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Preamble

• joint work with members of HLT & PR lab (Informatik 6):
– acoustic modeling: Patrick Doetsch, Pavel Golik, Tobias Menne, Zoltan Tüske, Albert Zeyer, ...
– language modeling: Martin Sundermeyer, Kazuki Irie, ...
– cf. hltpr.rwth-aachen.de/web/Publications

• toolkits used for results presented here are available on our web site:
– RASR: RWTH Automatic Speech Recognition toolkit (also handwriting)
– RWTHLM: RWTH neural network based Language Modeling toolkit (esp. LSTM)
– RETURNN: RWTH Extensible Training for Universal Recurrent Neural Networs (new!)
– ...
– cf. hltpr.rwth-aachen.de/web/Software

Automatic Speech Recognition based on Neural Networks
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Generic Neural Network Language Modeling,

Word Embedding on Byte Level

Input Embedding for NN Language Models

Discussion:
• standard: 1-of-V encoding and linear

projection for each word

• problem: does not generalize to unseen words

• resort: character-level word embedding

• however: need to handle international
character encodings for new languages

• idea: byte-level word embedding

Approach:
• convolution filters operate on byte level

• max-pooling to generate word-level embedding

Advantage:
• no special handling for new languages

ቃል

byte 

embeddings

max-pooling

convolution

x

y

h

e1 89 83 e1 88 8d

word

byte sequence

1 of 52 Automatic Speech Recognition based on Neural Networks
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Generic Neural Network Language Modeling,

Word Embedding on Byte Level

Byte-Level Convolution-based Word Embedding

Application for language modeling

convolution

pooling

byte embeddings

highway

LSTM units

p(g | h) p(w | g, h)

w: word

g: class of w

h: history

• Character-aware neural LM architecture by
[Kim & Jernite+ 2016].

• Classic LSTM LM with class factorized
output.

• Prediction is still at word level.

• Standard word embedding input layer is
replaced by a CNN on byte level.

• Optionally followed by a highway (adaptive
interpolation) layer.
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Generic Neural Network Language Modeling,

Word Embedding on Byte Level

Evaluation of Byte-Level Word Embedding for ASR/Keyword Search

Experimental results from [Irie & Golik+ 2017] (Babel datasets)

word-level LM topology
Perplexity

Igbo Dholuo
Baseline LSTM 103.4 144.8

+ CNN (byte) 94.8 136.9
+ Highway 95.9 135.8

ASR performance.
ID Language WER [%]

2gr +LSTM +CNN
306 Igbo 56.8 56.0 55.9
403 Dholuo 38.1 37.0 36.9

Keyword search performance.
ID Language MTWV

2gr +LSTM +CNN
306 Igbo 0.3759 0.3733 0.3801
403 Dholuo 0.6228 0.6245 0.6253
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Generic Neural Network Language Modeling,

Log-Linear Interpolation of Multi-Domain Neural Network LM

Log-Linear Interpolation of Multi-Domain Neural Network LM

[Tüske & Irie+ 2016]

• Usual approach: linear interpolation of count LMs trained on different domains/data sets.
– Interpolation weights optimized on target domain validation set.
– Optimized using expectation maximization (EM) algorithm.
– Count models are suited to be linearly combined into one single model

(with union of n-grams and recomputing back-off weights)

• Goal: combination approach for neural network LMs.
– Aiming at single model after interpolation of neural network LMs.
– Linear interpolation not straightforward for NN LMs to obtain single model.

Log-Linear combination fits better;

• Initial investigation using feed-forward NN LMs.
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Generic Neural Network Language Modeling,

Log-Linear Interpolation of Multi-Domain Neural Network LM

Joint Model
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• Multiple posterior estimates
– Active output: selected by the domain of the input vector
– Hidden layers are shared between the domains
– Shared vocabulary, common softmax

• Log-linear combination to obtain single overall neural network LM:
– Leads to weighted sum of domain specific output layers.
– Weighted sum of softmax outputs can rewritten as a single softmax output layer.
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Generic Neural Network Language Modeling,

Log-Linear Interpolation of Multi-Domain Neural Network LM

Experimental Results: Perplexities

• Training corpus: 3B words, 11 domains
(Gigaword, BN/BC, TED, IWSLT, ...)
– 50M and 2M best matching subset

selected for fine-tuning

• KN 4-gram: 132.7 PPL after interpolation

• 50M LSTM-RNN: 100.5

• Retraining only multi-domain output
(log-linear!) on the best BN, and
interpolation: PPL 92.0

LM
multi log-lin. fine-tuning

PPL
domain interp. 50M 2M

50M
110.5*

× 109.0*

3B

129.0*
× × 96.2*

× 133.1*
× × × 95.7*
× × 117.6*
× × × × 94.3*

*using the best matching output
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Generic Neural Network Language Modeling,

Log-Linear Interpolation of Multi-Domain Neural Network LM

Experimental Results: WER

• Lattice generation with count model
• Lattice rescoring using rwthlm [Sundermeyer & Alkhouli+ 2014]

– Traceback lattice approximation
– Linear-interpolation of NN LM and count LM (KN 4-gram)

• Measuring word error rate
– Acoustic model: 12-layer multilingual BN (800h), fine tuned on 250h BN/BC target data
– Standard Viterbi (Vi.) and confusion network (CN) decoding of the lattices

Language Model
Dev Eval

PPL Vi. CN PPL Vi. CN

KN4 132.7 12.6 12.3 133.4 15.4 15.0

+ 50M FFNN 96.5 11.4 11.1 95.0 14.2 13.8
+ 3B, fine-tune 89.6 10.9 10.7 88.0 13.7 13.4
+ Multi-domain,log-lin,fine-tune 88.5 10.8 9.1 87.0 13.7 13.5

+ 50M LSTM 91.6 10.9 9.0 91.0 13.7 13.5
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Generic Neural Network Language Modeling,

Search with Unlimited Context Dependency

Background: Search Space Representation and Rescoring

Problem:
• RNN LMs imply unlimited symbol context dependency

• search space size rises exponentially with sequence length

• search space reduction requires approximation

Word graphs:
• efficient search space representation [Oerder & Ney 1993]

• enables efficient rescoring with higher-order LMs [Odell 1995]

• N-gram language models: recombination and beam-search

• unlimited context: word graph expands into (large) prefix tree
→ further approximation needed

Approach:
• pruning/approximations can be introduced to reduce the complexity.

• goal: breadth-first search - early pruning
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Generic Neural Network Language Modeling,

Search with Unlimited Context Dependency

Extension of Push-Forward Algorithm

Starting point:
• push forward algorithm from machine translation [Auli & Galley+ 2013]

Approach: extract paths with RNN LM scores from the word graph
• process word graph nodes in topological order

• only retain last k words in context (k-gram context recombination)

• cardinality pruning to limit number of partial hypotheses per node

• surviving hypothesis expansion: computation of RNN state vectors ( ’pushing’ outgoing arcs’
word labels into RNN)

Extensions for ASR:
• integration of ASR pruning strategies (time synchronous beam pruning & look-ahead)

• processing in topological and temporal order

• pruning at every new time frame

• storage of rescored/expanded word graph

• presented in [Sundermeyer & Schlüter+ 2014]:
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Generic Neural Network Language Modeling,

Search with Unlimited Context Dependency

Word Graph Rescoring with RNN Language Model

Illustration from [Sundermeyer & Ney+ 2015]
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• X is an example lattice.

• Y is an example traceback tree when X is
rescored by a RNN LM

• Pruning is illustrated by dashed lines:
– Paths ’b-f-g-i’ and ’d-f-g-i’ are pruned at

node 2 (middle row)
– Path ’e-g-i’ is pruned at node 4 (last row)
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Generic Neural Network Language Modeling,

Search with Unlimited Context Dependency

RNN LM Rescoring Results

Experimental results (Quaero French Test dataset) [Sundermeyer & Ney+ 2015]

rescoring method WER [%]
baseline 4-gram Kneser-Ney 16.4
100-best 14.8
1000-best 14.7
word graph Rescoring (push forward) 14.6
+ Viterbi after LM scale tuning 14.5
+ confusion network decoding 14.2

Remarks: one-pass decoding with RNN LM?
• previous work [Huang & Zweig+ 2014, Hori & Kubo+ 2014, Lee & Park + 2015]

• results: WER of first pass decoding marginally better (or worse) than rescoring
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Hybrid Interpretation of Tandem,

Tandem vs. Hybrid

Comparison and Interpretation [Tüske & Tahir+ 2015]

• State-of-the-art acoustic models (AM) are
– Tandem acoustic models

* Gaussian Mixture Models (GMM) are trained on the output of a neural
network based features

* Probabilistic or bottleneck (BN) tandem approach
[Fontaine & Ris+ 1997, Hermansky & Ellis+ 2000, Grézl & Karafiát+ 2007]

* Joint training, e.g. in [Paulik 2013]
– Hybrid models

* Proposed in the early 90’s [Bourlard+Morgan:1993]
* Estimates state posterior probabilities p(s|x) directly
* BN layer to train efficiently on huge number of states [Sainath & Kingsbury+ 2013]

• After careful optimization both show similar performance

• Goal: convert tandem into hybrid neural network representation [Tüske & Tahir+ 2015]

• Idea: rewrite GMM to equivalent log-linear model [Anderson 1982, Heigold & Wiesler+ 2010]
Idea: → softmax NN layer
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Hybrid Interpretation of Tandem,

Joint Bottleneck Tandem and GMM Training

Integration of GMM into and Bottleneck DNN

• GMM with pooled covariance is a softmax layer with hidden variables

• Maximum approximation, for fast score calculation:∑
i

exp(wT
si y + bsi)

Z (y)
≈ exp(wT

s ı̂ y + bs ı̂)

Z (y)

∣∣∣∣
ı̂=argmax

i
(wT

si y+bsi )

• No need for special element to implement:
– sum- or max-pooling

• Efficient softmax is crucial (low-rank factorization; GPU)
– GMM of 4500 states after 8 splits: ∼ 1 million nodes

• Joint training of BN and GMM:
– Maximum likelihood training of GMM on BN features
– Convert to LMM
– Start the joint training

• Remark: maximum approximation with given labeling (s,i)
same as classical hybrid, E-M style training is also possible

MAX/
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Hybrid Interpretation of Tandem,

Experimental Comparison

ASR Experiments

• Task: Quaero English (250h BC/BN)
• MLP structure:

– 12 hidden layers
– 50 dimensional Gammatone input

System
low joint

#output #param. split criterion
WER [%]

rank training dev eval

Hybrid no
4.5k

54.7M
- CE

13.3 18.1
yes – 49.0M 13.5 18.2

12.0k 52.8M 13.0 17.7

BN tandem
–

no
4.5k

613.0M 8 ML 14.2 19.0
yes 83.5M 4 CE 13.1 17.8

• Same results with less tied-triphone states

• Smaller lexical prefix-tree
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Integration of Neural Preprocessing and Acoustic Modeling,

Acoustic Modeling of Raw Time Signal

Previous Work [Golik & Tüske+ 2015]
• large effort went into feature engineering for DNNs

(e.g. [Seide & Li+ 2011, Yu & Yao+ 2013], ...)
• previous work [Tüske & Golik+ 2014] showed:

– a simple fully connected 12-hidden-layers DNN performs well
even without any feature extraction

– WER: 22.1% (MFCC) vs. 25.5% (raw time signal)
– first layer weights learned impulse responses of band pass filters
– the learned filter bank roughly resembles manually defined filter bank

• convolutional neural network (CNN) is a natural tool
that combines learning a filter bank and acoustic modeling

• research questions:
– how much do CNNs reduce the performance gap to hand-crafted features?
– how can we interpret the learned weights?
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Integration of Neural Preprocessing and Acoustic Modeling,

Acoustic Modeling of Raw Time Signal

Convolutional neural networks

• CNNs were introduced to HWR about 25 years ago [LeCun & Boser+ 1989]

• today: state-of-the-art in computer vision
([Krizhevsky & Sutskever+ 2012, Jaderberg & Simonyan+ 2015])

• applied to speech recognition tasks by [Abdel-Hamid & Mohamed+ 2012]:
2D filters perform convolution on a “spectrogram”

• convolution on raw time signal: 1D operation along time axis only

• output of convolutional unit i at position m:

yi ,m = σ

(
m+k−1∑
j=m

wi ,j−mxj + bi

)

– xj are the PCM samples
– {wi ,·, bi}: trainable parameters shared across all positions in the input
– k is the length of the impulse response of a filter

• temporal sub-sampling by shifting m in steps of 32 and max pooling
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Integration of Neural Preprocessing and Acoustic Modeling,

Acoustic Modeling of Raw Time Signal

1D convolution in time only
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Integration of Neural Preprocessing and Acoustic Modeling,

Acoustic Modeling of Raw Time Signal

2D convolution in time/frequency (for ASR)
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Integration of Neural Preprocessing and Acoustic Modeling,

Network Analysis

Learned Weights: First Convolutional Layer
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• the (reordered) transfer functions derived from the trained convolutional
filters of the first layer clearly resemble critical bands
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Integration of Neural Preprocessing and Acoustic Modeling,

Network Analysis

Learned weights: second convolutional layer

• reordered weights of some of
the 128 filters i in the
2nd convolutional layer

• vertical: frequency axis,
horizontal: time axis

• dynamic patterns in both
time and frequency
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Integration of Neural Preprocessing and Acoustic Modeling,

Evaluation

Experimental Results and Discussion

• training on raw time signal works surprisingly well

• convolutional layers improve ASR performance over fully-connected layers

• non-stationary patterns can be captured precisely

• first and second layer weights can be interpreted as filters in time/frequency

model input WER [%]

DNN MFCC 22.1
raw time signal 25.5

CNN 23.4

• the gap to MFCC’s performance reduces from 15% to 6% relative WER

• for sufficient amounts of training data, models trained on the raw time signal can even
outperform standard preprocessing, even for multichannel scenarios [Sainath & Weiss+ 2015]
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Integration of Neural Preprocessing and Acoustic Modeling,

Robust Preprocessing

DNN-based Single Channel Denoising for ASR

Approach:
• mapping from noisy log-mel power spectrum to clean log-mel

power spectrum as e.g. done in [Xu & Du+ 2015]

• training requires two recording channels: noisy and clean

• e.g. MMSE loss function for DNN with linear output layer:

L =
1

N

N∑
n=1

||X̂n − Xn||22

with
– N : the number of samples of the (mini) batch
– Xn: reference/clean log-mel power spectrum for sample n

– X̂n: output of enhancement network for sample n

Advantage of enhancement approach:
• can easily be combined with acoustic model for joint training,

e.g. [Gao & Du+ 2015]
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Integration of Neural Preprocessing and Acoustic Modeling,

Multichannel Signal Preprocessing for ASR

Model:
• multichannel speech signal with additive noise in frequency domain
• with:

– microphone index m = 1, . . . ,M ,
– frame index t = 1, . . . ,T , and
– frequency bin index k = 1, . . . ,K

Xm(t, k) = Sm(t, k) + Nm(t, k)

Filter and sum beamforming:
• Fm

∗(t, k) are the complex conjugate FIR filter coefficients applied to the mth microphone:

Y (t, k) =

M∑
m=1

Fm
∗(t, k) · Xm(t, k)

Filter matrix computation:
• here for the example a GEV-beamformer [Warsitz & Haeb-Umbach 2007]
• GEV-beamformer maximizes output SNR for every frequency bin separately

Fm(t, k) = P{ΦNN
−1(k)ΦXX(k)}m

– Φνν denotes the cross power spectral density matrices of signal ν ∈ {N,X}
– P{·} yields the principal component,
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Schlüter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — Aug. 24, 2016



Integration of Neural Preprocessing and Acoustic Modeling,

Multichannel Signal Preprocessing for ASR

Utilization of noise and speech masks:

Φνν =
T∑
t=1

Mν(t, k)X(t, k)X(t, k)H

– Mν: signal masks for noise and speech
– X(t, k) = [X1(t, k), . . . ,XM(t, k)]T .

Mask estimation:
• neural networks like BLSTMs can be used for mask estimation, e.g. [Heymann & Drude+ 2015]

• this approach can be similarly applied to MVDR beamforming [Higuchi & Ito+ 2016]

Multichannel processing for ASR on raw waveform [Sainath & Weiss+ 2015]
• filters applied to time signal are learnable.

• convolutional long short-term memory deep neural network (CLDNN)
jointly used for feature extraction and acoustic modeling.
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Multilingual Learning,

Multilingual Approach

Multilingual MLP Features
[Tüske & Schlüter+ 2013]

Exploitation of language independent information is viable:
• cross-lingual application of MLP features can improve performance [Stolcke & Grézl+ 2006].

• training MLP on target language usually better for similar amount of training data.

Training MLPs on multiple languages:
• spoken languages are based on the same speech production mechanisms.

• allows parameter sharing between languages.

• idea: share common bottleneck layer for multiple languages.

• robust feature: better portability to new language.

• exploits data available in other/multiple languages.

• serves as initialization prior to additional language specific training/fine-tuning.
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Multilingual Learning,

Multilingual Approach

Multilingual Bottleneck MLP

Handling multiple targets:

• phone set incl. language ID [Grézl & Karafiát+ 2011]:
– NN also has to learn language identification.

• mapping to common phone set [Schultz & Waibel 2001]:
– knowledge based (e.g IPA, SAMPA):

often ambiguous due to simplified lexicons.
– data-driven.

• language dependent output layer [Scanzio & Laface+ 2008]:
– no need to map phonetical units to common set.
– error back-propagation only from the active output.
– related to multi-task training.
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Multilingual Learning,

Multilingual Approach

Architecture of Multilingual Hierarchical Bottleneck MLP
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Multilingual Learning,

Experiments for Well-Resourced Languages

Experiments - Quaero, Small Scale

Experimental setup
• target task: French.
• 50h of speech per language (balanced corpus size)
• data available for French (FR), English (EN), German (DE), Polish (PL)
• tandem/bottleneck approach
• GMM: 4500 tied-states for each language
• shallow BN-MLPs (7000,60,7000), with phoneme targets
• speaker independent WER reported on Eval11

Effect of number of languages: the more languages, the better:

training languages WER
FR EN PL DE [%]

X 22.2
X X 21.6
X X X 21.5
X X X X 21.1
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Multilingual Learning,

Experiments for Well-Resourced Languages

Effect of Multi- and Unilingual Bottleneck Features

input WER [%] for languages:
features FR EN DE PL

MFCC 25.5 31.6 25.0 18.9
+BNuni 22.2 26.8 21.3 15.7
+BNmulti 21.1 24.9 20.1 15.4

• all languages benefit from multilingual bottleneck features BNmulti.

• 2–5% rel. improvement over unilingual features BNmulti.

• 17-21% overall rel. improvement over MFCC baseline.
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Multilingual Learning,

Experiments for Well-Resourced Languages

Experiments - Quaero, Large Scale

• speaker adaptative training.

• unbalanced corpus sizes for languages: 100h to 300h.

• deep NN structure and context-dependent NN targets.
• tuning the language dependent part of the MLP:

– language dependent hidden layer

* increases no. of parameters, but same training time

* last layer: huge, but block diagonal weight matrix
(8000x6000)

– large, but common hidden layer
* increases no. of parameters even further, slower training

* last layer: huge full weight matrix (8000x6000)
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Multilingual Learning,

Experiments for Well-Resourced Languages

Experiments - Quaero, Large Scale

WER [%] for languages:
intput features FR EN DE PL

MFCC 21.6 26.4 21.4 15.9

+BNuni 17.3 19.7 17.2 12.3
+BNmulti 17.0 19.2 16.3 12.1

+deep BNuni 16.7 18.8 16.8 12.1
+deep BNmulti 16.2 18.1 15.7 11.7

w/lang. dep. hidden layer 16.3 18.2 15.7 11.7
w/large lang. indep. hidden layer 16.0 17.7 15.4 11.7

• multilingual always outperform monolingual model.

• deep structure increases margin between uni- and multilingual:
relative improvement in WER: shallow BN: 2–5%, deep BN: 3–7%.

• 25–30% rel. WER impr. over speaker adaptive MFCC baseline.
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Multilingual Learning,

Experiments for Well-Resourced Languages

Multilingual Hybrid NN: Quaero English

• hybrid NN acoustic model with recent improvements.
– 50 dim. gammatone input features, 17 frames context.
– 12 hidden layers, 2000 nodes each.
– activation function: rectified linear units.
– low-rank factorized 12k output using 512 dim. linear BN.
– WER reported on Quaero Eval corpus, 250h training data.

Model Criterion WER [%]

unilingual GMM MPE 26.2
hybrid NN MPE 16.2

multilingual hybrid NN CE 17.3
+fine-tuning CE 16.7

MPE 15.6

• initial multilingual hybrid NN results w/o further training.

• fine tuning: further optimization on target data.

• still ∼4% rel. improvement by multilingual training.
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Multilingual Learning,

Experiments for Under-Resourced Languages

Effect of multilingual initialization
• limited amount of data available for new target language
• multilingual bottleneck (BN) MLP features:

– 11 (non-target) languages (overall ∼800 hours of speech)
– fine-tuned to target language.

• target language Tok Pisin, amount of training data:
– full language pack (FLP): 40h
– very limited language pack (VLLP): 3h

training data used for semi- LM TER [%] MTWV
BN features GMM super- data

language(s) data language data vised

target
VLLP (3h)

target VLLP (3h)

no

VLLP

56.4 0.250

FLP (40h)
49.6 0.305

yes 47.4 0.337

multi (11) FLP (800h)
no 47.4 0.331

yes
44.9 0.379

+ web 44.3 0.400
target FLP (40h) target FLP (40h) no FLP 40.5 0.458
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Multilingual Learning,

Experiments for Under-Resourced Languages

Overview of OP2 results

• FLP results include:
– Only 40h transcribed speech

• VLLP results include:
– 3h transcribed speech
– multilingual initialization
– fine-tuning
– Semi-supervised training
– Web data

Lang. Kurmanji Tok Pisin
Pack TER [%] MTWV TER [%] MTWV
FLP 65.6 0.289 40.5 0.458
VLLP 69.6 0.249 44.3 0.400

Lang. Cebuano Kazakh
Pack TER [%] MTWV TER [%] MTWV
FLP 58.1 0.408 57.5 0.406
VLLP 60.3 0.354 59.9 0.411

Language Telugu Lithuanian Swahili
Pack TER [%] MTWV TER [%] MTWV TER [%] MTWV
FLP 70.6 0.330 50.8 0.549 44.7 0.559
VLLP 74.0 0.279 52.9 0.549 51.4 0.492
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End-to-End Modeling and Hidden Markov Model,

Motivation & Review of HMMs

Motivation

End-to-end model:
• consistence of modeling, training, and decoding.

• cover segmentation problem by NN structure:
sequence length, duration, and positioning of words are unknown.

• context dependence needs to be modeled.

Ultimate goals (not fully achieved yet):
• integration of NN models into Bayes decision rule.

• separation of acoustic & language model (resources usually differ).

• consistence between decision rule, evaluation measure,
and training objective.
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End-to-End Modeling and Hidden Markov Model,

Motivation & Review of HMMs

Review: Hidden Markov Modeling

• models words/word sequences by HMM state sequences

• within Bayes decision rule:

arg max
N ,wN

1

p(wN
1 ) · p(xN1 |wN

1 ) = arg max
N ,wN

1

p(wN
1 ) ·

∑
sT1 :wN

1

p(xT1 , s
T
1 |wN

1 )

= arg max
N ,wN

1

p(wN
1 ) ·

∑
sT1 :wN

1

T∏
t=1

p(xt|x t−1
1 , s t1) · p(st|x t−1

1 , s t−1
1 )

= arg max
N ,wN

1

p(wN
1 ) ·

∑
sT1 :wN

1

T∏
t=1

p(xt|st) · p(st|st−1) 1st order Markov

≈ arg max
N ,wN

1

p(wN
1 ) · max

sT1 :wN
1

T∏
t=1

p(xt|st) · p(st|st−1) Viterbi approx.
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End-to-End Modeling and Hidden Markov Model,

Motivation & Review of HMMs

Review: Hidden Markov Modeling

Discussion:
• HMM-based standard decision rule:

arg max
N ,wN

1

p(wN
1 ) · max

sT1 :wN
1

T∏
t=1

p(xt|st) · p(st|st−1)

– in practice: maximum over segmentations, especially in search (Viterbi approximation)
– ideally: sum over segmentations.

• inconsistency for (hybrid) NN integration into acoustic model:

p(xt|s) =
p(s|xt) · p(xt)

p(s)

– NN provides state posterior, but state cond. probability needed.
– p(s) approximated, e.g. [Manohar & Povey+ 2015].
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End-to-End Modeling and Hidden Markov Model,

Motivation & Review of HMMs

Review: Hidden Markov Modeling

Discussion:
• assumption of independence of acoustic context:

– can be relaxed by considerung window around each time frame t: x t+δ
t−δ

– hybrid modeling: emission probability modelled by rescaled state posteriors p(s|xt)
– observation here appears in condition only and may be replaced by full acoustic context:
→ p(s|t, xT1 ) (e.g. obtained by bi-directional recurrent modeling).

• segmentation/alignment of observations to HMM states:
– stochastic: ideally sum over all aligments.
– explicit in case of Viterbi approximation: maximizing alignment.

• integration of language model:
– clearly defined, can be trained separately

(text data vs. transcribed acoustic data).
– however, language model scaling exponent statistically unclear.
– open issue: interaction of context dependence on observation and symbol/word level.
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End-to-End Modeling and Hidden Markov Model,

Connectionist Temporal Classification (CTC)

Alternative approach to handle segmentation problem:

• originally introduced for handwriting recognition
[Graves & Fernández+ 2006, Graves & Liwicki+ 2008]

• frame-wise classification, use of LSTMs

• introduces ’blank’ symbol: non-classification

• example: segmentations of the the word “ALEX”:

AAAAALLEEEEEXXXX

A---LLL-EE----XX

-----A--L-E--X-- = ALEX
--ALEX----------

A--------LE----X

• similar to 2-state HMM with globally pooled second state

• no transition model: independence assumption on symbol level

• training: from scratch, sum over all segmentations

• use of CTC in large vocabulary recognition: similar to hybrid

time

A

X

E

L
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End-to-End Modeling and Hidden Markov Model,

Connectionist Temporal Classification (CTC)

Contrast: What is Different from Hybrid HMM?

Where do CTC and Hybrid HMM differ?
• training criterion
• realignment in training
• alignment topology
• use of transition probabilities
• use of state priors
• NN models

CTC:
• uses Baum-Welch (full-sum)

• realignment rate: every mini-batch

• topology: 1-state HMM and
optional blank symbol

• no transition probabilities

• no state prior probabilities

• connected to LSTM modeling

Hybrid HMM/NN:
• Viterbi (maximum approximation)

• realignment rate: not at all,
calculated with earlier model

• topology: 3-state HMM

• transition probabilities

• state prior probabilities

• DNN/LSTM/CNN
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End-to-End Modeling and Hidden Markov Model,

End-to-End Approach

End-to-End Approach

Motivation: End-to-end trainable neural network recognizer
• consistently integrate input and output sequences

• does not need explicit segmentation

• avoids Markov and independence assumptions

Sequence-to-sequence modeling [Sutskever & Vinyals+ 2014]:
• idea: separate processing of input and output into two models:

• encoder: Read the inputs and generate discriminative features

• decoder: Write the output symbol sequence label by label considering all encoded features

Encoder can be viewed as non-linear transformation of input:
• similar to tandem in hybrid approach (hierarchical model)

• however: encoder output is not related to specific output labels, as in hybrid approach

• jointly trained within the complete end-to-end structure
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End-to-End Modeling and Hidden Markov Model,

End-to-End Approach

End-to-End Approach “Listen, Attend and Spell” [Chan & Jaitly+ 2015]
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End-to-End Modeling and Hidden Markov Model,

End-to-End Approach

End-to-End Approach

“Listen, Attend and Spell” [Chan & Jaitly+ 2015]

Approach:
1. “Listen”:

i. Encode input (bidirectional recurrent (LSTM) network, omitted in figure).
Encoding usually includes gradual temporal subsampling/integration.

2. “Attend”: at each output symbol position n:
i. Compute the current inner state value rn from previous state rn−1, output yn−1, and expected

input ξn−1 from attention.
ii. Compute attention weights αn = attend(rn, . . .) from current state rn and further input (see

next slide).
iii. Compute expected network input ξn as linear combination of input sequence xT1 weighted by
α T
n,1

3. “Spell”:
i. Recurrently classify characters (symbols) from current state rn and input ξn from attention.
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End-to-End Modeling and Hidden Markov Model,

End-to-End Approach

Attention in Detail

“Listen, Attend and Spell”
[Chan & Jaitly+ 2015]
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End-to-End Modeling and Hidden Markov Model,

Discussion & Experimental Results

Discussion

Attention process:
• controls the segmentation

• (soft) alignment between symbol position and observations.

Dependencies of attention process still are an open research issue, e.g.:
• [Chan & Jaitly+ 2015] (“Listen, Attend and Spell”): αn = attend(rn, xT1 )

• [Bahdanau & Chorowski+ 2015]: αn = attend(rn−1, yn−1, ξn−1)

Properties:
• no explicit alignment to specific input vectors needed.

• however, attention is determined by context, i.e. it is not handled as an independent hidden
stochastic variable.

• as a consequence, suboptimal attention results (misalignments) cannot be rectified in the
subsequent search process, as in HMM based modeling.
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End-to-End Modeling and Hidden Markov Model,

Discussion & Experimental Results

Attention Modeling Example from Handwriting
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End-to-End Modeling and Hidden Markov Model,

Discussion & Experimental Results

Sequence-to-Sequence Approach

Results: RIMES Offline Handwriting Recognition
• input: 8× 32 image slices resulting from sliding window (shift 3).

• input layer: CNN with filter size 3× 3 and 64 features, no pooling.
• hybrid: 4 BLSTM layers with 512 cells in each direction,

– realignment: retraining on new alignment created based on hybrid.
• attention-based: encoder (almost) equal to hybrid:

– “subsampling” by factor of 2 after 2nd and 4th BLSTM layer (stacking)
(no subsampling/stacking in framewise system).

• decoder network: single BLSTM with 512 cells for each direction.

• # params: ∼ 20.8M for encoder/hybrid +700k for decoder BLSTM.

approach WER [%] CER [%]

hybrid HMM 13.0 7.6
+ realignment 12.9 5.8

attention-based 16.2 8.0
+ LM rescoring 14.2 6.3
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End-to-End Modeling and Hidden Markov Model,

Inverted Search

Inverted HMM Derivation

• neural network based modeling provides HMM state posteriors.

• can (sub)word sequences directly be modeled using state posteriors?
• idea: invert alignment problem:

– state boundaries tN1 as hidden variables,
– (triphone state) label sequence αN

1 directly represents word (sequence) template.
– approach: alternative decomposition by chain rule/Bayes identity:

p(αN
1 |xT1 ) =

∑
tN1

p(αN
1 , t

N
1 |xT1 )

=
∑
tN1

p(αN
1 |tN1 , xT1 ) · p(tN1 |xT1 )

=
∑
tN1

N∏
n=1

p(αn|αn−1
1 , tN1 , x

T
1 ) · p(tn|tn−1

1 , xT1 )

=
∑
tN1

N∏
n=1

p(αn|αn−1
1 , tn−1, tn, x

T
1 )︸ ︷︷ ︸

NN-based posterior

· p(tn|tn−1)︸ ︷︷ ︸
length model
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End-to-End Modeling and Hidden Markov Model,

Inverted Search

Inverted Search

Discussion:
• inverted search, as times are aligned to triphone (state) labels, instead of vice versa.

p(αN
1 |xT1 ) =

∑
tN1

N∏
n=1

p(αn|αn−1
1 , tn−1, tn, x

T
1 )︸ ︷︷ ︸

NN-based posterior

· p(tn|tn−1)︸ ︷︷ ︸
length model

• symbol by symbol hypothesis generation.

• language model integrated into state posterior.

Proof of concept:
• RIMES isolated word handwritten character recognition task [Doetsch & Hegselmann+ 2016]

model WER [%] CER [%]
hybrid HMM 7.1 3.0

CTC 6.7 2.8
attention 7.7 4.1

inverted HMM 7.5 2.9
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End-to-End Modeling and Hidden Markov Model,

Inverted Search

Inverted Search: Experiments

First speech recognition results (ongoing work):
• CHiME-4 speech separation and recognition challenge [Doetsch & Hannemann+ 2017]

WER [%]
model dev eval

hybrid HMM 6.1 8.1
inverted HMM 5.7 8.8

Current research questions:
• how to model state posterior? - not necessearily the same, as in

hybrid approach: here state posterior covers multiple time frames in one step.

• what length model should be used? - existing HMM based work less successful.

• where are the words? - word sequence determines state sequence:
effectively states represent subwords (or even words itself!).

• how to fit in (separately trained) language model?
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Conclusions,

Statistical approach

• four key ingredients:
– choice of performance measure: errors at string, word, phoneme, frame level
– probabilistic models at these levels and the interaction between these levels
– training criterion along with an optimization algorithm
– Bayes decision rule along with an efficient implementation

• about recent work on artificial neural nets in the last ten years:
– significant improvements by deep MLPs and LSTM-RNNs
– they provide one more type of probabilistic models within classical Bayes framework

• properties of neural networks in the context of statistical ASR:
– Do the NNs discover dependencies that we cannot model explicitly?
– Is it a better way of smoothing that makes the NN better?
– Is it the use of crossvalidation that makes NNs successful?

• long-term research topics at RWTH:
– relation of training criteria and error rate (frame, phoneme, word, sentence)
– open lexicon ASR: any letter sequence can be recognized
– (fully) unsupervised training: without any transcribed training data
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Conclusions,

Future Challenges

• specific future challenges for statistical approach (incl. NNs) in general:
– complex mathematical model that is difficult to analyze
– questions: can we find suitable mathematical approximations

with more explicit descriptions of the dependencies and level interactions
and of the performance criterion (error rate)?

• specific challenges for artificial neural networks:
– methods with better convergence?
– can the HMM-based alignment mechanism be replaced?
– can we find NNs with more explicit probabilistic structures?

• potential challenges from comparison to biological structures:
– what connectivity is needed for speech modeling? can efferent connections contribute?
– how to analyze large/complex networks?
– how can neural networks lead to effictive search organization?
– how is sequential context encoded in the human brain?
– do we need spiking networks in ASR?
– what neural mechanisms are required, and how to implement them efficiently in deep ANNs?
– ...
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Any questions?
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Conclusions,

Corpus IDs Babel

Table: Language packs released by IARPA to the project participants. Last row in each of the four period blocks corresponds to the surprise (i.e. evaluation)
language.

Language ID Language pack version

B
P

Cantonese 101 IARPA-babel101-v0.4c

Pashto 104 IARPA-babel104b-v0.4aY

Turkish 105 IARPA-babel105b-v0.4

Tagalog 106 IARPA-babel106-v0.2f

Vietnamese 107 IARPA-babel107b-v0.7

O
P

2

Kurmanji Kurdish 205 IARPA-babel205b-v1.0a

Tok Pisin 207 IARPA-babel207b-v1.0a

Cebuano 301 IARPA-babel301b-v2.0b

Kazakh 302 IARPA-babel302b-v1.0a

Telugu 303 IARPA-babel303b-v1.0a

Lithuanian 304 IARPA-babel304b-v1.0b

Swahili 202 IARPA-babel202b-v1.0d

Language ID Language pack version

O
P

1

Assamese 102 IARPA-babel102b-v0.5a

Bengali 103 IARPA-babel103b-v0.4b

Haitian Creole 201 IARPA-babel201b-v0.2b

Lao 203 IARPA-babel203b-v3.1a

Tamil 204 IARPA-babel204b-v1.1b

Zulu 206 IARPA-babel206b-v0.1e

O
P

3

Pashto 104 IARPA-babel104b-v0.4bY

Guarani 305 IARPA-babel305b-v1.0c

Igbo 306 IARPA-babel306b-v2.0c

Amharic 307 IARPA-babel307b-v1.0b

Mongolian 401 IARPA-babel401b-v2.0b

Javanese 402 IARPA-babel402b-v1.0b

Dholuo 403 IARPA-babel403b-v1.0b

Georgian 404 IARPA-babel404b-v1.0a
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Schlüter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — Aug. 24, 2016



References,

A. J. Robinson: An Application of Recurrent Nets to Phone Probability
Estimation. IEEE Trans. on Neural Networks, Vol. 5, No. 2, pp. 298-305, March
1994.

T. Robinson, M. Hochberg, S. Renals: “IPA: Improved Phone Modelling with
Recurrent Neural Networks,” IEEE Intern. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), Vol. I, pp. 37–40, Adelaide, Australia, Apr. 1994.

D. Rumelhart, G. Hinton, R. Williams: “Learning Representations By
Back-Propagating Errors,” Nature Vol. 323, pp. 533–536, Oct. 1986.

T. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, B. Ramabhadran: “Low-rank
matrix factorization for deep neural network training with high-dimensional
output targets,” IEEE International Conference on Acoustics, Speech and Signal
Processing, 2013.

T.N. Sainath, , R.J. Weiss, K.W. Wilson, A. Narayanan, M. Bacchiani: “Speaker
Location and Microphone Spacing Invariant Acoustic Modeling from Raw
Multichannel Waveforms,” IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), pp. 30–36, Dec. 2015.

74 of 52 Automatic Speech Recognition based on Neural Networks
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Schlüter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — Aug. 24, 2016


	Generic Neural Network Language Modeling
	Generic Neural Network Language Modeling

	Hybrid Interpretation of Tandem
	Integration of Neural Preprocessing and Acoustic Modeling
	Multilingual Learning
	End-to-End Modeling and Hidden Markov Model
	Conclusions
	References

