach
Acoustic Modeling

Baseline HMM training;:

« maximum likelihood by EM (expectation/maximization) algorithm
» looks like the ultimate and perfect solution

Positive properties:

« FULL generative model: py(W, X) = pg(W) - po(X| W)
along with HMM for py(X|W): describes the problem completely
« natural training criterion:

— maximum likelihood, i.e. maxy { ", log ps(W,, X,)}
— virtually closed form solutions by EM algorithm

— nice from the mathematical point of view

Negative properties:
« EM or maximum likelihood criterion

— solves a problem that is more complex than required, i.e. ps(W, X) vs. py(W|X)
— VERY hard from the estimation (learning) point of view
« well-known in classical pattern recognition, but ignored /overlooked in ASR:

density estimation, i.e. learning py(X|W) or py(x¢|), is much harder than
classification, i.e. learning py( W |X) or py(a|xt)

23 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change?

KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA Rm
Schliiter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — June 26, 2017



Statistical Approach
Language Modeling
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Statistical Approach
Language Modeling

Statistical Modeling of Syntax and Semantics

Definition of a language model (LM):

« p(w;") : (prior) probability of the word sequence w{ := wy...w,,...wy

Need for language model in Bayes decision rule in ASR (also SMT!):

X[ = i (x) = argmax {p(w") - p(x]|w}") }
N, wy

Observations about the language model p(w]'):
« it can be learned from text only (unlabeled data!)
« it can improve performance dramatically

Perplexity:
« quality measure for LM (based on text data, i.e. w/o a recognition experiment)
- geometric average of probability per word by computing N-th root:

N :
py) YN a1y YN define w? as
PP = (p(w) = p(wa|wy' ™)
" empty sequence
n=
- geometric average of inverse probability — interpretation: average effective vocabulary size
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Statistical Approach
Language Modeling

Markov Chain, Count Models

Conventional approach:
- assume Markov chain of order k:

limit the dependence on the full history Wg_l to the immediate k predecessor words:
1y ._ -1
p(walwg ") = po(wa|w;—y)

terminology: (k + 1)-gram, e.g. four-, tri-, bi-, unigram (w/ ! defines empty context for unigram)
- free parameters 9 to be learned from training data:
conditional probabilities py(w,|w/~}) for the (k + 1)-gram events

« natural training criterion for a corpus WlNi minimum perplexity
1 N
1 N—oo k k
max {N > log Pﬁ(Wn’W:_k)} — max { > pr(w|ht) - log Pﬁ(W‘hl)}
n=1 W,hf

— equivalent to cross-entropy training (or maximum likelihood)
— resulting estimates: relative frequencies based on event counts

Schliiter et al. — Human Language Technology and Pattern Recognition
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Statistical Approach
Language Modeling

Unseen Events, Smoothing

Problem:
« most of the events are never seen in training data
- example: vocabulary of 100k = 10° words results in 10 possible trigrams

e result: virtually all event counts are zero

Remedy:

« interpolation /combination of LMs of various orders k,
e.g. fivegrams, fourgram, trigram, bigram and unigram events
- various strategies:

— models: interpolation or back-off
— estimation: cross-validation or leave-one-out
— concept of generalized marginal distributions, e.g. going from trigrams to bigrams

 most strategies implemented in LM toolkit by SRI
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Statistical Approach

Search

Search Space

Combinatorial complexity
« Bayes decision rule involves optimization over all

possible word sequences and alignments

« Number of word sequences and number of
alignment paths rise exponential with length

Dynamic programming
« Markov assumptions in HMM and LM can be
exploited for efficient search

« Recursion equations reduce complexity to being linear
in input length and polynomial in vocabulary size

« For limited vocabularies and LM context exact
solution of optimization problem possible.

COW>» powm» DO®> TOD> DowW» UOW» UOWm> COm>

DO®> DOW>» DOB> UOD>

OOW>» DO®W> DO®> 0OOm>
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Statistical Approach

Search

Beam Search

Large vocabulary

- even for moderate LM context, for large vocabularies (2 10k), exhaustive search becomes
prohibitive
- approximations are needed for efficient search

» utilize probabilistic scoring for hypothesis pruning

Dynamic programming hypothesis pruning
« time-synchronous propagation of partial dynamic programming hypotheses
« discard hypotheses relative to current best hypotheses

- goal: complexity overall linear in input

Interrelation with Modeling
« more sophisticated models usually introduce higher complexity into system
« however: scores become more pronounced

« allows for tighter pruning, compensates increase in complexity
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Neural Network and Statistical Approach

Basics

(First) NN Renaissance around 1986

Various interpretations/justifications:

« human /biological brain

 massive parallelism

« mathematical viewpoint:
modelling ANY input-output relation

Typical ANN structure:
« MLP: feedforward multi-layer perceptron

« with input, hidden and output layers

Theoretical results: 0 0O0O0O0O0O0 o

- one hidden layer should be sufficient (17)
[Cybenko 1989, Hornik & Stinchcombe™ 1989

[o o 0o 0o 00

Training:

« (hard) optimization problem with millions of free parameters (= weights)
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Neural Network and Statistical Approach

Basics

Classical Architecture:
Feedforward Multi-Layer Percerptron (FF-MLP)

. task: classification with observation vector x € IRP and associated class ¢

Architecture:

- several layers (feedforward links only, no recurrence)

input layer = observation vector x:
each node represents a vector component

between layers:

— matrix-vector product for layer pair
— nonlinear activation function

output layer:

— softmax normalization
— each output node represents a class ¢ and its
associated score py(c, x)

set ) of all weights (parameters) of the FF-MLP

O OO OO OO O O O
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Neural Network and Statistical Approach

Basics

ANN Activation Functions

Examples of activation functions:
« sigmoid function (also called logistic function):
1

u—o(u) = T exp(—1) € [0, 1]

« hyperbolic tangent:
u — tanh(u) = 20(2u) —1 e [-1,1]

— in principle: no difference to sigmoid o(+)
— in practice: difference due to side effects

« rectifying linear unit: u— r(u) = max{0, u}
— so far: not useful in symbolic processing (?)

- softmax function:

ue — S(ue) = zeNXZE:EZE) with 3~ S(uc) = 1.0

— generates normalized output for (probability distribution over) each node c of the layer under
consideration (typically: output layer)
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Neural Network and Statistical Approach
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Neural Network and Statistical Approach

Training and Probabilistic Interpretation

Classification with Artificial Neural Networks

Decision rule for observation (vector) x: |deal values at output nodes:

X — ’C‘X I= argmax_ {pﬁ(C, x)} e correct class: 1
e wrong class: 0

Distinguish varying conditions for decision rule:
* no context, in isolation (here)
- context of a sequence (see later)

Training criteria:
- squared error: unconstrained output: py(c,x) € IR

N
Fel?) = 3 S lpule.x) — e, o))

« cross-entropy: normalized output: py(c,x) € [0,1] : Y opolc,x) =1

N
1
FCE(Q9) = N E log Pﬁ(cn‘xn)
n=1
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Neural Network and Statistical Approach

Training and Probabilistic Interpretation

Training Criteria: Interpretation & Relation to Error Rate

Straightforward analysis shows important result for both training criteria:
« ANN outputs are (estimates of ) true class posterior probabilities!
- result independent of any training strategy (e.g. type of backpropagation)
« assumes sufficient flexibility and parameters in ANN
- generalization capability from training to test set: not addressed

Gradient search (backpropagation):
 we can only find a local optimum
« there may be a huge number of local optima; but most of them seem to be equivalent
- experimental evidence: backpropagation able to find local optimum that’s typically 'good enough’
- generalization capability: implicitly taken into account by cross-validation (early stopping) ?

Relation between error rate and training criteria?
« we need a strict distinction:
— error rate for the true distribution: Bayes classification error
— error rate for the learned distribution: model classification error

- training criteria: tight upper bound for squared difference between these two error rates [Ney 2003]
« remark: this result does not address the generalization problem
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Neural Network and Statistical Approach
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Neural Network and Statistical Approach

Softmax Revisited: Relation to Generative Modeling

Conventional view: consider MLP with softmax output

« input layer: raw input vector z O 00O O0OO0OOOO

o

« hidden layers perform feature extraction:

x = f(z)

with feature vector x € IRP before output layer

note: no dependence on class labels c =1, ..., C

- output layer: probability distribution over classes ¢

exp()\CT X+ Ye)
> exp(Al X+ 70)

p(c|x) =

with output layer weights A\ € RP and offsets (biases) 7. € R

Interpretation of MLP with softmax output:
- feature extraction followed by a log-linear classifier

Relation to generative modeling [Heigold & Schliiter™ 2012]:

- softmax operation results from using class posterior distribution of a Gaussian model
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

Sequence Processing
So far:

« handling of (input, output) pairs (¢, x) in isolation

* no internal structure in ¢ or x (unlike sequences)

From single events to sequences:

« consider a pair of synchronized input and output sequence over time t:
(Ct-,Xt-)7 t = ].7 ceey T

with input vectors x; and class labels ¢;

- goal: model the conditional probability p(c;” |x,") of the sequence ¢,

(assuming causality and a special start symbol ¢p):
T T
p(c Ix7) =[] p(cil-)
t

with ANN output vector y; = p(ct|...) at each time t
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

Sequences with Synchronisation

[llustration:

- model with 1:1 correspondence between class labels ¢, and observations x,"
« sequence length T is known

observations xlT: X| X0 ... Xe—1 Xt Xpi1 ... XT_1 XT

class labels XlTI i & ... CG—-1 ¢ Cty1 ... CT1 CT

typical problems:
- spelling correction (character level)
- POS tagging (POS: parts of speech)

« frame labelling in ASR (incl. pronunciation and language models!)
and acoustic scores in hybrid HMMs

« recognition problems with no problems of boundary detection:
isolated words, printed character recognition, ...

Schliiter et al. — Human Language Technology and Pattern Recognition
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

Factorization of Conditional Probability p(c{ |x/)

- conditional independence in ¢ with look-ahead for x;": p(c/ |x/) = H;l pe(celx)

observations x;:  x1 X2 .. Xe-1 Xt Xey1 ... XT_1 XT
L T D e
class labels ¢;: - - . = e - = =

- conditional dependence in ¢,/ without look-ahead in x;": p(c/ |x/) = Hthl p(celeg™, xf)

observations x;’: X1 Xo ... Xi—1 Xt — — —
L T R
class labels clT: a6 & ... G & — . = =

- conditional dependence in ¢, with look-ahead in x;": p(c/ |x) = H;l p(celeg™ %)

: T.
observations x;' : X1 Xo ... Xt_1 Xt Xtp1 ... XT_1 XT
lass labels ¢ :
Class labels ¢ - o] (8} . Cr—1 |Gt — — —
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

Recurrent Neural Network (RNN): Principle
principle:

- introduce a memory (or context) component to keep track of history

- result: there are two types of input: memory h;_; and observation x;

Output 000000000
Hidden
99 29
Context Input 0000000
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

Unfolding RNN over Time

yt Y% yz yt—l yt
A
—””"’ ht h]' h2 T ht_l 7 ht
< h T T T T x
t-1 t 1 2 t-1 ¢

The architecture of RNN can be unfolded over time:
« We get a feedforward network with a special deep architecture.

« The application of the backpropagation algorithm to this
unfolded network is called backpropagation through time.

Schliiter et al. — Human Language Technology and Pattern Recognition
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

LSTM RNN

extension of (simple) RNN by
LSTM: long short-term memory

« problems of simple RNN:

— vanishing/exploding gradients
— no protection of memory h;

« remedy by LSTM architecture:
control the access to its internal memory
by introducing gates/switches

- refinements:

— bidirectional structure
— several hidden layers

[Hochreiter & Schmidhuber 1997, Gers & Schraudolph™ 2002]

Net Output

Output Gate

— Cell State
Forget Gate :
; <

Input Gate

Net Input
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

LSTM RNN [Hochreiter & Schmidhuber 1997, Gers & Schraudolph™ 2002]

Net Output

LSTM approach: |
« split RNN hidden vector h; into f

Output Gate
(memory) cell state ¢; and net output s;

« overall LSTM operations involve three —
'input’ vectors at time t: s;_1, Ct_1, X¢ |

: : — Cell State
« update operations at time t: _ :

cell state: ¢; = c(St_1, Ct—1, X¢) Forget Gate -
net output: s; = s¢(S¢_1, Ct—1, Xt) |

_ Input Gate
output layer: y; = y(s:) with softmax

- introduce three gates (input, output, forget)
to control the information flow

Net Input
41 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change? Rm
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
Schliiter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — June 26, 2017



Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

LSTM Architecture

- three vectors (over time t): ¢, St, X;

- gates (or switches): use sigmoid function o(+)

« full matrices (A, R; A, R, Ar, R, Ao, R,) and diagonal matrices (W;, Wr, W,)

« usual matrix and vector operations and element-wise multiplication ®

« Net Input (like update formula of simple RNN): Net Output
z; = tanh(Axx; + Rs;_1)

« Should this Net Input z; access the Cell State ¢;?

Input Gate: iy = o(Aixs + Risi_1 + Wice_1) - //O“tp“t Gate
« Should the Cell State c;_; be forgotten? ;‘d
Forget Gate: f; = o(Arxt + Rese—1 + Wrer 1) _\: Coll State

- Based on J; and f;, update the Cell State ¢;:
G=hOca1+irOz
« Should this update ¢; be output?
Output Gate: o = o(Aoxt + Rost—1 + Woct)
- Based on o;, compute the Net Output:

Forget Gate |

Input Gate

— Net Input
St = 0t O ¢t P
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

RNN and probabilities: What does a general RNN compute?

note: general RNN includes LSTM as a special case
two sequences over time t =1, ..., T:

input: sequence of observations: xlT = X{...Xt...XT
T

output: sequence of class labels: ¢ = ¢...ct...cT
consider the posterior probabilty of the output sequence: .
factorization over time t: p(c! |x/) = Hp(ct|c(§_1,x1T)
t=1
marginalization for time t: S op(d 1K) = pe(c]x)
T

) ic=cC

more ...

notation for RNN output vector with nodes = classes c =1, ..., C:

ve = Inle)] = [pi(cl...)]
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

RNN: Variant 1

uni-directional, no feedback of output labels

Yt—1 Yt
hi—1 F—>| h:
Lt—1 Lt

RNN output vector:

yi(c) = Pt(C‘Xlt)
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

RNN: Variant 2

uni-directional, with feedback of output labels

I 1 1

RNN output vector:

Yt(C) = Pt(C|Cc§_1>X1t)
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

RNN: Variant 3

bi-directional, no feedback of output label

Yi—1 Yt Yt+1
e in il ny il ihgn, i
3 S S L ol S S S
Te—1 T Li4+1
: > - :

Internal Structure: Separate Forward and Backward Hidden Layers
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

RNN: Variant 3

bi-directional, no feedback of output label

Y

T

T

It

RNN output vector:

Yt+1

T

—>| hy |e—

hiyq

T

Lt4+1

yi(c) = Pt(C|X1T)
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

RNN: Variant 4

bi-directional, with uni-directional feedback of output label

Yt—1 Yt Yt+1

TN LT 1 1

—>| hy 1 —>| h: |+—— hip1 |[+—

T I 1 1. 1

Lt—1 It Lt41

RNN output vector:

Yt(C) = Pt(C|C(§_1>X1T)
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

RNN: Variant 5

bi-directional, with bi-directional feedback of output label

Yt—1 Yt Yt+1

TN N1 1.1

—>| hy 1 —>| h: |+—— hip1 |[+—

T I 1 1. 1

Lt—1 It Lt41

RNN output vector:

ye(c) = Pt(C|C5_1> CtCLl?XlT)
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Neural Network and Statistical Approach

Recurrent Neural Networks for Sequence Processing

Overview of RNN Outputs

label feedback | no uni-direct. bi-direct.
uni-dir. RNN | pi(clxf) | pe(clqg ™, x) | ——
bi-dir. RNN | pe(clx|) | pe(cled™ x) | pelelet™, ¢/, %)

- experiments: typically pt(ClxlT)

- exploitation of recurrency within each layer
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Deep Learning for Acoustic Modelling
Approach & History

Hybrid Approach

consider modeling the acoustic vector x; in an HMM:
- phonetic labels (allophones, sub-phones): (s, W) — a = agy
(typical approach: decision trees, e.g. CART):
p(xtls, W) = p(x¢|asw)
« re-write the emission probability for label o and acoustic vector x;:
p(xt) - plalxt)
p(a)

p(xila) =

— prior probability p(«v): estimated as relative frequencies (alternatively averaged NN posteriors)

— for recognition purposes: term p(x;) can be dropped
- result: rather than the state emission distribution p(x;|a),
model the label posterior probability by an NN:

x¢ — p(a|xt)

« justification:
— easier learning problem: labels a =1, ..., 5000
— well-known result in pattern recognition (but ignored in ASR!)

D=4
vs. vectors x, € RP=%
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Deep Learning for Acoustic Modelling
Approach & History

History: Artificial Neural Networks in Acoustic Modeling

approaches in ASR:

« [Waibel & Hanazawa™ 1988]: phoneme recognition using time-delay neural networks

- [Bridle 1989]: softmax operation for probability normalization in output layer

« [Bourlard & Wellekens 1990]:

— for squared error criterion, NN outputs can be interpreted as

class posterior probabilities (rediscovered: Patterson & Womack 1966)
— they advocated the use of MLP outputs

to replace the emission probabilities in HMMs
« [Robinson 1994]: recurrent neural network

— competitive results on WSJ task
— his work remained a singularity in ASR

experimental situation:
until 2011, NNs were never really competitive with(out) Gaussian Mixture Models

Schliiter et al. — Human Language Technology and Pattern Recognition
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Deep Learning for Acoustic Modelling
Approach & History

History: Artificial Neural Networks in Acoustic Modeling

related approaches:
« [LeCun & Bengio™ 1994]: convolutional neural networks
« A. Waibel's team [Fritsch & Finke™ 1997]: hierarchical mixtures of experts

« [Hochreiter & Schmidhuber 1997]: long short-term memory neural computation (LSTM RNN)
with extensions [Gers & Schraudolph™ 2002]

(second) renaissance of NN: concepts of deep learning and related ideas:
« [Hermansky & Sharma 1998]: TRAPS: learning temporal patterns of spectral energies
« [Hermansky & Ellis™ 2000]: tandem approach - multiple layers of processing
by combining Gaussian model and NN for ASR
o [Utgoff & Stracuzzi 2002]: many-layered learning for symbolic processing
« [Hinton & Osindero™ 2006]: introduced what they called deep learning (belief nets)

« [Graves & Liwicki™ 2008]: good results for LSTM RNN on handwriting task
« Microsoft Research [Seide & Li* 2011, Dahl & Yu™ 2012]:

— combined Hinton's deep learning with hybrid approach

— significant improvement by deep MLP on a large-scale task

« since 2012: other teams confirmed reductions of WER by 20% to 30%

Schliiter et al. — Human Language Technology and Pattern Recognition
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Approach & History

What is Different Now after 25 Years? - A (Simplified) Summary

[ooooo oo o0 o0 o0 o0 0]
55 55003 Comparison of today's systems vs. 1989-1994:
« number of hidden layers: 10 (or more)
O O O O O O O O
rather than 2-3
cococoo0o0o00 « number of output nodes: 5000 (or more)
rather than 50
O O 0O OO O OO . . .
e optimization strategy:
©oco0o00000 practical experience and heuristics,
e.g. layer-by-layer pretraining
O O O OO O OO .
« computation power: much more
O O 0O OO O OO ]
Terminology (for feedforward and recurrent nets):
e « deep neural network
= = « deep learning
O O O OO
oerte KITP Workahop on the Physice of Hearing, KITP. Santa Barbara, CA- - oo e Change? @ ‘ RWNTH
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Deep Learning for Acoustic Modelling
Training

Training Strategies

Frame level: cross-entropy log py(css, w|xt)
« required: single best path for each training sentence

- re-alignments during backprop learning: yes ... occasionally ... no

— simple implementation due to decoupling of best path and backprop

Sentence level: discriminative sequence training:
« includes language model p( W)
- requires sentence level posterior probability p(W|x;")

« improvement: use exponents for language model,
transition probabilities and acoustic model

- approximations: single best path, lattice with/without re-computation, ...

« three types of discriminative criteria:

— logarithm of posterior probability
— MPE applied to phones: 1 out of 50
— MPE applied to CART labels: 1 out of 5000

— complex implementation
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Deep Learning for Acoustic Modelling

Empirical Overview of Current Methods

Experimental Setup

Experimental conditions:

« QUAERO task: English broadcast news and conversations
(evaluation campaign 2011)

- training data: two conditions: 50 and 250 hours

o test data: dev and eval sets, each 3 hours

« language model: vocabulary size of 150k (OOV: 0.4%) and perplexity of 130
Baseline Gaussian mixture HMM based acoustic model:

- feature vector: 16 MFCC (mel frequency cepstral coefficients)

- augmented feature vector: 9 - 16 = 144

« high-performance baseline system:
Gaussian mixtures with pooled diagonal covariance matrix:

— reduction by LDA to 45-dimensional vector
— 4501 CART labels

— 680k densities
— total number of free parameters: 680k - (45 + 1) = 31.3M
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Deep Learning for Acoustic Modelling

Empirical Overview of Current Methods

Gaussian Mixture Models (GMM): Influence of Training Criteria

Training Criterion WER [%]
50h 250h

dev | eval | dev | eval

Maximum likelihood | 24.4|31.6|22.1|28.6
MMI at frame level 23.9130.9/22.128.6
MMI at sentence level |24.1131.221.7|28.1
Minimum phone error | 23.630.220.4 |26.2

remarks:
* best improvement over maximum likelihood:

5-10% relative by MPE (Minimum Phone Error)
- comparative evaluations in QUAERO:
competitive results with LIMSI Paris and KIT Karlsruhe

Schliiter et al. — Human Language Technology and Pattern Recognition
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Empirical Overview of Current Methods

Deep MLP: Number of Hidden Layers

[ocoooooo oo o0 o0 O

« WER vs. number of hidden layers

O O 0O O O O O O | 0
for 50-h training corpus hidden WER [/0]
©coo0o0000o0 * Structure of MLP: |ayers dev | eval
— input dimension: 1 245 /31.3
=2 209029 ¢2 493 (window + derivatives) 2 22.0128.3
— — 2000 nodes per hidden layer 3 2051267
— nonlinearity: sigmoid
— — number of parameters for 6-layer MLP: g ;8? 32(1)
e 493 - 2000 6 10.6 | 25 4
+5 - 2000° 7 19.7 255
£2°°0°°92 +2000 - 4501 3 19.6 25'7
= 30M ' '
22 9 19.3125.3
e — « improvement over best GMM: best GMM | 23.6 1302

O O O O O

20% relative
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Deep Learning for Acoustic Modelling

Empirical Overview of Current Methods

Discriminative Sequence Training: MPE vs. CE

Comparison of two training criteria (MLP with 6 hidden layers, 2000 nodes each):

* baseline: cross-entropy = frame MMI

« MPE: minimum phone error (context of pron. lexicon and language model)

WER [%]
50h 250h
dev | eval | dev | eval
MLP frame MMI|19.6 1 25.4|15.2|20.4
MPE 17.5/23.3/14.1/19.2

best GMM MPE 23.6/30.2120.426.4

Model Criterion

experimental result: improvement of 5-10% by MPE over frame MMI
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Deep Learning for Acoustic Modelling

Empirical Overview of Current Methods

Activation Function: Sigmoid vs. RLU

- activation functions:
— sigmoid function: v — f(u) =1/(14 ")
— RLU=rectified linear unit: v — f(u) = max{0, v}
e structure of MLP:
— 6 hidden layers, each with 2000 nodes
— training condition:
* (frame-wise) cross-entropy
* L2 regularization (weight decay): important

* momentum term
- word error rates for activations functions: sigmoid vs. RLU:
WER [%]
activation 50h 250h
function | dev | eval | dev | eval
sigmoid |19.6|25.4 152|204

RLU 17.7123.5|14.7|19.6
best GMM | 23.6 | 30.2 | 20.4 | 26.4

- experimental result: improvement of 5-10% by RLU over sigmoid
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Empirical Overview of Current Methods

Deep LSTM-RNN
50h QUAERO training corpus:

* baseline: best MLP: LSTM Hparams time / WER [%]
— input: 50 Gammatone features layers epoch | dev | eval
— 9 hidden layers 1 6.7M 0:28h | 17.6|22.7
- RLU 2 12.7M | 1:.00h | 14.6 | 18.8
— training criterion: cross-entropy 3 18.7M 1:11h | 14.0 1 18.4

» LSTM-RNN structure: 4 247M | 1:33h | 13.5|17.7
— input: 50 Gammatone features 5 307M | 1:48h | 13.617.7
— training criterion: cross-entropy _

— bidirectional with several hidden layers 0 36.7M | 2:10h |13.5 17.5
— 500 nodes per hidden layer { 42.7TM | 2:36h |13.8/18.0
— training on a single GPU 8 48.7TM | 3:14h | 14.2|18.4

- eval improvements: best MLP _

— 14% relative over MLP (9X2000) 42.7M 1 0:35h | 15.3120.3
~ 42% relative over GMM best GMM| 313M | - [23.6 30.2
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Deep Learning for Acoustic Modelling

Empirical Overview of Current Methods

Effect of ANNs in Acoustic Modelling

Compare three types of emission models in HMMs:
« GMM: Gaussian mixture model
« MLP: deep multi-layer perceptron

« LSTM RNN: recurrent neural network with long short-term memory

Experimental results for QUAERO English 2011.:

approach layers | WER[%]
conventional: best GMM | - 30.2
hybrid: best MLP 9 20.3
hybrid: best LSTM RNN| 6 17.5

Remarks:
- comparative evaluations in QUAERO 2011:
competitive results with LIMSI Paris and KIT Karlsruhe
* best improvement over Gaussian mixture models

by 40% relative using an LSTM RNN

Schliiter et al. — Human Language Technology and Pattern Recognition
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Deep Learning for Language Modelling

History of Neural Networks in Language Modeling

History of Neural Networks in Language Modeling

« [Nakamura & Shikano 1989]:
English word category prediction based on neural networks.

« [Castano & Vidal™ 1993]:
Inference of stochastic regular languages through simple recurrent networks

- [Bengio & Ducharme™ 2000]:
A neural probabilistic language model

« [Schwenk 2007]:
Continuous space language models

« [Mikolov & Karafiat™ 2010]:

Recurrent neural network based language model

« RWTH Aachen [Sundermeyer & Schliiter™ 2012]:
LSTM recurrent neural networks for language modeling

« RWTH Aachen [Sundermeyer & Tiiske™ 2014]:
long range LM rescoring beyond N-best lists

Today: neural network based language models show competitive results.

Schliiter et al. — Human Language Technology and Pattern Recognition
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Deep Learning for Language Modelling

Perplexity vs. Word Error Rate

Reminder: perplexity (PP)

- geometric average of inverse probability — interpretation: average effective vocabulary size

N
-1/N —-1/N defi 0
. N -1 efine wy as
PP = (pwl)) " = (TTp(wlwi™) 1
e empty sequence
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5 | /I§| . | + RNN  []
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Deep Learning for Language Modelling

Perplexity vs. Word Error Rate

Extended Range: Perplexity vs. Word Error Rate

Word Error Rate (%)

- empirical results, originally proposed by [Klakow & Peters 2002]

28 =i bbb Yt

wl o

A R i S T SE SR
18 |-t
e N i e S

12
11

Count-based <&

+ Feedforward

+ RNN  []
+LSTM A
Regression

100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000

Perplexity

« analytical error bound exists [Schliiter & NuBbaum-Thom™ 2013] (upper bound only)
« proof of approximate power law still missing
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Perplexity vs. Word Error Rate

Word Error Rate vs. Local Perplexity (3-word window, 20 bins)
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Neural Network based Language Modeling

« distinguish:
— sub-symbolic processing: speech/audio, text images, image/video (computer vision)
— symbolic processing: language modeling (and machine translation)

- word sequence WlN = Wi...Wj...Wp

- language model: conditional probability p(w,|wy ') (with artificial start symbol wy):

N
N _
p(wy) = I_IP(WH|WC§7 ) 0O00@00000
n=1

- approaches to modeling p(w,|w )
— count models (Markov chain): 0000
* limit history wj ' to k predecessor words
* smooth relative frequencies (e.g. SRI toolkit)
— MLP models:
* limit history, too
* use predecessor words as input to MLP

000|000

— RNN models:
. _ [OC®@0000000 000000000
unlimited history! [Mikolov & Karafiat™ 2010]
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Neural Network based Language Modeling

Structure of Neural Network for Language Modeling

- input layer: k predecessor words with 1-of-V coding (V = vocabulary size)
- first layer: projection layer
— idea: dimension reduction (e.g. from 150k to 600!)

— a linear operation (matrix multiplication) without sigmoid activation
— shared accross all predecessor words of the history h

- output layer:

— conditional probability of language model p(w/|h)
— softmax operation for normalization

- training criterion:

— perplexity: equivalent to cross-entropy

— early stopping using cross-validation on dev corpus
- properties of softmax operation:

— computationally expensive (sum over full vocabulary)
— remedy: word classes (automatically trained)
— normalized outputs of softmax fit nicely into perplexity criterion
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Neural Network based Language Modeling

Word Classes
MLP w/o and with Word Classes: Trigram LM

[OOO@00000] [coe@00| [of|o]oe[oo[000]
0000 0000
000|000 000|000
[OC®@0000000 O0000@000| [O®@0000000 000000000

factorization of conditional language model probability p(w|h) for each history h:

p(w|h) = p(g|h) - p(w|g, h)

using a unique word class g for each word w

Schliiter et al. — Human Language Technology and Pattern Recognition

69 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change? Rm
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA @
RWTH Aachen University — June 26, 2017



Deep Learning for Language Modelling
Neural Network based Language Modeling

Word Classes
RNN without and with Word Classes

« NN with memory for sequence processing

« left-to-right processing of word sequence wy...w,....wy
p(w]") = HP(Wn|W(§7_1) = HP(Wn|Wn—17 hn-1)
n n

« input to RNN in position n:

— output h,_; of hidden layer at position (n — 1)
— immediate predecessor word w,,_;

000000000 000
0000
00000000 000000000
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Neural Network based Language Modeling

LSTM RNN [Hochreiter & Schmidhuber 1997, Gers & Schraudolph™ 2002]

refinement of RNN:
LSTM = long-short term memory

« RNN: problems with vanishing/exploding gradients
« remedy: cells with gates rather than nodes

o details: see literature

00000000

OO0

00000

00000000
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Empirical Overview of Current Methods

« results on QUAERO English (like before): perplexity PPL on dev data:
— vocabulary size: 150k words :
— training text: 50M words approach hidden | PPL
— dev and eval sets: 39k and 35k words layers
» MLP: structure: count model - |163.7
— projection layer: 300 nodes 1 1365
— hidden layer: 600 nodes 10-gram MLP '
— size of MLP is dominated 2 130.9
by input and output layers: RNN 1 125 .2
150k - 300 + 600 - 150k = 135M 1 107.8
- RNN (and LSTM RNN): structure LSTM-RNN 5 100'5
— projection and hidden layer: each 600 nodes :
— size of RNN is dominated _
by input and output layers: observation:
150k - 600 + 600 - 150k = 180M (huge) improvement by 40%
T akahon o the Phys of Heaog. KITP Sores Boars, a6 €honee? o ‘ RWTH
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Empirical Overview of Current Methods

Complexity: Computation Times

Training times (without GPUs!) for training corpus of 50 Million words:

Models PPL | CPU Time (Order)
Count model | 163.7 30 min
MLP 136.5 1 week
LSTM-RNN | 107.8 3 weeks

« problem: high computation times
 remedy: two types of language models:

— count model: trained on a huge corpus: 3.1 Billion words
— NN models: trained on a small corpus: 50 Million words

« resulting language model:
linear interpolation of two models
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Empirical Overview of Current Methods

Interpolated Language Models: Perplexity and WER

« linear interpolation of two models: count model + NN model

« perplexity and word error rate on test data:

Models PPL | WER[%]
count model 131.2 12.4
+ 10-gram MLP 112.5 11.5
+ Recurrent NN 108.1 11.1
+ LSTM-RNN 96.7 10.8
+ 10-gram MLP with 2 layers | 110.2 11.3
+ LSTM-RNN with 2 layers 92.0 10.4

« experimental result:

— significant improvements by NN language models
— best improvement in perplexity: 30% reduction (from 131 to 92)
— best improvement in WER: 16% reduction (from 12.4% to 10.4%)
— empirical observation:

power law between WER and perplexity (cube to square root)

Schliiter et al. — Human Language Technology and Pattern Recognition
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Current State-of-the-Art in ASR
Net Effect of NN Modeling in ASR

Overall Improvements by ANNs in ASR

QUAERO English Eval 2013

Language Model | PP | Acoustic Model | WER[%]
Count Fourgram | 131.2 | Gaussian Mixture 19.2
deep MLP 10.7
LSTM RNN 10.4
+ LSTM-RNN 92.0 | Gaussian Mixture 16.5
deep MLP 9.3
LSTM RNN 9.3
Remarks:
- overal improvements by ANNS: 50%
« lion's share of improvement: acoustic model
« acoustic input features: optimized for model
PRSNG| RWTH
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Recent Switchboard State-of-the-Art Systems

Acoustic modeling
« convolutional models:

— visual geometry group (VGG) - very deep convolutional network (adopted from CV)
— residual nets (ResNet) - even deeper, incl. short-cut connections (adopted from CV)
— layer-wise context expansion with attention (LACE) - TDNN + short-cuts + attention mask

« bidirectional long-short term memory (BLSTM) recurrent network (IBM+MSR)

Language modeling

site | acoustic LM, WER [%]

+ N-gram vs. LSTM-NN model | N-gram |LSTM RNN
Experimental results: SWB| CH SWB| CH
« challenging task IBM |BLSTM| 7.2 [12.7]| - -

« training on 2000h ResNet | 7.6 |145] - -
» single systems MSR | BLSTM | 83 |149| 6.7 | 13.0
« sites compared: ResNet | 8.6 148 6.6 | 12.5
— IBM Research [Saon & Kurata™ 17] VGG 01 /1571 7.1 | 13.2
— Microsoft Research (MSR
e, Draeos 1(7] ) LACE | 8.4 |15.0| 6.7 | 13.0
B e YL
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Current State-of-the-Art in ASR

ASR vs. Human Performance

Human - Machine Comparison

How does state-of-the-art ASR compare against human performance?
e current best ASR systems obtained using system combination

« two human speech recognition studies

Results on Switchboard task cited from
« IBM Research [Saon & Kurata™ 17]
« Microsoft Research (MSR) [Xiong & Droppo™ 17]

recognition | site | WER [%]
SWB | CH
machine |MSR| 5.8 |11.0
IBM | 5.5 |10.3
human |MSR| 5.9 |11.3
IBM | 5.1 | 6.8
g () | RWTH
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Thank you for your attention

Any questions?

@‘RW“‘I
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