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Role of Attention? 

Limits 
•  Sensory filter 
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Itti – Salience Model 
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Short Papers
A Model of Saliency-Based Visual Attention

for Rapid Scene Analysis
Laurent Itti, Christof Koch, and Ernst Niebur

Abstract—A visual attention system, inspired by the behavior and the
neuronal architecture of the early primate visual system, is presented.
Multiscale image features are combined into a single topographical
saliency map. A dynamical neural network then selects attended
locations in order of decreasing saliency. The system breaks down the
complex problem of scene understanding by rapidly selecting, in a
computationally efficient manner, conspicuous locations to be analyzed
in detail.

Index Terms—Visual attention, scene analysis, feature extraction,
target detection, visual search.

————————   !   ————————

1 INTRODUCTION
PRIMATES have a remarkable ability to interpret complex scenes in
real time, despite the limited speed of the neuronal hardware avail-
able for such tasks. Intermediate and higher visual processes appear
to select a subset of the available sensory information before further
processing [1], most likely to reduce the complexity of scene analysis
[2]. This selection appears to be implemented in the form of a spa-
tially circumscribed region of the visual field, the so-called “focus of
attention,” which scans the scene both in a rapid, bottom-up, sali-
ency-driven, and task-independent manner as well as in a slower,
top-down, volition-controlled, and task-dependent manner [2].

Models of attention include “dynamic routing” models, in
which information from only a small region of the visual field can
progress through the cortical visual hierarchy. The attended region
is selected through dynamic modifications of cortical connectivity
or through the establishment of specific temporal patterns of ac-
tivity, under both top-down (task-dependent) and bottom-up
(scene-dependent) control [3], [2], [1].

The model used here (Fig. 1) builds on a second biologically-
plausible architecture, proposed by Koch and Ullman [4] and at
the basis of several models [5], [6]. It is related to the so-called
“feature integration theory,” explaining human visual search
strategies [7]. Visual input is first decomposed into a set of topo-
graphic feature maps. Different spatial locations then compete for
saliency within each map, such that only locations which locally
stand out from their surround can persist. All feature maps feed, in
a purely bottom-up manner, into a master “saliency map,” which
topographically codes for local conspicuity over the entire visual
scene. In primates, such a map is believed to be located in the
posterior parietal cortex [8] as well as in the various visual maps in
the pulvinar nuclei of the thalamus [9]. The model’s saliency map
is endowed with internal dynamics which generate attentional
shifts. This model consequently represents a complete account of

bottom-up saliency and does not require any top-down guidance
to shift attention. This framework provides a massively parallel
method for the fast selection of a small number of interesting im-
age locations to be analyzed by more complex and time-
consuming object-recognition processes. Extending this approach
in “guided-search,” feedback from higher cortical areas (e.g.,
knowledge about targets to be found) was used to weight the im-
portance of different features [10], such that only those with high
weights could reach higher processing levels.

2 MODEL
Input is provided in the form of static color images, usually digit-
ized at 640 ¥ 480 resolution. Nine spatial scales are created using
dyadic Gaussian pyramids [11], which progressively low-pass
filter and subsample the input image, yielding horizontal and ver-
tical image-reduction factors ranging from 1:1 (scale zero) to 1:256
(scale eight) in eight octaves.

Each feature is computed by a set of linear “center-surround”
operations akin to visual receptive fields (Fig. 1): Typical visual
neurons are most sensitive in a small region of the visual space
(the center), while stimuli presented in a broader, weaker antago-
nistic region concentric with the center (the surround) inhibit the
neuronal response. Such an architecture, sensitive to local spatial
discontinuities, is particularly well-suited to detecting locations
which stand out from their surround and is a general computa-
tional principle in the retina, lateral geniculate nucleus, and pri-
mary visual cortex [12]. Center-surround is implemented in the
model as the difference between fine and coarse scales: The center
is a pixel at scale c Œ {2, 3, 4}, and the surround is the corresponding
pixel at scale s = c + d, with d Œ {3, 4}. The across-scale difference
between two maps, denoted “!” below, is obtained by interpolation
to the finer scale and point-by-point subtraction. Using several scales
not only for c but also for d = s - c yields truly multiscale feature
extraction, by including different size ratios between the center and
surround regions (contrary to previously used fixed ratios [5]).

2.1 Extraction of Early Visual Features
With r, g, and b being the red, green, and blue channels of the in-
put image, an intensity image I is obtained as I = (r + g + b)/3. I is
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reached, a prototypical spike is generated, and the capacitive
charge is shunted to zero [14]. The SM feeds into a biologically-
plausible 2D “winner-take-all” (WTA) neural network [4], [1] at

scale s = 4, in which synaptic interactions among units ensure that
only the most active location remains, while all other locations are
suppressed.

The neurons in the SM receive excitatory inputs from ! and are
all independent. The potential of SM neurons at more salient loca-
tions hence increases faster (these neurons are used as pure inte-
grators and do not fire). Each SM neuron excites its corresponding
WTA neuron. All WTA neurons also evolve independently of each
other, until one (the “winner”) first reaches threshold and fires.
This triggers three simultaneous mechanisms (Fig. 3):

1)! The FOA is shifted to the location of the winner neuron;
2)! the global inhibition of the WTA is triggered and completely

inhibits (resets) all WTA neurons;
3)! local inhibition is transiently activated in the SM, in an area

with the size and new location of the FOA; this not only
yields dynamical shifts of the FOA, by allowing the next
most salient location to subsequently become the winner,
but it also prevents the FOA from immediately returning to
a previously-attended location.

Such an “inhibition of return” has been demonstrated in human
visual psychophysics [16]. In order to slightly bias the model to
subsequently jump to salient locations spatially close to the cur-
rently-attended location, a small excitation is transiently activated
in the SM, in a near surround of the FOA (“proximity preference”
rule of Koch and Ullman [4]).

Since we do not model any top-down attentional compo-
nent, the FOA is a simple disk whose radius is fixed to one-
sixth of the smaller of the input image width or height. The
time constants, conductances, and firing thresholds of the
simulated neurons were chosen (see [17] for details) so that the
FOA jumps from one salient location to the next in approxi-
mately 30–70 ms (simulated time), and that an attended area is
inhibited for approximately 500–900 ms (Fig. 3), as has been
observed psychophysically [16]. The difference in the relative
magnitude of these delays proved sufficient to ensure thorough
scanning of the image and prevented cycling through only a
limited number of locations. All parameters are fixed in our
implementation [17], and the system proved stable over time
for all images studied.

2.3 Comparison With Spatial Frequency Content Models
Reinagel and Zador [18] recently used an eye-tracking device to
analyze the local spatial frequency distributions along eye scan
paths generated by humans while free-viewing gray-scale images.
They found the spatial frequency content at the fixated locations to
be significantly higher than, on average, at random locations. Al-
though eye trajectories can differ from attentional trajectories un-
der volitional control [1], visual attention is often thought as a pre-
occulomotor mechanism, strongly influencing free-viewing. It was,
hence, interesting to investigate whether our model would repro-
duce the findings of Reinagel and Zador.

We constructed a simple measure of spatial frequency content
(SFC): At a given image location, a 16 ¥ 16 image patch is extracted
from each I(2), R(2), G(2), B(2), and Y(2) map, and 2D Fast Fourier
Transforms (FFTs) are applied to the patches. For each patch, a
threshold is applied to compute the number of nonnegligible FFT
coefficients; the threshold corresponds to the FFT amplitude of a
just-perceivable grating (1 percent contrast). The SFC measure is
the average of the numbers of nonnegligible coefficients in the five
corresponding patches. The size and scale of the patches were cho-
sen such that the SFC measure is sensitive to approximately the
same frequency and resolution ranges as our model; also, our SFC
measure is computed in the RGB channels as well as in intensity,
like the model. Using this measure, an SFC map is created at scale
four and is compared to the saliency map (Fig. 4).

Fig. 3. Example of operation of the model with a natural image. Parallel
feature extraction yields the three conspicuity maps for color contrasts
(" ), intensity contrasts (# ), and orientation contrasts ($ ). These are
combined to form input ! to the saliency map (SM). The most salient
location is the orange telephone box, which appeared very strongly in
" ; it becomes the first attended location (92 ms simulated time). After
the inhibition-of-return feedback inhibits this location in the saliency
map, the next most salient locations are successively selected.
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Kayser Test Sounds 
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Kaya – Human Saliency Tests 

Background 
•  Overlapping musical notes  
•  Pitch and intensity constrained 
•  Pitch from 196-247Hz 

Foreground 
•  350Hz, +6dB 

Emine Merve Kaya and Mounya Elhilali. Investigating bottom-up auditory attention. Front Hum Neurosci 2014;8(327):doi: 
10.3389/fnhum.2014.00327. 

Kaya and Elhilali Investigating bottom-up auditory attention

overlap in time with varying density depending on the experi-
ment (Figure 1). Background tokens are randomly selected from
a pool of suitable tokens, leading to unique overall backgrounds
in each trial. Backgrounds are manipulated so that there is a
uniform distribution of frequencies over time, to minimize coin-
cidental increases in pitch difference between the background and
foreground tokens. Control trials consist of just the background
scene, while test trials have one “foreground” salient token in
addition to the background. The foreground token differs from
background tokens in one or more of the experiment factors
(i.e., acoustic attributes of the foreground token). Following each
trial, subjects are asked “Does the clip contain a salient event?”
and report Yes/No answers without feedback. Each experiment is
preceded with a brief training session comprised of 7–12 trials
that are similar to experimental trials but with feedback provided
about which sound feature is changed in the foreground token.
Subjects can adjust sound intensity to their individual comfort
level in all experiments, at any time during the experiment.

Subject performance is measured with the d′ metric, which
accounts for false detection rate along with the correct detection
rate. In the calculation of d′, the detection rate changes according
to factorial conditions (averaged between the repetitions of the
factorial condition), however, the false detection rate is constant
for each subject (average of all control trials for the duration of
the experiment, since there is no way to attribute a false detection
to a particular factor). For both correct and false detection rates,

FIGURE 1 | Example spectrogram of stimulus used in behavioral
experiments. The spectrogram shows overlapping musical note tokens
that compose a scene’s background, and one foreground note, outlined in
the image. Their pitch and intensity values are sampled from a constrained
distribution of values, emulating a busy scene with natural sounds
(Background pitch between 196 and 247 Hz). Listeners cannot perceive any
individual note but are able to tell the class of sounds playing in the
background. One “foreground” note that varies in pitch (Foreground pitch at
350 Hz) and intensity (6 dB higher than background notes) is introduced at a
random location in the scene. In Experiments I and II, foreground tokens
only appear in the second half of the scene, while in Experiment III, they
can occur at any time. In all experiments, foreground tokens differ from the
background in one or more of the following features: Pitch, intensity, and
timbre. In the example shown in the figure, timbre was not varied. All
tokens were clavichord notes.

values of 0 and 1 are adjusted to 0.01 and 0.99, respectively. This
adjustment is in line with corrections commonly used for d′ mea-
sures to avoid infinite values. It is worth noting that similar results
are obtained irrespective of the small adjustments to the correct
and false detection rates. In the analysis of each experiment, the
d′ was calculated for each factorial condition for every subject. All
performed ANOVAs are fully within subjects, where every fea-
ture is treated as a fixed effect, and individual error terms are
used in the calculation of the F statistic. The Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995) is used to iteratively
validate the significance levels for multiple comparisons shown in
Tables 1, 2.

Although the backgrounds in the trials are not identical, there
is a possibility that subjects learn the backgrounds over time
because of the limited set of background tokens. It is difficult to
obtain speech and bird song data from the same source that have
near identical pitches but are unique vocalizations. In the case of
music, the number of musical notes is predetermined for each
instrument, leading to a limited set of notes constrained in a small

Table 1 | ANOVA results of human experiments.

Effects F (p)

Music Nature Speech

Pitch 17.76 (<0.01) 211.69 (<0.01) 103.76 (<0.01)
Intensity 14.08 (<0.01) 17.57 (<0.01) 98.50 (<0.01)
Timbre-bg 0.63 (0.54) 8.66 (<0.01) 71.21 (<0.01)
Timbre-fg 2.11 (0.14) 52.51 (<0.01) 29.12 (<0.01)

P, I 7.36 (0.02) 18.00 (<0.01) 134.58 (<0.01)
P, Tb 0.51 (0.61) 0.09 (0.91) 19.13 (<0.01)
P, Tf 1.77 (0.19) 36.21 (<0.01) 12.19 (<0.01)
I, Tb 1.09 (0.35) 0.98 (0.39) 0.03 (0.86)
I, Tf 0.13 (0.88) 9.72 (<0.01) 11.40 (<0.01)
Tb,Tf 13.29 (<0.01) 30.21 (<0.01) 13.22 (<0.01)

P, I, Tb 0.28 (0.76) 3.06 (0.07) 7.03 (0.03)
P, I, Tf 1.23 (0.31) 0.60 (0.56) 0.39 (0.55)
P, Tb, Tf 6.77 (<0.01) 36.85 (<0.01) 33.21 (<0.01)
I, Tb, Tf 1.57 (0.20) 0.18 (0.95) 5.60 (0.04)

P, I, Tb, Tf 0.29 (0.90) 0.24 (0.91) 7.47 (0.02)

Table 2 | ANOVA results of interactions including the Time factor in
the Experiment III.

F (p) F (p)

Time 42.57 (<0.01) Time, I, Tb 2.57 (0.08)
Time, P 18.90 (<0.01) Time, I, Tf 1.76 (0.18)
Time, I 1.12 (0.32) Time, Tb, Tf 2.77 (0.06)
Time, Tb 2.17 (0.12) Time, P, I, Tb 2.06 (0.13)
Time, Tf 1.61 (0.21) Time, P, I, Tf 0.56 (0.64)
Time, P, I 0.87 (0.47) Time, P, Tb, Tf 0.15 (0.93)
Time, P, Tb 1.43 (0.26) Time, I, Tb, Tf 0.80 (0.51)
Time, P, Tf 4.75 (<0.01) Time, P, I, Tb, Tf 1.32 (0.29)

Frontiers in Human Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 327 | 3
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Kaya – Human Saliency Tests 

Detectability 

d’ measures  
separation 
between the 
means of the 
signal and the 
noise 
distributions, 
compared 
against the 
standard 
deviation of the 
signal plus noise 
distributions. 

Emine Merve Kaya and Mounya Elhilali. Investigating bottom-up auditory attention. Front Hum Neurosci 2014;8(327):doi: 
10.3389/fnhum.2014.00327. 

Kaya and Elhilali Investigating bottom-up auditory attention

range of pitch. However, we examine the difference between num-
ber of errors in the first half vs. second half of each experiment,
and find no significant difference (1-way within subjects ANOVA:
Exp. I: F = 1.44, p = 0.24; Exp. II: F = 0.49, p = 0.49; Exp. III:
F = 0.23, p = 0.64). Furthermore, results from Exp. III confirm
that detection of tokens in the beginning of each trial is low
throughout the experiment (Figure 2B), refuting the possibility
of meta-learning.

2.1.1. Experiment I: Music
The first experiment uses a background of non-melodic nat-
ural instrument sounds. Non-sustained single notes from the
RWC Musical Instrument Sound Database (Goto et al., 2003)
are extracted for Pianoforte (Normal, Mezzo), Acoustic Guitar
(Al Aire, Mezzo), Clavichord (Normal, Forte) at 44.1 kHz.
Background notes range between 196 and 247 Hz (G3-B3). Each
token is 1.2 s in duration and amplitude normalized relative
to its maximum with 0.1 s onset and offset sinusoidal ramps.
Four sequences of consecutive tokens, randomly chosen for each
trial, are combined with 0.3 s phase delay to form a 5 s dynamic
background. Each test trial has one foreground note at 2 or 6
semitones (278Hz-C#4, 350Hz-F4) and 2 or 6 dB higher than
background, added at a randomly chosen onset time between
55% and 75% of the trial length. The resulting experiment design
is (Pitch ∗ Intensity ∗ Timbre-foreground ∗ Timbre-background)
2 ∗ 2 ∗ 3 ∗ 3. Each test condition is repeated eight times (with non-
identical backgrounds). 25% of trials are control trials. Control
trial tokens vary in the same range of pitch and intensity as
background tokens of test trials. One third of control trials use
Pianoforte, one third Acoustic Guitar, and one third Clavichord.

The instruments in this experiment were manually selected
such that the they are sufficiently distinguishable from each other,
but not so much that listeners with normal hearing and musical
training would detect each different note, as determined by short

pilot investigations with few listeners. The difference levels for
pitch and intensity were similarly set manually to result in a dif-
ference that can be definitely heard if one listens for it, but might
be missed if not paying attention. The factor levels for subsequent
experiments were also set with these criteria.

Experiment I-2 An additional experiment is performed to val-
idate the main effects of musical instruments on the perception
of saliency. In this experiment, pitch (5 and 10 semitones higher
and lower than the background mean), intensity (7 and 10 dB
higher than the background tokens), and timbre are tested sep-
arately. Sustained single notes from the RWC Musical Instrument
Sound Database (Goto et al., 2003) are extracted for Harmonica,
Violin, Flute (Normal, Mezzo for each) at 44.1 kHz, and down-
sampled to 16 kHz. Background notes range between 587 and
740 Hz (D5-F#5). Each token is 1 s in duration and amplitude
normalized relative to its top 10%th value with 0.5 s onset and
0.01 s offset sinusoidal ramps. Tokens overlap every 0.5 s, form-
ing two sequences. The foreground token varies in only one of
the dimensions with respect to the background, and is placed at a
random onset between 50% and 80% of the trial length. In each
trial, subjects are presented two sound clips, one or none of which
contains a salient token. The subject is asked “Which clip contains
a more salient event?” and is presented the options “Clip 1”/“Clip
2”/“Equal.” Each condition is repeated four times, with additional
20% control trials.

2.1.2. Experiment II: Nature
The scene setup of this experiment is a busy natural forest envi-
ronment with singing birds. Natural song recordings of two
different Common Yellowthroats, and one MacGillivray Warbler
are obtained from the Macaulay Library (http://macaulaylibrary.
org, reference numbers: 118601, 136169, 42249). Individual calls
at approximately 4.9 kHz pitch and 1.3–1.5 s length are manually
extracted at 44.1 kHz. Recordings of wind and water sounds are

FIGURE 2 | Behavioral results. (A) ANOVA main effect trends for all experiments. (B) The effect of the time factor reveals a temporal build-up observed in
human detection of saliency. Interaction of time with pitch and intensity are shown. The significance levels corresponding to these plots can be found in Table 2.
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Yahoo Captchas (Unpublished Pilot) 

Objective measure of salience 
•  Background speech babble 
•  Recognize foreground digits 
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Distractors (Maria Chait at UCL) 
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Question? 

Do we care more about distractors or detectability? 

 

Detectability 

•  Can we hear the difference? 

•  Precursor to distraction? 

Distractors 

•  More ecological 

•  Did it change your attention? 
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Short Papers
A Model of Saliency-Based Visual Attention

for Rapid Scene Analysis
Laurent Itti, Christof Koch, and Ernst Niebur

Abstract—A visual attention system, inspired by the behavior and the
neuronal architecture of the early primate visual system, is presented.
Multiscale image features are combined into a single topographical
saliency map. A dynamical neural network then selects attended
locations in order of decreasing saliency. The system breaks down the
complex problem of scene understanding by rapidly selecting, in a
computationally efficient manner, conspicuous locations to be analyzed
in detail.

Index Terms—Visual attention, scene analysis, feature extraction,
target detection, visual search.

————————   !   ————————

1 INTRODUCTION
PRIMATES have a remarkable ability to interpret complex scenes in
real time, despite the limited speed of the neuronal hardware avail-
able for such tasks. Intermediate and higher visual processes appear
to select a subset of the available sensory information before further
processing [1], most likely to reduce the complexity of scene analysis
[2]. This selection appears to be implemented in the form of a spa-
tially circumscribed region of the visual field, the so-called “focus of
attention,” which scans the scene both in a rapid, bottom-up, sali-
ency-driven, and task-independent manner as well as in a slower,
top-down, volition-controlled, and task-dependent manner [2].

Models of attention include “dynamic routing” models, in
which information from only a small region of the visual field can
progress through the cortical visual hierarchy. The attended region
is selected through dynamic modifications of cortical connectivity
or through the establishment of specific temporal patterns of ac-
tivity, under both top-down (task-dependent) and bottom-up
(scene-dependent) control [3], [2], [1].

The model used here (Fig. 1) builds on a second biologically-
plausible architecture, proposed by Koch and Ullman [4] and at
the basis of several models [5], [6]. It is related to the so-called
“feature integration theory,” explaining human visual search
strategies [7]. Visual input is first decomposed into a set of topo-
graphic feature maps. Different spatial locations then compete for
saliency within each map, such that only locations which locally
stand out from their surround can persist. All feature maps feed, in
a purely bottom-up manner, into a master “saliency map,” which
topographically codes for local conspicuity over the entire visual
scene. In primates, such a map is believed to be located in the
posterior parietal cortex [8] as well as in the various visual maps in
the pulvinar nuclei of the thalamus [9]. The model’s saliency map
is endowed with internal dynamics which generate attentional
shifts. This model consequently represents a complete account of

bottom-up saliency and does not require any top-down guidance
to shift attention. This framework provides a massively parallel
method for the fast selection of a small number of interesting im-
age locations to be analyzed by more complex and time-
consuming object-recognition processes. Extending this approach
in “guided-search,” feedback from higher cortical areas (e.g.,
knowledge about targets to be found) was used to weight the im-
portance of different features [10], such that only those with high
weights could reach higher processing levels.

2 MODEL
Input is provided in the form of static color images, usually digit-
ized at 640 ¥ 480 resolution. Nine spatial scales are created using
dyadic Gaussian pyramids [11], which progressively low-pass
filter and subsample the input image, yielding horizontal and ver-
tical image-reduction factors ranging from 1:1 (scale zero) to 1:256
(scale eight) in eight octaves.

Each feature is computed by a set of linear “center-surround”
operations akin to visual receptive fields (Fig. 1): Typical visual
neurons are most sensitive in a small region of the visual space
(the center), while stimuli presented in a broader, weaker antago-
nistic region concentric with the center (the surround) inhibit the
neuronal response. Such an architecture, sensitive to local spatial
discontinuities, is particularly well-suited to detecting locations
which stand out from their surround and is a general computa-
tional principle in the retina, lateral geniculate nucleus, and pri-
mary visual cortex [12]. Center-surround is implemented in the
model as the difference between fine and coarse scales: The center
is a pixel at scale c Œ {2, 3, 4}, and the surround is the corresponding
pixel at scale s = c + d, with d Œ {3, 4}. The across-scale difference
between two maps, denoted “!” below, is obtained by interpolation
to the finer scale and point-by-point subtraction. Using several scales
not only for c but also for d = s - c yields truly multiscale feature
extraction, by including different size ratios between the center and
surround regions (contrary to previously used fixed ratios [5]).

2.1 Extraction of Early Visual Features
With r, g, and b being the red, green, and blue channels of the in-
put image, an intensity image I is obtained as I = (r + g + b)/3. I is
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Fig. 1. General architecture of the model.
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Figure 1. The Auditory Saliency Map

(A) Schematic of the model. Initially the sound wave is converted
to a time-frequency representation (“intensity image”). Then impor-
tant auditory features are extracted on different scales and in paral-
lel streams (intensity, frequency contrast, and temporal contrast)
with different sets of filters. These filters are schematized in the
colored insets. For each feature, the maps obtained at different
scales are compared using a center-surround mechanism and nor-
malized to promote those maps containing highly conspicuous
peaks. The center-surround maps are collapsed across scales
yielding saliency maps for individual features, which are finally
added to yield the saliency map.
(B) Intensity image and saliency map for one example scene (water
bubbles on a noisy background).

Human Ratings of Saliency
We experimentally verified that the model captures
essential aspects of human judgments of auditory sali-
ency (Figure 2 and Figure S2). As the model describes
the stimulus-determined conspicuity of different fea-
tures and not cognitive aspects of auditory attention,
we used a paradigm that minimized the cognitive de-
mand on the subjects and allowed us to ask the same
question to the subjects and model. Both were pre-
sented with pairs of complex auditory scenes and had
to compare the saliency in these by indicating the
scene containing the higher saliency (see the Supple-
mental Experimental Procedures).

A comparison of the subjects’ decisions with those of
the model yielded a significant correlation for all seven
subjects with an average of 0.47 ± 0.1 (Figure 2, left,
mean ± SD across subjects). Further, grouping trials ac-
cording to subjects’ responses resulted in a significant
effect on the saliency reported by the model (Figure 2,

middle): when subjects indicated “equal” saliency, the
saliency difference reported by the model was close to
zero (p = 0.22, t test), but when subjects chose one of
the samples the difference was large (p < 10−10, t test
in both cases). Hence, the model well predicts human
perceptual ratings of saliency both when subjects
experience a strong difference in saliency and when
subjects experience only small differences between
scenes.

The saliency map extracts a measure of saliency
which cannot be obtained from sound intensity alone.
This point is important to establish, as otherwise the
saliency map would act as a simple sound level detec-
tor, and adding the different feature maps and multi-
scale analysis would not yield any improvement. To es-
tablish this, we used the intensity image instead of the
saliency map to compute which scene should be more
salient. This prediction correlated with the subjects’ de-
cision (0.34 ± 0.85, mean ± SD); however, this correla-
tion was significantly weaker than that obtained from
the saliency map (p < 0.05, n = 7, paired t test).

To verify that the different feature components of the
saliency map capture basic perceptual distinctions
made by the human observers, we asked the subjects
to indicate on which of the three features (intensity,
frequency structure, or temporal structure) they had
based their saliency decision. We then compared the
contribution of each feature channel to the total sali-
ency on trials where this feature was indicated by the
subject compared to trials where another feature was
indicated (Figure 2, right). For intensity, there was no
significant difference between “selected” and “not se-
lected” trials (p = 0.39, t test). But the contribution of
frequency contrast and temporal contrast to the sali-
ency was significantly larger on trials where subjects
reported a reliance on that feature (p < 0.0001 and p <
0.05, respectively). Thus, the model replicates basic
perceptual feature distinctions of human auditory per-
ception. That we did not observe a significant effect for
intensity can be understood as any feature is depen-
dent on intensity (zero intensity implies no other fea-
tures exist). Thus, a feature like frequency or temporal
contrast will always be somewhat confounded with in-
tensity.

Human Detection Experiment
The saliency map predicts which features in a complex
auditory scene will naturally capture our attention and,
hence, are more easily detected. In a second experi-
ment, we directly confirmed that the model replicates
detection of salient events in noisy scenes by human
subjects. Subjects had to detect monaurally presented
sound snippets whose level was varied in relation to a
binaural naturalistic background noise (see Supple-
mental Experimental Procedures).

Overall, subject’s performance at detecting these
sound snippets was far above chance level (Figure 3A).
Using the model to separate sounds into a more salient
and a less salient group revealed that the more salient
stimuli were more often detected (81% versus 71%). An
analysis of the contingency table revealed a significant
effect of saliency on detection performance (Figure 3A,
Fisher’s exact test, p < 0.01). Based on the subjects’
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Figure 1. The Auditory Saliency Map

(A) Schematic of the model. Initially the sound wave is converted
to a time-frequency representation (“intensity image”). Then impor-
tant auditory features are extracted on different scales and in paral-
lel streams (intensity, frequency contrast, and temporal contrast)
with different sets of filters. These filters are schematized in the
colored insets. For each feature, the maps obtained at different
scales are compared using a center-surround mechanism and nor-
malized to promote those maps containing highly conspicuous
peaks. The center-surround maps are collapsed across scales
yielding saliency maps for individual features, which are finally
added to yield the saliency map.
(B) Intensity image and saliency map for one example scene (water
bubbles on a noisy background).

Human Ratings of Saliency
We experimentally verified that the model captures
essential aspects of human judgments of auditory sali-
ency (Figure 2 and Figure S2). As the model describes
the stimulus-determined conspicuity of different fea-
tures and not cognitive aspects of auditory attention,
we used a paradigm that minimized the cognitive de-
mand on the subjects and allowed us to ask the same
question to the subjects and model. Both were pre-
sented with pairs of complex auditory scenes and had
to compare the saliency in these by indicating the
scene containing the higher saliency (see the Supple-
mental Experimental Procedures).

A comparison of the subjects’ decisions with those of
the model yielded a significant correlation for all seven
subjects with an average of 0.47 ± 0.1 (Figure 2, left,
mean ± SD across subjects). Further, grouping trials ac-
cording to subjects’ responses resulted in a significant
effect on the saliency reported by the model (Figure 2,

middle): when subjects indicated “equal” saliency, the
saliency difference reported by the model was close to
zero (p = 0.22, t test), but when subjects chose one of
the samples the difference was large (p < 10−10, t test
in both cases). Hence, the model well predicts human
perceptual ratings of saliency both when subjects
experience a strong difference in saliency and when
subjects experience only small differences between
scenes.

The saliency map extracts a measure of saliency
which cannot be obtained from sound intensity alone.
This point is important to establish, as otherwise the
saliency map would act as a simple sound level detec-
tor, and adding the different feature maps and multi-
scale analysis would not yield any improvement. To es-
tablish this, we used the intensity image instead of the
saliency map to compute which scene should be more
salient. This prediction correlated with the subjects’ de-
cision (0.34 ± 0.85, mean ± SD); however, this correla-
tion was significantly weaker than that obtained from
the saliency map (p < 0.05, n = 7, paired t test).

To verify that the different feature components of the
saliency map capture basic perceptual distinctions
made by the human observers, we asked the subjects
to indicate on which of the three features (intensity,
frequency structure, or temporal structure) they had
based their saliency decision. We then compared the
contribution of each feature channel to the total sali-
ency on trials where this feature was indicated by the
subject compared to trials where another feature was
indicated (Figure 2, right). For intensity, there was no
significant difference between “selected” and “not se-
lected” trials (p = 0.39, t test). But the contribution of
frequency contrast and temporal contrast to the sali-
ency was significantly larger on trials where subjects
reported a reliance on that feature (p < 0.0001 and p <
0.05, respectively). Thus, the model replicates basic
perceptual feature distinctions of human auditory per-
ception. That we did not observe a significant effect for
intensity can be understood as any feature is depen-
dent on intensity (zero intensity implies no other fea-
tures exist). Thus, a feature like frequency or temporal
contrast will always be somewhat confounded with in-
tensity.

Human Detection Experiment
The saliency map predicts which features in a complex
auditory scene will naturally capture our attention and,
hence, are more easily detected. In a second experi-
ment, we directly confirmed that the model replicates
detection of salient events in noisy scenes by human
subjects. Subjects had to detect monaurally presented
sound snippets whose level was varied in relation to a
binaural naturalistic background noise (see Supple-
mental Experimental Procedures).

Overall, subject’s performance at detecting these
sound snippets was far above chance level (Figure 3A).
Using the model to separate sounds into a more salient
and a less salient group revealed that the more salient
stimuli were more often detected (81% versus 71%). An
analysis of the contingency table revealed a significant
effect of saliency on detection performance (Figure 3A,
Fisher’s exact test, p < 0.01). Based on the subjects’
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Supplemental Discussion tory and visual saliency map differ more in their interpretation than
conceptually. A feature of the auditory saliency map is that it incor-
porates the temporal domain while classical visual models operateThe auditory saliency map described here is structurally identical

to saliency maps proposed for the visual system [S21–S25]. The on spatial images only. This requires a different normalization proce-
dure for the auditory model. In this case, the temporal domain im-only differences are the shape of the feature detectors, and the

normalization procedure. Visual models employ features extracted poses causality restrictions that are incorporated in the sliding win-
dow normalization.by neurons in the visual cortex, such as luminance contrast, orienta-

tion or color. However, although these features differ from those
extracted by the auditory model in their interpretation, mathemati- Supplemental Experimental Procedures
cally they are very similar: The filters used to extract frequency or
temporal contrast can be interpreted as detectors for horizontal and The Saliency Map
vertical orientations and the filters used to extract sound intensity The auditory system segregates sounds in a complex scene based
are identical to those extracting luminance. In this respect, the audi- on individual features such as spectral or temporal modulation [S1–

S4]. The auditory saliency map incorporates these different features
in a hierarchical architecture employing the parallel extraction of
features at different scales (Figure 1). (1) At the first stage, an inten-
sity image is created in time and frequency dimensions in analogy
to the initial processing by the cochlea and basilar membrane [S5,
S6]. Sound samples (sampled at 16 kHz) are preprocessed by using
a sliding window Fourier analysis (37 ms windows, 36 ms overlap,
1 msec nominal temporal resolution, 1024 point FFT), resulting in a
two-dimensional image with time and frequency as axes. (2) At
the second stage, this image is analyzed by feature detectors on
different scales, representing various levels of sound feature analy-
sis by auditory neurons [S7–S11]. The features extracted are inten-
sity, frequency structure, and temporal structure. Each feature is

Figure S1. Intensity Images and Saliency Maps for Different Toy
Scenarios

These examples demonstrate that the saliency map reproduces
basic properties of auditory scene perception [S26]. (A) Tones are

Figure S2. Comparison of Human and Model Ratings of Saliencysalient irrespective of length but longer events accumulate higher
saliency in accord with these tones being easier to select from (A) Computation of the model’s saliency rating. Shown are two ex-

ample saliency maps together with the locations of peak saliencyacoustical scenes [S27, S28]. (B) “Missing” parts (gaps) in a broad
spectrum are salient. (C) Modulated events achieve higher saliency in each scene (circles). Based on the difference, the model chooses

one scene as containing the most salient event (in this case thecompared to stationary events in agreement with those being easier
to detect [S26, S29]. (D) The saliency map replicates the phenome- “cat hiss”). (B) Example data from one subject (40 consecutive trials).

Values on the y axis indicate the continuous saliency differencenon of forward masking. In a sequence of two closely spaced tones
the second is less salient in agreement with the phenomenon of reported by the model and the color indicates whether the models’

prediction matches the subject’s response.forward masking [S15–S17].
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Figure 2. Human Ratings of Saliency

Left: correlation between subjects’ and the
model’s decisions computed upon exclusion
of “equal” saliency trials (the number of trials
used is indicated for each subject). Similarly,
the correlation between predictions based
on the intensity of the image and the sub-
ject’s decisions is shown. Bars and error
bars indicate mean and SD across subjects,
and the p value refers to a paired t test. Mid-
dle: saliency difference reported by the model
grouped according to the subjects report. The
number of trials in each group is indicated
as well as the p value of a t test testing a

difference from zero. Right: contribution of individual feature maps to the total saliency. Solid bars indicate the contribution of each feature
to the total saliency for trials on which the subject indicated a rely on that feature, and open bars indicate the contribution on all other trials.
Bars show the mean and s.d. across subjects. P values refer to t tests.

performance, we determined a detection threshold for
each sound, defined as the least intense level of pre-
sentation at which the sound was reliably detected
across subjects. Figure 3B displays these detection
thresholds and demonstrates a significant correlation
of these with the saliency reported by the model
(Spearman rank correlation, r = 0.56, p < 0.01). To-
gether, these results strongly demonstrate that the sali-
ency predicted by the model well corresponds to a per-
ceptual level of saliency and that the more salient

Figure 3. Human Detection Experiment

(A) Frequency of the detection of a sound snippet within ongoing
background noise. Sound snippets were grouped according to
their saliency as determined from the model, with each group con-
taining half of the sounds. Bars on the left show the total detection
frequency, the diagram on the right displays the detection and sali-
ency contingency table. A significant interaction of saliency and
detection frequency was determined with Fisher’s exact test.
(B) For each sound snippet, a detection threshold was estimated
and is indicated as the intensity scaling at which the sound could
still be reliably detected; large numbers correspond to a low inten-
sity with respect to the background. The scatter plot demonstrates
a significant correlation between detection threshold and sound
saliency (Spearman rank correlation).

stimuli better attract our attention and are more fre-
quently detected.

These results, as in the above, cannot be explained
solely by sound intensity. First, grouping sounds by
peak intensity revealed that the detection performance
was not significantly different between the more in-
tense and the less intense group (Fisher’s exact test,
p = 0.16). Further, the correlation of detection threshold
and sound intensity was negligible (r = 0.05, p = 0.52).

Monkey Detection Experiment
With human subjects, regardless of instruction, it is dif-
ficult to control cognitive aspects of the task imposed.
To probe the saliency model in more naive subjects, we
performed a similar detection experiment as above with
macaque monkeys, exploiting their natural orienting
behavior to conspicuous sounds. The animals were ex-
posed to the same background noise as in the human
experiments, which were presented from two speakers
placed at opposing sides of the animal’s head. At ir-
regular intervals, additional sound snippets were pre-
sented from one side only, eliciting an orienting be-
havior toward the source of the sound (invisible
speaker). The hypothesis was that more salient stimuli,
supposedly those which better attract attention, should
lead to a more consistent and, hence, more frequent
orienting behavior. We probed a set of six stimuli, three
more salient and three less salient, and quantified the
frequency of behavioral reaction in a similar way to the
human experiment above by using an across-subject
design (see Supplemental Materials and Methods).

Figure 4 displays the result of this experiment. In con-
trast to the human experiment, monkeys exhibited per-
formance at chance level when the less salient stimuli
were presented (chi-square test, χ2 = 2.25, p = 0.13).
For the more salient stimuli, however, they oriented to-
ward the source of the sound in the majority of trials
(χ2 = 7.1, p < 0.01), and analysis of the contingency
table demonstrated a significant effect of saliency on
the detection performance (Fisher’s exact test, p <
0.01). Performing the same analysis by using sound in-
tensity instead of saliency to group stimuli yielded only
a weak effect of sound intensity on detection perfor-
mance (Fisher’s exact test, p = 0.042). Hence, only the
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Figure 2. Human Ratings of Saliency

Left: correlation between subjects’ and the
model’s decisions computed upon exclusion
of “equal” saliency trials (the number of trials
used is indicated for each subject). Similarly,
the correlation between predictions based
on the intensity of the image and the sub-
ject’s decisions is shown. Bars and error
bars indicate mean and SD across subjects,
and the p value refers to a paired t test. Mid-
dle: saliency difference reported by the model
grouped according to the subjects report. The
number of trials in each group is indicated
as well as the p value of a t test testing a

difference from zero. Right: contribution of individual feature maps to the total saliency. Solid bars indicate the contribution of each feature
to the total saliency for trials on which the subject indicated a rely on that feature, and open bars indicate the contribution on all other trials.
Bars show the mean and s.d. across subjects. P values refer to t tests.

performance, we determined a detection threshold for
each sound, defined as the least intense level of pre-
sentation at which the sound was reliably detected
across subjects. Figure 3B displays these detection
thresholds and demonstrates a significant correlation
of these with the saliency reported by the model
(Spearman rank correlation, r = 0.56, p < 0.01). To-
gether, these results strongly demonstrate that the sali-
ency predicted by the model well corresponds to a per-
ceptual level of saliency and that the more salient

Figure 3. Human Detection Experiment

(A) Frequency of the detection of a sound snippet within ongoing
background noise. Sound snippets were grouped according to
their saliency as determined from the model, with each group con-
taining half of the sounds. Bars on the left show the total detection
frequency, the diagram on the right displays the detection and sali-
ency contingency table. A significant interaction of saliency and
detection frequency was determined with Fisher’s exact test.
(B) For each sound snippet, a detection threshold was estimated
and is indicated as the intensity scaling at which the sound could
still be reliably detected; large numbers correspond to a low inten-
sity with respect to the background. The scatter plot demonstrates
a significant correlation between detection threshold and sound
saliency (Spearman rank correlation).

stimuli better attract our attention and are more fre-
quently detected.

These results, as in the above, cannot be explained
solely by sound intensity. First, grouping sounds by
peak intensity revealed that the detection performance
was not significantly different between the more in-
tense and the less intense group (Fisher’s exact test,
p = 0.16). Further, the correlation of detection threshold
and sound intensity was negligible (r = 0.05, p = 0.52).

Monkey Detection Experiment
With human subjects, regardless of instruction, it is dif-
ficult to control cognitive aspects of the task imposed.
To probe the saliency model in more naive subjects, we
performed a similar detection experiment as above with
macaque monkeys, exploiting their natural orienting
behavior to conspicuous sounds. The animals were ex-
posed to the same background noise as in the human
experiments, which were presented from two speakers
placed at opposing sides of the animal’s head. At ir-
regular intervals, additional sound snippets were pre-
sented from one side only, eliciting an orienting be-
havior toward the source of the sound (invisible
speaker). The hypothesis was that more salient stimuli,
supposedly those which better attract attention, should
lead to a more consistent and, hence, more frequent
orienting behavior. We probed a set of six stimuli, three
more salient and three less salient, and quantified the
frequency of behavioral reaction in a similar way to the
human experiment above by using an across-subject
design (see Supplemental Materials and Methods).

Figure 4 displays the result of this experiment. In con-
trast to the human experiment, monkeys exhibited per-
formance at chance level when the less salient stimuli
were presented (chi-square test, χ2 = 2.25, p = 0.13).
For the more salient stimuli, however, they oriented to-
ward the source of the sound in the majority of trials
(χ2 = 7.1, p < 0.01), and analysis of the contingency
table demonstrated a significant effect of saliency on
the detection performance (Fisher’s exact test, p <
0.01). Performing the same analysis by using sound in-
tensity instead of saliency to group stimuli yielded only
a weak effect of sound intensity on detection perfor-
mance (Fisher’s exact test, p = 0.042). Hence, only the
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Figure 4. Monkey Detection Experiment

Frequency of the detection of a sound snippet within ongoing
background noise by macaque subjects, as indicated by natural
orienting movements toward the sound source. Sound snippets
were grouped according to their saliency, with each group contain-
ing half of the sounds similar to Figure 3.

more salient sounds attracted the animals’ attention
and led to an overt orienting movement toward the
sound source.

Discussion

To master the flood of sensory events, sensory systems
use involuntary mechanisms to provide biased repre-
sentations of the external world [1]. This process is crit-
ical for emphasizing behaviorally relevant events and
guiding attention to these for more detailed processing.
We developed a model for extracting conspicuous
events in natural acoustical scenarios based on fea-
tures important for the analysis of auditory scenes. The
auditory saliency map proposed is structurally identical
to existing saliency models for the visual system (see
the Supplemental Discussion). Hence, our results sug-
gest that the allocation of stimulus-driven attention in
different sensory systems involves similar mechanisms.

One purpose of the saliency map is to predict which
sensory events attract our attention. The visual model
analyzes spatial images and localizes salient features
in space so that overt visual attention can be directed
toward these; e.g., by virtue of eye movements [2]. The
auditory model proposed here analyzes sounds in the
time-frequency domain and thus “localizes” salient events
in these dimensions. Several properties of audition sug-
gest that these dimensions are important to consider
[21–23]: early auditory processing decomposes sounds
into their frequencies [24] and attention can be specifi-
cally directed to sound frequency and temporal posi-
tion [21, 22, 25, 26]. Further, spatial location can be en-
coded as timing or frequency differences between ears,
and we can segregate sources even when these appear
to come from the same spatial location [27, 28]. Thus
auditory feature analysis should prominently rely on
feature properties such as sound intensity differences
and spectral and temporal contrast that were used in
the model. Nevertheless, future versions of an auditory
saliency map should explicitly include spatial dimen-
sions. In addition, other possibly more abstract or eco-
logically relevant features could be incorporated. For
example, in vision, letters and nonletters have distinct

impacts on our attention as has the emotional impact
of stimuli.

In addition to describing properties of sensory stimuli
relevant for attentional deployment as well as detec-
tion, the saliency map serves as a model of how corti-
cal areas extract these properties from a sensory
scene. The cortical substrate of a saliency map is
strongly debated. Which areas contribute to such a rep-
resentation is still an outstanding question and regard-
ing the visual system suggestions range from subcorti-
cal structures to association areas in the frontal lobe
[29–33]. The present results demonstrate that the
mechanisms extracting conspicuous events from a
sensory representation are similar in auditory and visual
pathways. Therefore, either saliency is extracted by
similar mechanisms implemented in both pathways, or
saliency for both systems is extracted by the same
multimodal cortical areas. Having similar mechanisms
extract such events in both pathways could facilitate
the integration of saliency maps across sensory sys-
tems. Such integration needs to coordinate the refer-
ence frames of different sensory systems and could be
part of the observed multisensory integration in early
sensory areas [34–36]. Alternatively, if visual and audi-
tory saliency maps were extracted by the same
multimodal area, one should be able to find evidence
for cortical representations of saliency at multimodal
sites. Experiments testing this could either involve hu-
man fMRI studies by using paradigm similar to those
used here or could involve electrophysiological record-
ings in nonhuman primates. Our finding, that both hu-
mans and macaque monkeys seem to follow similar
principles for determining stimulus saliency, suggests
that these complementary types of experiment should
converge to a common cortical substrate for stimulus-
driven attention.
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Supplemental Data include a Supplemental Discussion section,
Supplemental Experimental Procedures, and two figures and are
available with this article online at http://www.current-biology.com/
cgi/content/full/15/21/1943/DC1/.
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Fig. 1. Diagram of auditory gist feature extraction. The auditory spectrum of
the sound (referred as scene) is estimated based on the early stages of the HAS.
The scene is analyzed by extracting multiscale features from the scene in par-
allel by mimicking the various stages in the central auditory system. The features
(intensity, frequency contrast, temporal contrast, orientations, and pitch) are ex-
tracted using different sets of receptive filters (ref. Fig. 2). Next, the center-sur-
round differences of features are computed which result in feature maps. Finally,
the auditory gist of the scene is extracted from the feature maps by capturing
the overall properties of the scene at low resolution.

detection in speech. The steps of the auditory attention model:
multiscale feature maps and auditory gist extraction followed by
task-dependent biasing of the gist features are discussed next.

1) Multiscale Feature Map Generation: The bio-inspired au-
ditory gist feature extraction mimics the processing stages in the
early and central auditory systems as illustrated in Fig. 1. First,
the auditory spectrum of the sound is estimated based on the in-
formation processing stages in the early auditory (EA) system
[38]. The EA model used here consists of cochlear filtering,
inner hair cell (IHC), and lateral inhibitory stages mimicking the
process from basilar membrane to the cochlear nucleus in the
human auditory system. The raw time-domain audio signal is
filtered with a bank of 128 overlapping constant-Q asymmetric
bandpass filters with center frequencies that are uniformly dis-
tributed along a tonotopic (logarithmic) frequency axis analo-
gous to cochlear filtering. This is followed by a differentiator, a
nonlinearity, and a low-pass filtering mimicking the IHC stage,
and finally a lateral inhibitory network [38]. Here, sound is an-
alyzed using a 20-ms window shifted every 10 ms; i.e., each
10-ms audio frame is represented by a 128-dimensional vector.

Fig. 2. 2-D spectro–temporal receptive filters. These filters mimic the anal-
ysis stages in the primary auditory cortex. The excitation and inhibition phase
are shown with white and black color, respectively. For example, the frequency
contrast filters correspond to the receptive fields in the auditory cortex with an
excitatory phase and simultaneous symmetric inhibitory side bands.

The output of the EA model is an auditory spectrum with time
and frequency axes, and here it is referred to as a “scene.” In the
next stage, the scene is analyzed by extracting a set of multiscale
features that are similar to the information processing stages in
the CAS. Auditory attention can be captured by (bottom-up) or
selectively directed (top-down) to a wide variety of acoustical
features such as intensity, frequency, temporal, pitch, timbre,
FM direction or slope (called “orientation” in the current paper)
and spatial location [16], [23]. Here, five features are included
in the model to encompass all the aforementioned features ex-
cept spatial location, and spatial location information is beyond
the scope of this paper. The features included in the model are
intensity , frequency contrast , temporal contrast ,
orientation , and pitch , and they are extracted in mul-
tiscales using 2-D spectro–temporal receptive filters mimicking
the analysis stages in the primary auditory cortex [39], [22]. All
the receptive filters (RF) simulated here for feature extraction
are illustrated in Fig. 2. The excitation phase (positive values)
and inhibition phase (negative values) are shown with white and
black color, respectively.

The intensity filter mimics the receptive fields in the auditory
cortex with only an excitatory phase selective for a particular
region [39] and can be implemented with a Gaussian kernel.
The multiscale intensity features are created using a dyadic
pyramid: the input spectrum is filtered with a 6 6 Gaussian
kernel [1,5,10,10,5,1]/32 and reduced by a factor of two, and
this is repeated [40]. If the scene duration is large (i.e.,

s), the number of scales is determined by the number of
bandpass filters used in the EA model, hence eight scales

are created yielding size reduction factors ranging
from 1:1 (scale 1) to 1:128 (scale 8). Otherwise, there are fewer
scales.

Similar to , the multiscale , features
are extracted using the filters described below on eight scales
(when the scene duration is large enough), each being a
resampled version (factor 2) of the previous one. The frequency
contrast filters correspond to the receptive fields with an excita-
tory phase and simultaneous symmetric inhibitory side bands,
and the temporal contrast filters correspond to the receptive
fields with an inhibitory phase and a subsequent excitatory
phase as described in [24], [39], and they are shown in Fig. 2.
The filters used for extracting frequency and temporal contrast
features can be interpreted as horizontal and vertical orientation
filters used in the visual saliency map [8], [24]. These filters
are implemented using a 2-D Gabor filter (product of a cosine
function with 2-D Gaussian envelope [40]) with orientation

for frequency contrast and for temporal
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Fig. 1. Diagram of auditory gist feature extraction. The auditory spectrum of
the sound (referred as scene) is estimated based on the early stages of the HAS.
The scene is analyzed by extracting multiscale features from the scene in par-
allel by mimicking the various stages in the central auditory system. The features
(intensity, frequency contrast, temporal contrast, orientations, and pitch) are ex-
tracted using different sets of receptive filters (ref. Fig. 2). Next, the center-sur-
round differences of features are computed which result in feature maps. Finally,
the auditory gist of the scene is extracted from the feature maps by capturing
the overall properties of the scene at low resolution.

detection in speech. The steps of the auditory attention model:
multiscale feature maps and auditory gist extraction followed by
task-dependent biasing of the gist features are discussed next.

1) Multiscale Feature Map Generation: The bio-inspired au-
ditory gist feature extraction mimics the processing stages in the
early and central auditory systems as illustrated in Fig. 1. First,
the auditory spectrum of the sound is estimated based on the in-
formation processing stages in the early auditory (EA) system
[38]. The EA model used here consists of cochlear filtering,
inner hair cell (IHC), and lateral inhibitory stages mimicking the
process from basilar membrane to the cochlear nucleus in the
human auditory system. The raw time-domain audio signal is
filtered with a bank of 128 overlapping constant-Q asymmetric
bandpass filters with center frequencies that are uniformly dis-
tributed along a tonotopic (logarithmic) frequency axis analo-
gous to cochlear filtering. This is followed by a differentiator, a
nonlinearity, and a low-pass filtering mimicking the IHC stage,
and finally a lateral inhibitory network [38]. Here, sound is an-
alyzed using a 20-ms window shifted every 10 ms; i.e., each
10-ms audio frame is represented by a 128-dimensional vector.

Fig. 2. 2-D spectro–temporal receptive filters. These filters mimic the anal-
ysis stages in the primary auditory cortex. The excitation and inhibition phase
are shown with white and black color, respectively. For example, the frequency
contrast filters correspond to the receptive fields in the auditory cortex with an
excitatory phase and simultaneous symmetric inhibitory side bands.

The output of the EA model is an auditory spectrum with time
and frequency axes, and here it is referred to as a “scene.” In the
next stage, the scene is analyzed by extracting a set of multiscale
features that are similar to the information processing stages in
the CAS. Auditory attention can be captured by (bottom-up) or
selectively directed (top-down) to a wide variety of acoustical
features such as intensity, frequency, temporal, pitch, timbre,
FM direction or slope (called “orientation” in the current paper)
and spatial location [16], [23]. Here, five features are included
in the model to encompass all the aforementioned features ex-
cept spatial location, and spatial location information is beyond
the scope of this paper. The features included in the model are
intensity , frequency contrast , temporal contrast ,
orientation , and pitch , and they are extracted in mul-
tiscales using 2-D spectro–temporal receptive filters mimicking
the analysis stages in the primary auditory cortex [39], [22]. All
the receptive filters (RF) simulated here for feature extraction
are illustrated in Fig. 2. The excitation phase (positive values)
and inhibition phase (negative values) are shown with white and
black color, respectively.

The intensity filter mimics the receptive fields in the auditory
cortex with only an excitatory phase selective for a particular
region [39] and can be implemented with a Gaussian kernel.
The multiscale intensity features are created using a dyadic
pyramid: the input spectrum is filtered with a 6 6 Gaussian
kernel [1,5,10,10,5,1]/32 and reduced by a factor of two, and
this is repeated [40]. If the scene duration is large (i.e.,

s), the number of scales is determined by the number of
bandpass filters used in the EA model, hence eight scales

are created yielding size reduction factors ranging
from 1:1 (scale 1) to 1:128 (scale 8). Otherwise, there are fewer
scales.

Similar to , the multiscale , features
are extracted using the filters described below on eight scales
(when the scene duration is large enough), each being a
resampled version (factor 2) of the previous one. The frequency
contrast filters correspond to the receptive fields with an excita-
tory phase and simultaneous symmetric inhibitory side bands,
and the temporal contrast filters correspond to the receptive
fields with an inhibitory phase and a subsequent excitatory
phase as described in [24], [39], and they are shown in Fig. 2.
The filters used for extracting frequency and temporal contrast
features can be interpreted as horizontal and vertical orientation
filters used in the visual saliency map [8], [24]. These filters
are implemented using a 2-D Gabor filter (product of a cosine
function with 2-D Gaussian envelope [40]) with orientation

for frequency contrast and for temporal
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Fig. 3. Auditory attention model. Training phase: the weights are learned in
supervised manner. Testing phase: auditory gist features are biased with the
learned weights to estimate the top-down model prediction.

enhancing the response of neurons tuned to the features of
target stimuli, whereas attenuating the response of neurons
to stimuli that did not match the target feature [1], [14], [16],
[17]. Thus, we formalize the task-dependent top-down process
as follows: given a task (which is prominence detection in the
current paper), the top-down task-dependent auditory attention
model biases the auditory gist features with weights learned in
a supervised manner for the task such that it enhances specific
dimensions of the gist features that are related to the task, while
attenuating the effect of dimensions which are not related to the
task. Here, the weights are learned in a supervised manner as
illustrated in Fig. 3; first the data is split into training and test
sets. In the training phase, gist features are extracted from
the scenes in the training set and compiled together with their
corresponding prominence class categories . The features
are stacked and passed through a “learner” (a machine learning
algorithm) to discover the weights. In the testing phase, scenes
that are not seen in the training phase are used to test the perfor-
mance of the top-down model. For a given test scene, the gist
of the scene is extracted and biased with the learned weights to
estimate the top-down model prediction . Here, a three-layer
neural network is used to implement the learner in Fig. 3 as
discussed in detail in Section V-A. The reason for using neural
network is that they are biologically well motivated; it mimics
the modulation effect of task dependent attention on the neural
responses.

In this context, the term “scene” is used to refer to the sound
around a syllable, and the task is to determine whether a promi-
nent syllable exists in the scene. For the experiments, a scene is
generated for each syllable in the database by extracting sound
surrounding a syllable with an analysis window of duration
that centers on the syllable. The analysis of scene duration is
described later in Section V-A1.

B. Task-Dependent Higher Level Cues

Speech is one of the most important sound sources for human
listeners. While processing speech stimuli, the brain is influ-
enced by higher level information such as lexical information,
syntax, semantics, and the discourse context [23], [29]. For ex-
ample, one famous result from the dichotic listening experi-
ments reported in [49] is that people may respond to the mes-
sages on the unattended channel when they heard their own
names. In the experiments of [49], 8% of the participants re-
sponded to the message “you may stop now” when it was pre-

sented on the unattended channel, whereas 33% of the partic-
ipants responded when the message was preceded by the par-
ticipant’s name. This is similar to what happens in the cocktail
party phenomenon. For example, one may hear her/his name
being mentioned by someone else across the room, even though
she/he was not consciously listening for it. In the experiments
of [29], the recorded neurophysiologic brain response was larger
for one’s native language than unfamiliar sounds. Also, the ex-
periments at the level of meaningful language units have re-
vealed that real words elicit a larger brain response than mean-
ingless pseudowords [29]. The psychophysical experiments in-
dicate that some words that carry semantically important infor-
mation, e.g., one’s name, can capture attention, as can some syl-
lable/word strings that form a meaningful word/sentence [11],
[23].

In addition to these, earlier studies have revealed that there is
dependency between prominence and lexical information and
also between prominence and syntax [28], [27]. The authors
of [28] show that content words are more likely to be promi-
nent than function words. Also, a statistical analysis presented
in [50] indicates that some syllables have a higher chance of
being prominent than others; i.e., the syllable “can” has an 80%
chance of being prominent, whereas the syllable “by” has a 13%
chance of being prominent.

We incorporate the task-dependent higher level cues into our
model using lexical and syntactic information for prominence
detection in speech. Specifically, this information is used to
create probabilistic models for the current application of promi-
nent syllable detection. The lexical information is incorporated
in the system by building a language model with syllables as
explained in Section IV-B. The syntactic knowledge is repre-
sented using part-of-speech tags, and a neural network is used
to model the influence of syntax on prominence as detailed in
Section IV-C.

IV. PROBABILISTIC APPROACH FOR TASK-DEPENDENT MODEL

The task-dependent model is influenced by acoustic and
other higher level cues. In this section, we present a system to
combine the auditory attention cues discussed in Section III-A
together with lexical and syntactic information in a proba-
bilistic framework for prominence detection in speech. The
probabilistic model is based on a MAP; given acoustic, lexical
and syntactic information, the model estimates the sequence of
prominence that maximizes the posterior probability. First, we
discuss modeling of each piece of information separately, and
then we discuss how they are combined in a MAP framework.

A. Task-Dependent Model With Auditory Gist Features

A multilayer perceptron (MLP) is used to implement the
learner in Fig. 3 to bias the auditory gist features to mimic
the top-down influences of task on neuron responses. We use
auditory gist features as the input to the neural network, and
the output returns the class posterior probability for
the th syllable, where is the auditory gist feature, and

where 1 denotes that the syllable is prominent, while
0 denotes that it is nonprominent. Then, the most likely promi-
nence sequence given the gist features
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TABLE II
PROMINENT SYLLABLE DETECTION PERFORMANCE WITH BOTTOM-UP

SALIENCY-BASED ATTENTION MODEL [25]

This is different from the one in Section V-A1 where the dimen-
sion of a gist vector for a feature map varies with (hence with
scene duration). As in the previous example in Section V-A1,
when s, the model generates three feature maps per
feature set and hence a dimensional cumulative
gist feature vector. After the principal component analysis, the
dimension is reduced to 94. As listed in Table I, for all scene
durations, this selection results in a larger dimensional gist fea-
ture vector compared to 1-by- grid size, i.e., for scene duration
of 0.6 s the dimension of gist feature with 1-by- grid size is
60 whereas it is 94 with 4-by-5 grid size. This indicates that the
gist features obtained with 4-by-5 grids carries more diverse in-
formation about the scene compared to the one obtained with
1-by- grids. The results obtained with 4-by-5 grids for varying
scene durations are also reported in Fig. 5 and Table I. The best
performance achieved with 4-by-5 grid size is 85.7% accuracy
with an F-score , and obtained again when s.

The performance obtained with 4-by-5 grid size selection is
better than the one obtained with 1-by- grid size
except for scene duration of 1.2 s (reference Fig. 5). This might
be due to the fact that the temporal resolution is not adequate
with 4-by-5 grid size selection for large scene durations. This
also indicates that, while choosing the grid size, the scene du-
ration should be factored in while choosing the temporal grid
size that determines temporal resolution. Larger scene dura-
tions might need larger temporal grids in order to obtain ade-
quate temporal resolution. Also, even though the best perfor-
mance obtained with both grid sizes is with scene duration of

s, this is not significantly better than the results ob-
tained with scene duration of 0.6 s (at ). Hence, we fix
the scene duration as 0.6 s in the rest of the experiments since
it is computationally less expensive (the feature dimension is
smaller, and so is the neural network).

The results obtained with our unsupervised bottom-up (BU)
attention model from [25] are also summarized in Table II for
comparison purpose. The top-down auditory attention model
provides approximately 10% absolute improvement over the un-
supervised bottom-up auditory attention model.

3) Analysis of Auditory Attention Features: We present an
analysis of the auditory attention features using mutual infor-
mation and prominence detection experiments conducted with
each individual feature and their combinations in this subsec-
tion. The scene duration is fixed at 0.6 s for the analysis due to its
sufficient performance as discussed in Section V-A1 and V-A2.
First, pitch feature sets are analyzed to provide insight into the
features extracted with different receptive filters. Then, mutual
information estimations are presented to measure the amount of
redundancies between features and also the amount of informa-
tion each feature set and their combinations provide about the
syllable prominence.

a) Analysis of Pitch Features: These results indicate that
the gist features obtained from the pitch contour using the

receptive filters capture the pitch variations and

TABLE III
PROMINENT SYLLABLE DETECTION PERFORMANCE

WITH ONLY PITCH FEATURES

Fig. 6. Pitch analysis of a speech scene with grid size of 1-by- (a) pitch.
Output obtained with (b) frequency contrast RF. (c) Orientation RF with 45
rotation. (d) Orientation RF with 135 rotation.

behavior. Also, there is no need for normalization since the
gist features capture variations rather than the absolute values.
Finally, the prominence detection performances obtained with
using only pitch features are detailed in Table III for both
1-by- and 4-by-5 grid sizes. The best performance is achieved
with pitch when all three RFs are used to
extract pitch gist features. Also, 4-by-5 grids performs better
than 1-by- grids, and the best achieved performance is 81.26%
accuracy with an F-score of 0.69 via using 4-by-5 grids. In
the rest of the paper, the pitch features are extracted from the
pitch contour using all three receptive filters
and pitch features are denoted with to prevent confusion
with other features. As described in Section III-A, pitch is
extracted from the auditory spectrum and then mapped onto
the tonotopic axis, assuming that the auditory neurons in the
cochlear location corresponding to the pitch are fired. Then,
this 2-D representation is analyzed to capture pitch behavior
using frequency contrast and orientation receptive filters. Pitch
analysis results for a sample speech scene are illustrated in
Fig. 6. The top figure shows the mapped pitch contour itself.
The gist feature vectors obtained from this contour using
frequency contrast and orientation filters are shown below it.
Here, only the raw gist vector (without PCA) obtained from the
feature map with center scale , surround scale and
grid size 1-by- ( is width of a feature map) is shown. The
vector is interpolated to scale 1 for time alignment purpose. It
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Fig. 9. Sausage lattice with only lexical evidence.

TABLE VIII
PROMINENT SYLLABLE DETECTION PERFORMANCE OF INDIVIDUAL

ACOUSTIC, LEXICAL AND SYNTACTIC CUES

reported earlier, an accuracy of 85.45% with an F-score of 0.78
is achieved for prominence detection task at the syllable level
using only the auditory features. Table VIII also includes the
results of the other types of top-down evidence which are dis-
cussed next. We first present the experimental results with the
lexical and syntactic models in Section V-B and V-C, respec-
tively, followed by the combined model results in Section V-D.

B. Top-Down Model Prediction With Lexical Evidence

The top-down model prediction using lexical information is
implemented by creating sausage lattices for the test sets using
the test transcriptions. The lattice arcs hold the syllable tokens
together with the possible prominence class categories. For ex-
ample, a part of a lattice that includes the word “wanted” is
shown in Fig. 9. The arcs carry two syllables “w aa n” and
“t ax d” the word contains together with prominent (C-one)
and non-prominent (C-zero) class categories. When the only
available evidence is the lexical rule, the arcs of the lattices
do not carry any acoustic score, i.e., they are all set to zero
( in Fig. 9). After constructing the lattice, it is scored
with the factored n-gram lexical language model which was de-
tailed in Section IV.B. The most likely prominence sequence is
obtained by Viterbi decoding through the lattices. The results
obtained with only the lexical model are reported in Table VIII;
the prominence detection performance achieved with using only
lexical information is 83.85% with an F-score of 0.76. We ob-
serve that the auditory features alone perform 1.6% better than
the lexical features (85.45% versus 83.85%), and this result is
significant at .

C. Top-Down Model Prediction With Only Syntactic Evidence

The class posterior probability in (10) is
computed using a neural network [53]. We use a three-layer
neural network with inputs and output nodes, where
is the length of feature vector produced with POS tags, and

since this is a two-class problem. In our implementation,
a set of 34 POS tags are used as those used in the Penn Tree-
bank [56]. Each POS feature is mapped into a 34-dimensional
binary vector. The neural network has inputs,
since the syntactic information in our model includes the infor-
mation from a window of words.

As mentioned earlier, POS tags are associated with the words,
so the neural network is trained using the word level POS tags.

TABLE IX
COMBINED TOP-DOWN MODEL PERFORMANCE

FOR PROMINENT SYLLABLE DETECTION

Using only syntactic information, we achieve 82.50% accuracy
for the prominence detection task at the

word level as detailed in Table VIII. Then, using (13) and (14),
we convert word level posterior probability to the syllable level
posterior probability. To obtain the baseline performance for
the syntactic model, we combine prior chance level observed
in the training data with the syntactic model posterior probabil-
ities. The prominence detection accuracy achieved is 68.01%

at the syllable level using the syntactic
evidence. This is slightly better than the chance level for the
BU-RNC which is 65.7% accuracy at the syllable level. The syn-
tactic features alone (68.01%) perform significantly worse than
both auditory features (85.45%) and lexical features (83.83%) at
the prominence detection task at the syllable level .
This is not surprising because of the fact that POS carries in-
formation at the word level. When a multisyllabic word is de-
tected as prominent, there is no information about which syl-
lable/s is/are prominent within the word. Hence, (13) and (14)
are only approximations. Nevertheless, the combination of the
syntactic information leads to a statistically significant perfor-
mance improvement, as shown in the next section.

D. Combined Model With Auditory, Syntactic, Lexical Cues

We combine auditory gist features together with syntactic
and lexical information using a probabilistic approach as pre-
sented in (18). First, the syllable level syntactic and auditory
gist feature model outputs are combined and embedded in the
lattice arcs. Then, the lattices are scored with the lexical lan-
guage model, and a Viterbi search is conducted to find the best
sequence of prominence labels. The combined model achieves
88.33% accuracy with an F-score of 0.83 as listed in Table IX.

In addition to these experiments, we also investigated the
combination of auditory features together with lexical infor-
mation and the combination of auditory features together with
syntactic information. The results are summarized in Table IX.
Incorporating syllable token information into the top-down
prediction of auditory features leads to 2.56%
accuracy improvement over the auditory features only model
(88.01% versus 85.45%). Also, the improvement of 0.78%
over the acoustical model prediction accuracy due to syntactic
information is significant (86.23% versus 85.45%, ).
The performance difference between the model that includes
all three models and the one that does not include the syn-
tactic model is also significant at (88.33% versus
88.01%). The best prominence detection performance accuracy
is achieved with using all three information streams: auditory
features and lexical and syntactic evidence. Finally, the com-
bined model achieves 85.71% prominence detection accuracy
at the word level with an .
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Fig. 9. Sausage lattice with only lexical evidence.

TABLE VIII
PROMINENT SYLLABLE DETECTION PERFORMANCE OF INDIVIDUAL

ACOUSTIC, LEXICAL AND SYNTACTIC CUES

reported earlier, an accuracy of 85.45% with an F-score of 0.78
is achieved for prominence detection task at the syllable level
using only the auditory features. Table VIII also includes the
results of the other types of top-down evidence which are dis-
cussed next. We first present the experimental results with the
lexical and syntactic models in Section V-B and V-C, respec-
tively, followed by the combined model results in Section V-D.

B. Top-Down Model Prediction With Lexical Evidence

The top-down model prediction using lexical information is
implemented by creating sausage lattices for the test sets using
the test transcriptions. The lattice arcs hold the syllable tokens
together with the possible prominence class categories. For ex-
ample, a part of a lattice that includes the word “wanted” is
shown in Fig. 9. The arcs carry two syllables “w aa n” and
“t ax d” the word contains together with prominent (C-one)
and non-prominent (C-zero) class categories. When the only
available evidence is the lexical rule, the arcs of the lattices
do not carry any acoustic score, i.e., they are all set to zero
( in Fig. 9). After constructing the lattice, it is scored
with the factored n-gram lexical language model which was de-
tailed in Section IV.B. The most likely prominence sequence is
obtained by Viterbi decoding through the lattices. The results
obtained with only the lexical model are reported in Table VIII;
the prominence detection performance achieved with using only
lexical information is 83.85% with an F-score of 0.76. We ob-
serve that the auditory features alone perform 1.6% better than
the lexical features (85.45% versus 83.85%), and this result is
significant at .

C. Top-Down Model Prediction With Only Syntactic Evidence

The class posterior probability in (10) is
computed using a neural network [53]. We use a three-layer
neural network with inputs and output nodes, where
is the length of feature vector produced with POS tags, and

since this is a two-class problem. In our implementation,
a set of 34 POS tags are used as those used in the Penn Tree-
bank [56]. Each POS feature is mapped into a 34-dimensional
binary vector. The neural network has inputs,
since the syntactic information in our model includes the infor-
mation from a window of words.

As mentioned earlier, POS tags are associated with the words,
so the neural network is trained using the word level POS tags.

TABLE IX
COMBINED TOP-DOWN MODEL PERFORMANCE

FOR PROMINENT SYLLABLE DETECTION

Using only syntactic information, we achieve 82.50% accuracy
for the prominence detection task at the

word level as detailed in Table VIII. Then, using (13) and (14),
we convert word level posterior probability to the syllable level
posterior probability. To obtain the baseline performance for
the syntactic model, we combine prior chance level observed
in the training data with the syntactic model posterior probabil-
ities. The prominence detection accuracy achieved is 68.01%

at the syllable level using the syntactic
evidence. This is slightly better than the chance level for the
BU-RNC which is 65.7% accuracy at the syllable level. The syn-
tactic features alone (68.01%) perform significantly worse than
both auditory features (85.45%) and lexical features (83.83%) at
the prominence detection task at the syllable level .
This is not surprising because of the fact that POS carries in-
formation at the word level. When a multisyllabic word is de-
tected as prominent, there is no information about which syl-
lable/s is/are prominent within the word. Hence, (13) and (14)
are only approximations. Nevertheless, the combination of the
syntactic information leads to a statistically significant perfor-
mance improvement, as shown in the next section.

D. Combined Model With Auditory, Syntactic, Lexical Cues

We combine auditory gist features together with syntactic
and lexical information using a probabilistic approach as pre-
sented in (18). First, the syllable level syntactic and auditory
gist feature model outputs are combined and embedded in the
lattice arcs. Then, the lattices are scored with the lexical lan-
guage model, and a Viterbi search is conducted to find the best
sequence of prominence labels. The combined model achieves
88.33% accuracy with an F-score of 0.83 as listed in Table IX.

In addition to these experiments, we also investigated the
combination of auditory features together with lexical infor-
mation and the combination of auditory features together with
syntactic information. The results are summarized in Table IX.
Incorporating syllable token information into the top-down
prediction of auditory features leads to 2.56%
accuracy improvement over the auditory features only model
(88.01% versus 85.45%). Also, the improvement of 0.78%
over the acoustical model prediction accuracy due to syntactic
information is significant (86.23% versus 85.45%, ).
The performance difference between the model that includes
all three models and the one that does not include the syn-
tactic model is also significant at (88.33% versus
88.01%). The best prominence detection performance accuracy
is achieved with using all three information streams: auditory
features and lexical and syntactic evidence. Finally, the com-
bined model achieves 85.71% prominence detection accuracy
at the word level with an .

Authorized licensed use limited to: U niversity of S outhern C alifornia . D ownloaded on July 16 , 2009 at 19:31  from IE E E  X plore .  R estrictions apply.



36 

Duangudom – Modulation Features 

Feature 
•  Spectrogram 
•  Spectral-temporal 

modulation 
•  Multiscale 

Varinthira Duangudom and David Anderson. Using Auditory Saliency To Understand Complex Auditory Scenes. 15th European 
Signal Processing Conference (EUSIPCO 2007); 2007. 



37 

Duangudom – Saliency Maps 

  Varinthira Duangudom and David Anderson. Using Auditory Saliency To Understand Complex Auditory Scenes. 15th European 
Signal Processing Conference (EUSIPCO 2007); 2007. 

Fr
eq

ue
nc

y (
Hz

)

Time (ms)
1000 2000 3000 4000

 125

 250

 500

1000

2000

Fr
eq

ue
nc

y (
Hz

)

Time (ms)
200 400 600 800 1000

 125

 250

 500

1000

2000

Fr
eq

ue
nc

y (
Hz

)

Time (ms)
1000 2000 3000 4000

 125

 250

 500

1000

2000

(a) (c) (e)

Fr
eq

ue
nc

y (
Hz

)

Time (ms)
1000 2000 3000 4000

 125

 250

 500

1000

2000
Fr

eq
ue

nc
y (

Hz
)

Time (ms)
200 400 600 800 1000

 125

 250

 500

1000

2000

Fr
eq

ue
nc

y (
Hz

)

Time (ms)
1000 2000 3000 4000

 125

 250

 500

1000

2000

(b) (d) (f)

Figure 4: Auditory saliency map for some simple auditory stimuli. The top row shows the auditory spectrograms for each
of the three examples. In the second row, below each auditory spectrogram, the saliency map for that example can be found.
a) Auditory spectrogram of amplitude modulated tone b) Auditory saliency map of amplitude modulated tone shows the
modulated part is salient c) Auditory spectrogram of 200 Hz tone, with 6 harmonics, where the 4th harmonic is mistuned by
48 Hz d) Auditory saliency map of 200 Hz tone, with 6 harmonics, where the 4th harmonic is mistuned by 48 Hz e) Auditory
spectrogram of two 2 kHz tones in white noise tones f) Auditory saliency map of two 2 kHz tones in white noise.

strate how the saliency map is able to predict several known
experimental results from auditory scene analysis.

4. SALIENCY SCENE COMPARISON

In order to compare the model’s performance to human sub-
jects, we did an experiment where subjects were asked to
give subjective ratings of the saliency of different scene pairs.
The same pairs were then presented to the computational au-
ditory saliency model for comparison.

4.1 Subjects
Results were obtained from 14 university students. Normal
hearing was determined by self-report. Subjects were in-
formed about the general aim of the experiment, but were
naive to the exact purpose of the study.

Subjects listened through headphones (Sennheiser HD
280 pro) to auditory stimuli presented using MATLAB and
then entered their responses into a MATLAB GUI. The sound
card on the PC used is AD1981A AC’97 SoundMAX Codec
(Full-duplex with variable sampling rates from 7040 Hz to
48 kHz with 1 Hz resolution). The experiment took each
subject approximately 50 minutes to complete.

4.2 Experimental Procedures
Each subject was presented with a total of 162 scene pairs
made up from 50 unique target sounds. The scenes consisted
of a target (1 sec) sound and a background (4 sec). The target
sounds consisted of sounds, such as, animal sounds, sirens,
noise, music instruments etc. The background consisted of
white noise and a random sample of some target sounds.

Subjects were presented with different scene pairs. Each
pair consisted of two 4 second scenes with a pause of 1 sec-
ond between each scene. Subjects then had to indicate

whether the first scene they heard or the second scene they
heard had the most salient element or if the saliency of the
two scenes was equal. After choosing which scene was more
salient, subjects were asked to rate from 1 to 5 how much
more salient the scene they chose was compared to the other
scene.

Catch trials, where the scene pair was made up of the
same scene, were presented to the subjects. In addition, there
were also catch trials where scene pairs presented earlier in
the test were presented again later to get an indication of how
consistent a subject was.

4.3 Results and Discussion

Scenes that subjects selected as equally salient were excluded
from the analysis. Subject accuracy on the catch trials is pre-
sented in Table 2. All subjects had performance on the cache
trials greater than 50% and only three subjects (6,7,and 12)
had performance lower than 70% correct on these trials. Poor
performance on catch trials could indicate that subjects were
not focused on the task, were randomly selecting answers,
or did not understand the experiment. All subjects correctly
identified the catch trials where the same scene was presented
twice as being equally salient.

In this experiment, we found a significant correlation be-
tween scenes that subjects selected as salient and scenes that
the model chose as salient. For model 1, the mean of the cor-
relation coefficients from all subjects was 0.4776 ± 0.2155
and for model 2, where the inhibition was performed locally,
it was 0.5302 ± 0.2379. These results for can be found in
Table 3.

Saliency can also vary greatly depending on top-down
input. Therefore, what is salient to one observer can be very
different from what is considered salient to another observer.

©2007 EURASIP 1209
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Subject % Correct
1 88.9
2 72.2
3 94.4
4 88.9
5 77.8
6 64.7
7 66.7
8 83.3
9 94.4

10 82.3
11 94.4
12 64.7
13 83.3
14 83.3

Table 2: Subject performance on the catch trials.

Correlation to
Subject Model 1 Model 2

1 0.7324 0.8738
2 0.4536 0.5329
3 0.4138 0.5247
4 0.774 0.7872
5 0.0449 0.0182
6 0.0632 0.1136
7 0.397 0.4725
8 0.4073 0.4178
9 0.5977 0.7033
10 0.5995 0.692
11 0.4234 0.4234
12 0.622 0.678
13 0.6131 0.63
14 0.5447 0.5555

Average 0.4776 0.5302
Std Dev 0.2155 0.2379

Table 3: Correlation between subject and model responses.

The model we propose is a bottom-up processing model, and
does not provide any top-down input. This may provide some
explanation for why 2 of the subjects (5, 6) had almost no
correlation between the model’s responses and subject’s re-
sponses. Additionally, subject 6 also had poor performance
on the catch trials, indicating that they may not have been
properly attending to the task. It is also interesting to note
that subjects 5 and 6 along with subject 1 were the only 3
subjects that performed the experiment in the evening. Since
the task does require a subject’s attention, performing the ex-
periment later in the day when they are likely tired or lack
concentration may affect the results.

Since the model is a bottom-up processing model, we are
particularly interested in comparing the model’s performance
for scenes where there is some agreed salience among the
observers. Therefore, we next looked at scene pairs where
the majority of the subjects were in agreement that one of
the two scenes was more salient than the other. This removes
some of the individual variation that may cause certain types
of stimuli to be salient to particular observers, since we are
looking at scenes where at least half of the observers agree

that it is salient. The results for this are shown Table 4. For
these pairs, the results show a strong correlation between the
subject and model responses. The correlation was 0.7224
(95% CI = 0.6239-0.7983) for model 1 and 0.8043 for model
2 (95% CI = 0.7303-0.8596).

Model Correlation
1 Scaling by Di on entire feature maps 0.7224

2 Local inhibition 0.8043

Table 4: Correlation between subject and model responses
for scene pairs where more than 50% of subjects agreed on
salience.

Based on the results in Tables 3 and 4, for these sounds,
the model does well in predicting what scenes humans would
consider salient. Additional experiments are being per-
formed to further evaluate the model for different types of
stimuli.

4.4 Conclusions and Future Work
The auditory saliency model presented in this paper pre-
dicts what in an auditory scene stands out perceptually to
observers. It can be used to sort through the elements of
a complex scene and determine what is most important and
captures an listener’s attention. The model is physiologically
motivated and uses auditory receptive field models and adap-
tive inhibition to form the saliency map. The model was val-
idated experimentally, and there was a fairly strong correla-
tion between auditory scenes chosen as salient by the model
and scenes chosen as salient by human subjects. Addition-
ally, some simple examples of the saliency map were used to
demonstrate that it can predict known experimental results,
but the saliency map can also be used for more complex au-
ditory scenes. Currently, the model is a bottom-up processing
model, but we know that top-down influences can also affect
perception. We are working on adding top-down input to the
model and more experiments are underway to further eval-
uate the model’s performance and its numerous applications
in auditory scene analysis and other areas.
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Figure 3: Inhibition of feature maps. a) Feature map with
single prominent peak is promoted b) Feature map with many
peaks and no prominent peaks is suppressed.

Scaling each feature map by this factor, Di, promotes
maps with a large global peak compared to the rest of the
activity on that map. This is demonstrated in Figure 3 (a).
Conversely, feature maps with high activity everywhere on
the map are suppressed (Figure 3 (b)). Using this method,
we preserve the general shape of each feature map, while en-
suring that feature maps with prominent peaks make a larger
contribution to the final saliency map. After this scaling,
the feature maps in each respective category are combined
to form 1 global feature map for each category. Each of the
4 global feature maps are again scaled by Di before being
summed to form the final saliency map.

One variation of the model is to perform the inhibition lo-
cally. This was done, since auditory percepts are often more
influenced or affected by other auditory events or cues closer
in time or frequency. Here, the feature extraction stage is the
same as discussed above. Once the feature maps have been
obtained, the feature map is divided into non-overlapping 2-
dimensional areas, covering about 200 ms in time and 1/3
octave in frequency. In order to retain the peaks, for each lo-
cal area, the mean of the signal is determined and subtracted
from the signal. This is then followed by the previously de-
scribed method of scaling used to promote the maps with
prominent peaks. The differences between the two versions
of the model presented are summarized below.

3. SALIENCY MAP EXAMPLES

In this section, we show the saliency map for several dif-
ferent examples of common auditory stimuli. The saliency
maps for these examples match what is expected from known
psychoacoustic experimental results.

The auditory system is well-versed in change detection.

Model Description
1 Promotes or inhibits entire feature maps

using scaling by Di
2 Uses local inhibition and then

scaling by Di

Table 1: Summary of model 1 and model 2 differences.
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Figure 5: Auditory saliency map for the continuity illusion.
a) Auditory spectrogram of gliding tone interrupted by a
noise burst b) Auditory saliency map of gliding tone inter-
rupted by a noise burst.

From an auditory scene analysis perspective, older sounds
that are relatively constant or unchanging tend to become
background, while changes in a sound or new sounds will
stand out from the background and are more salient.

Two change detection examples are presented where new
sounds stand out perceptually from the other unchanging
“background” components. In the first example, we have
a tone complex where part of one of the four tones in the
complex is amplitude modulated. We would expect the mod-
ulation to be salient, since the modulated tone should stand
out perceptually from the other unchanging tones. In Fig. 4,
(a) and (b), the auditory spectrogram and saliency map for
this example are shown. From the saliency map, the modu-
lated part is, as expected, what is most salient and the rest of
the tone complex except for the onsets are suppressed.

The second change detection example shows the well-
known experimental result of hearing out a mistuned har-
monic from the rest of the complex. In this example, the
4th harmonic of 200 Hz tone is mistuned by 48 Hz for 50 ms
causing the mistuned harmonic to pop-out. This mistuned
harmonic is heard separate from the rest of the complex,
since it stands out perceptually. The saliency map confirms
this experimental result and Fig. 4, (c) and (d), shows that the
mistuned harmonic does pop-out from the rest of the com-
plex.

A third example shows two 250 ms, 2 kHz tones in white
noise. In Fig. 4, (e) and (f), the auditory spectrogram and
saliency map for this example show that the noise is sup-
pressed and the two tones are emphasized. From this, there
may be several applications of auditory saliency in the area
of noise suppression.

In one final example shown in Fig. 5 (a) and (b), a gliding
tone is interrupted by a noise burst. From the continuity illu-
sion, it is expected the tone will be perceived as continuing
through the noise. The saliency map for this example (Fig. 5
(b)), reflects the perceptual continuity of the tone through the
noise, and this continuity is indicated as being salient.

The four examples presented above are used to demon-
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[20,21], it also reported in human auditory system as well [22]. Due
to the IOR mechanism, attention shifting will be determined and
reaction will be taken short after the salient sound is perceived by
early brain response in a bottom-up pattern [23], along with the
fact that environment sound with surprise (i.e., salient) value will
more easily influence the spatial orienting attention [24]. Mean-
while, many research works have been conducted to prove that
MFCC is a good computational representation of human hearing
system and could be extracted as the proper feature for auditory
perception for machine perception. Therefore, the MFCC of sound
signal is considered as human auditory perception model for acoustic
saliency detection by combining it with the computational IOR
model to simulate the auditory saliency characteristic of human
beings. Furthermore, the saliency features derived from power
spectral density (PSD) of sound are applied to detect the salient
component in frequency domain in order to improve the detection
performance of final auditory saliency map. The overview structure
of proposed salient sound detection framework is graphically
demonstrated in Fig. 1.

In Fig. 1, module 1 is the background noise estimation process
that provides the global saliency information of sound and
determines the IOR time for further saliency verification. Module
2 is the image saliency feature extraction process which build on
the conventional approaches. Modules 3 and 4 are the temporal
and spectral saliency feature extraction procedures, respectively.
Furthermore, module 5 is the heterogeneous saliency feature
fusion module which outputs the final auditory saliency map.

4. Heterogeneous saliency feature extraction

The saliency features in the framework are considered to be
heterogeneous as they are extracted from both visual and auditory
channels and then combined together to form the final auditory
saliency map. The whole process of proposed framework can be
illustrated in four main stages, which are background noise
estimation, local visual saliency feature extraction, local auditory
saliency feature extraction and heterogeneous saliency feature
fusion, respectively. The detailed procedures are presented as
follows.

4.1. Background noise estimation

4.1.1. Shannon entropy
Compare to the visual information perceived by mankind,

sound will always exist and real silence is rare because the
background noise is almost inevitable even in a tranquil environ-
ment. However, human beings are not bothered by this problem
because only those sounds which are salient or relevant to one's
expectations will be attended. In other words, the uncertain
information caused by the salient auditory stimuli will trigger
the perception as an instinct of self-protection. In Shannon's
information theory [25], the concept of entropy was brought in
to measure the uncertainty associated with a random variable.
Since the salient sound could be seen as an uncertain signal source
compared with its temporal neighborhood within a time period,
the Shannon entropy could indicate the quantity of uncertainty
information with any distribution contained by the salient sound.

4.1.2. Short-term Shannon entropy
Currently, Shannon entropy is mostly considered to be a feature

of signal rather than a saliency estimator in previous research
works [26,27], some of which are based on the wavelet packets
decomposition. Here we propose a novel short-term wavelet
packet Shannon entropy approach to represent and estimate the
saliency characteristic of real sound signals. Let S denote the sound

signal, and Si denote the coefficients of S in an orthonormal
wavelet packet basis, the Shannon entropy of the ith level of the
decomposition is given by

ElðsiÞ ¼ s2i log ðs
2
i Þ; ð1Þ

and the Shannon entropy of the entire signal can be given as

ElðsÞ ¼ $∑
i
s2i log ðs

2
i Þ: ð2Þ

It is obvious that the entropy is an additive cost function such
that Eð0Þ ¼ 0 and with the convention that 0 log ð0Þ ¼ 0. Notably,
the Shannon entropy derived from Eq. (2) is a constant value and
could not reflect the variation tendency of uncertainty of the
signal. Therefore, we divide the sound signal into short-term
frames with overlap of 50% and the Shannon entropy of each
frame is calculated to represent the average change of the sound
signal. Considering the jth frame of N samples of S, the short-term
wavelet packet Shannon entropy is defined as

EjðsjÞ ¼ $∑
i
s2i;j log ðs

2
i;jÞ; ð3Þ

where Si;j is the coefficients of the jth frame of S in the ith level and
the short-term Shannon entropy (SSE) of the entire signal is given as

Ef ðsÞ ¼ ∑
M

j ¼ 1
EjðsjÞ: ð4Þ

The value of Ef(s) represents the degree of uncertainty of signal S.
Hence, the global estimation of background noise can be given as

GðstÞ ¼
R
Ef ðstωðt$τÞ dτÞ if Ef ðstÞ4σ;

0 otherwise:

(

ð5Þ

Here, Ef ðstÞ is the SSE value of time t, σ is the threshold, and ωðtÞ is a
window function to smooth the discrete value of SSE for the
convenience of saliency detection.

As shown in Eq. (5), the value of GðstÞ will be non-zero and with
large value if salient sound occurs or be very small otherwise.
Therefore, the background noise could be primary estimated and
global saliency information of the sound signal can be provided. To
be specific, a sound track has high probabilities to be with strong
background noise if GðstÞ is non-zero value dominated, and vice
versa. Hence, an empirical discrimination can be defined to estimate

Fig. 1. Overview of proposed saliency detection framework.
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Firstly, to depress the affect of background noise and empha-
size the salient sound signal components, the original spectrogram
is transformed into log scale. Assuming that the original spectro-
gram is Is, the log scale spectrogram Ig is calculated as

Ig ¼ 20 log 10ð Is
2=60Þ:
!!!! ð13Þ

In Ig based time-frequency representation of sound, signal
components with higher power energy will be represented by
the red region in RGB color space while lower power components
are commonly in green. However, the human perception of color
is not best represented in RGB color space according to the
opponent-process theory [34], a better model of opponent color
space is proposed in which the red and green colors are postulated
as opponent colors. Hence, as the salient time-frequency compo-
nents of sound signals with red color are more salient to human
vision among background or spatiotemporal neighborhood with
green color, the image saliency can be derived from the red–green
channel [35] of opponent color space which defined as

Ired$green ¼ ðIgðRGBrÞ$ IgðRGBgÞÞ; ð14Þ

where the RGBr and RGBg are the red and green channel of original
RGB color space, respectively. As a result, a spatiotemporal saliency
map based on spectrogram is obtained by combining the auditory
saliency feature of salient Mt from temporal domain and saliency
feature from spectral domain of SPSD;q together. Thereafter, the final
auditory saliency map is generated by fusing the image saliency
feature from Ig. The general fusion process can be shown as

Simage ¼ Ired$green \ fSSSEg: ð15Þ

Sacoustic ¼
fSMp g [ fSPSD;qg if SPSD;qa∅;

fSMp g \ fSP4Pmeang if SPSD;q ¼∅:

(

ð16Þ

S¼
Simage % Sacoustic if BGNs ¼ 1;
Simage % ðSimage JSacousticÞ if BGNs ¼ 0:

(
ð17Þ

Here, SSSE is the set that represents the salient parts of sound signal
with Gsta0, fSMp g is the set that contains the temporal locations of
salient signals indicated by the salient MFCC value after IOR test, the
set of fSP4Pmeang represents the salient parts of which the PSD values
are greater than Pmean. Eq. (16) shows that, when the constraint of
spectral saliency fSPSD;qg is strong (i.e., non-empty set), the fusion
is conducted by using a union operation, while the constraint of

spectral saliency fSPSD;qg is weak (i.e., null set), the fusion is carried
out by using an intersection operation in which fSP4Pmeang set is
applied. Eq. (17) shows that, the final saliency map is derived from
the fusion of image and auditory saliency features when the
background noise is strong; while in the weak background noise,
the final auditory saliency map is obtained by fusing the image
saliency feature and correlated auditory saliency dominant image
saliency feature together.

5. Experiments

5.1. Experiment setup

In order to verify the performance of proposed auditory
saliency detection framework in dealing with sound signal
occurred in real environment, two sound examples recorded in
real outdoor environment are used. Each example contains at least
one kind of sound occurred in everyday life which are salient to
human awareness. Meanwhile, the properties of salient sounds
contained in the sound examples are vary in both spectral and
temporal domain.

To be specific, example A recorded the sound event of police car
deploying in which the salient sounds contain a siren of police car
with two different frequency patterns and a sudden beep. Example
B is a record of festival march in which the salient sounds to
human hearing awareness are the multiple sounds of the horse's
hoof hitting the ground. The background noises are included in
both of the sound examples but vary in the loudness level.
Respectively, the background noise exists in example A is rarely
salient to the police siren, while the difficulty of auditory saliency
is to distinguish the sudden beep of truck from the salient sound of
police siren as background noise. The background noise exists in
example B is at a very high level and almost as strong as the
sounds of horse's hoof hitting the ground which are salient to
human awareness.

The most salient sound of truck beep from example A and the
salient sound from example B are typical short-term sound signals
which could be masked by the background noise or any less salient
sounds. The frame length of SSE is 1024 points with an overlap of
512 points and the scales of mel-scale filter bank are 20. The
coefficients α and β in Eqs. (9) and (10) are empirically set to 0.133
and 0.114, respectively.

Fig. 3. The original spectrogram of experiment sound example A in (a) and example B in (b). (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)
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shown in Fig. 10(b), the auditory saliency map obtained from the
proposed framework is robust to the strong background noise. It
contains clear and correct saliency detection results which accurately
represent the auditory saliency property of the original salient
sounds in both spectral and temporal domain.

Moreover, it is shown from the experimental results that the
accuracy and robustness of Kayser's approach will decrease
sharply when the background noise is relatively strong and over-
laps the salient sounds. Especially the short term salient sounds
cannot be correctly detected when the acoustic background is
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Fig. 8. The saliency feature obtained from MFCC after IOR test of experiment sound example A in (a) and example B in (b).
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Fig. 10. The final auditory saliency map of experiment sound example A in (a) and example B in (b).

J. Wang et al. / Neurocomputing 152 (2015) 444–454452



41 

Kaya – Temporal Saliency 

Motivation 
•  Temporal signals 
•  Not images 

Features 
•  Intensity envelope 
•  Auditory model 
•  Lateral inhibition 
•  STRF 
–  Temporal (rate) 
– Bandwidth (spectral ripples) 

•  Pitch 

Processing 
•  Multiscale 
•  Local inhibition 
•  Threshold 
•  Sum across channels 

 Emine Merve Kaya and Mounya Elhilali. A temporal saliency map for modeling auditory attention. Information Sciences and 
Systems (CISS), 2012 46th Annual Conference on; 2012.  

auditory saliency models. Our key contribution is that we treat
an auditory scene as a single dimensional temporal input at all
times, rather than treating it as an image. This is not to say we
do not use the frequency-time representation: We do. However,
it is only one feature component of the system, and even then,
we treat every frequency channel as a temporal signal and
do not use contrasts between adjacent frequency channels.
With our newly proposed features for use in auditory saliency
extraction, we follow the original framework of finding salient
points, which are in the end combined to yield a single
temporal auditory saliency map.

II. PREVIOUS AUDITORY SALIENCY MAPS

The structure of the original saliency map framework in [5]
is as follows. The original image is filtered at various levels
to provide multiscale features, usually from scale 1 to scale
8 where the image at each (i+1)th scale is half of the size
of the image at (i)th scale. All of these features are subjected
to center surround differences by cross-scale subtraction of a
subset of pairs of features. This results in “feature maps”. The
feature maps are then each normalized so that they accurately
suppress the background in a scene, at the same time boosting
the salient information. The normalized feature maps are added
across scales to produce one “conspicuity map” for each
feature. These conspicuity maps are averaged to form the final
saliency map. Thus, the size of the resulting saliency map is
a scaled version of the size of the original image. Therefore it
can be directly mapped to the visual space to find the location
of the salient event in the scene.

Kayser’s model first forms the spectrogram of the auditory
signal. The spectrogram is treated as the auditory image and
the rest of the processing will closely follow the framework
explained above. Three features are extracted from the spec-
trogram: Intensity, frequency contrast, and temporal constrast.
Since all of these features are features of the spectrogram
rather than directly on the auditory signal, every feature in
scale 1 is of the same size as the original spectrogram. Center
surround differences are calculated in the same manner as
Itti’s model. The normalization process is the similar in theory
as the one used in [5]. Following, the conspicuity maps are
averaged to form the final saliency map. The most salient event
can be found as the time instance where the maximum of the
saliency map occurs.

Kalinli’s model builds on top of the Kayser model by adding
orientation and pitch information. Orientation information is
extracted from the spectrogram in 45 and 135 degree angles.
Pitch is calculated following the temporal hypothesis of pitch
extraction and then mapped to the frequency axis of the
spectrogram to provide a feature map the same size as the
other maps. The rest of the processing is the same as Kayser’s
map, except for the normalization which is done as the iterative
normalization described in [11], which we also use here for
the time dimension.

Duangudom’s model uses time-frequency energy, temporal
modulation, spectral modulation, and spectro-temporal modu-
lation. The center-surround stage is removed, and only normal-

Fig. 1. Architecture of the temporal saliency model. Features shown as a
line are one-dimensional, features shown as a block are two-dimensional. The
dimensions of different features and feature maps may be different.

ization remains after feature extraction. The normalization is
done in the same method as [5] (Model 1). A variation is also
examined, in which normalization is done on local patches of
maps instead of globally (Model 2), which results in slightly
higher correlation to human reports of saliency.

Kayser has tested his method on simple sounds among
noise, and show that his detection results match psychoacous-
tic experiment results of perceived human saliency. Kalinli
has used the model to detect prominent syllables in speech,
for which detection results of 60-80% are obtained, where
performance is calculated based on how well it matches the
manually labeled data. Duangudom has tested on same type
of stimulus as Kayser, with reports of lower performance
(Correlation mean across subjects for Model 1=0.48, Model
2=0.53) than Kayser has reported (r=0.56, p<0.01).

III. A TEMPORAL SALIENCY MAP

The model we propose in this paper uses 5 features: Wave-
form envelope, spectrogram, rate, bandwidth, and pitch. The
features envelope and pitch are always kept one dimensional
throughout processing. The other features are first computed in
two dimensions: They are still treated as an entity that varies
primarily among time, however the feature is computed for
multiple frequencies/octaves to obtain the highest amount of
information.

The waveform envelope is obtained by the Hilbert transform
of the original waveform. The main advantage of including the
envelope as a feature is two-fold: It is easier to detect loud



42 

Kaya – Temporal Saliency Output 

Test signal 
•  Background: Violin 
•  Foreground: Flute 
•  Timing: Frames 450 – 550  

Result with temporal saliency 
•  Three peaks at:  

Beginning, middle, end 

Comparison to Kayser 
•  Peaks correspond to background 
•  No indication near tone 

Emine Merve Kaya and Mounya Elhilali. A temporal saliency map for modeling auditory attention. Information Sciences and 
Systems (CISS), 2012 46th Annual Conference on; 2012.  

Fig. 2. Saliency results for a timbre-varying target. The background
instrument is a violin and the foreground instrument is a flute. The left
figures are, from top: Envelope, frequency, bandwidth, rate, pitch features;
followed by saliency results of our model. The right figures are the five
conspicuity maps belonging to the feature on the left; followed by saliency
results of Kayser’s model. The top three peaks of our model correspond to
the beginning, middle and end of the target note. The top peaks of Kayser’s
model all correspond to background notes.

events with the waveform, and also the shape of a tone helps
to characterize its timbre. The envelope is computed by first
taking the magnitude of the Hilbert transform of the data, and
then running a Butterworth filter of cutoff 60Hz and order
6 through it. The waveform at scale 1 is convolved with a
5-sample length Gaussian and decimated to half length. This
process is repeated until all 8 scales are obtained.

The auditory spectrum of sound used mimics the informa-
tion processing of the early auditory system. [12] The center
frequencies of the bandpass filters convolved with the input are
evenly distributed on a logarithmic scale. The filtered signal is
put through a mechanism including high-pass filtering, non-

linear compression, and low-pass filtering, in simulation of
inner hair cells. The final output is the integration of a lateral
inhibitory network. [13] Our spectrogram is computed with
time windows of length 2ms with no overlap and 128 channels
over 5.4 octaves. In our experiments, we use data with a
sampling rate of 16kHz, which gives us center frequencies
ranging between approximately 100Hz and 4kHz. The high
windowing rate is chosen to give us better resolution for
further rate processing. The spectrogram is convolved with a 2-
D Gaussian of 5 samples in either direction, and downsampled
to obtain all scales.

Bandwidth and rate information are computed from the
spectrogram by filtering it with cortical bandpass filters in time
and frequency channels. The computation of these features
mimic the response of neurons at the mammal auditory cortex,
which are tuned to a range of spectral resolution and temporal
modulation. [14] It has been found that the auditory system
uses these spectrotemporal modulations, which are shown to
capture properties of speech intelligibility for humans [15].
The characteristic ripple frequencies to compute the bandwidth
feature are selected uniformly between 2�2 and 24 cycles per
octave. The frequencies of the filters for the rate feature are
selected uniformly between 20 and 28, each at up and down
directions. The spectrogram at every scale is filtered by the
appropriate filters for that scale. The rate filter frequencies
are adjusted at every level due to downsampling, the high
frequencies are not computed at that level. This results in
different lengths for the second dimension in the rate feature.

Pitch is obtained from template-matching. For each time
window we select the pitch as the maximum of the cross-
correlation lag. This also gives us a saliency score, which
corresponds to the level of the correlation function. To reduce
random noise effects, we discard the pitch information of
the time values which have a saliency that is lower than
the difference between the mean and standard deviation of
all saliency scores along time. We take the logarithm of
the remaining pitch values and take their derivative so that
resulting high peaks correspond to changes in pitch. The scales
of the pitch feature are obtained identical to the envelope
feature.

After obtaining these features in 8 scales, center-surround
differences are found, mimicking the properties of local cor-
tical inhibition. The process of calculation is across-scale
subtraction between a center (fine) scale and a surround
(coarse) scale, with the result being rectified. The fine scales
are selected as c 2 {2, 3, 4} and the coarse scales are s = c+d

where d 2 {3, 4}; giving us 6 feature maps for each feature.
All of these feature maps are normalized so that the minimum
value across the map is 0, and the maximum value, summed
for all frequencies or bandwidths, at each time instance is 1.
For envelope and pitch, this just means that the feature map is
scaled between 0 and 1. However, the two dimensional features
will be scaled between 0 and a number between 0 and 1. The
previous models all used scaling between 0 and 1 for this point,
however, the features they use are all of the same dimensions,
whereas all of our features have different dimensions. Since the
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Fig. 4. Saliency results for a loudness-varying target. The ratio of the target
to the background is 10db. The figures are the same order as Figure 2. The
top two peaks of our model correspond to the beginning and ending times
of the target note. Kayser’s model has selected the less loud sections of the
scene as more salient.

Next, let us look at what happens when there is a pitch
difference. When the target note has a lower pitch, both
our system and Kayser’s system do well. Kayser can do
well even without pitch information simply due to frequency
contrast because the fundamental frequency of that note will
be lower than any harmonics of other notes so there will
always be a clear difference at that time. However, it is not
so straightforward when there is a higher pitched note mixed
in among notes with lower pitch. In this example, seen in
Figure 3, we are using flute notes. The stimulus setup is the
same as the previous example, and now our 8th note has
a pitch that is 5 semitones higher than the masking notes.
From the conspicuity maps, we see the main contributors to
the saliency at the correct point are pitch and envelope. The
other features have found a previous note with higher energy

Our model Kayser’s model
Hit at 1st peak 70% 15%
Hit at 1-3 peaks 100% 40%

1st peak 1st peak 1-3 peaks
Hit for timbre 33.3% 0% 0%
Hit for pitch 87.5% 37.5% 75%
Hit for loudness 83.3% 0% 33%

Fig. 5. Detection rates of the target musical notes. Background notes vary
only slightly in pitch, while the foreground note can be differing in instrument
(timbre), pitch, or loudness. A hit occurs when a peak of the saliency map
corresponds to the time of the target note being played.

as more salient. Although this was successfully suppressed by
the normalization, it has still produced a very high saliency,
close to the maximum. Kayser’s model was unable to find
the correct note, with many peaks throughout time around the
same saliency level, as would be expected from the image
properties of this spectrogram.

Finally, we look at an example of what happens when
there is a loudness difference. This scene is made up of
harmonica notes, with the target to mask ratio (TMR) being
10dB. As can be seen from the plots in Figure 4, the envelope
expectedly gives the highest saliency for the duration of the
target note, with the other features that consider intensity also
giving high values at the boundaries of the target note. The
pitch coincidentally had a 4 semitone difference at the time
of the high TMR note, and this small difference is again
highly boosted in the system. Interestingly, Kayser’s map
could not find this difference, which should be straightforward
to find when the spectrogram is treated as an image. Its time
and frequency contrast features have overruled the intensity
feature, so it found the relatively more silent parts of the scene
more salient. However, this does not correspond to what is
salient for a human in this case, and indeed TMR is one of
the most easily detected dimensions of saliency for humans.

We ran a test on 20 variations of the stimulus described
above: Timbre is varied 6 times (violin, flute, harmonica pairs),
pitch 8 times (5st and 10st differences, low and high) and
TMR 6 times (7dB and 10dB). A hit is defined as a peak in
the saliency map that corresponds to the location of the target
note at any instance while the note is playing. We calculated at
which peak the target note is found at when peaks are ordered
by magnitude. Detection results are presented in Figure 5.

V. DISCUSSION

Out of the tested dimensions of human perception of
saliency, we can see from the example results how our system
is able to perform better for auditory saliency detection.
Clearly, not all examples are able to yield the same result;
mostly due to complications in calculating features. However,
we see that the most important part of the mechanism to auto-
matically detect saliency is the normalization and combination
part. After the feature extraction stage, the biological system is
able to easily detect the components that stand out and should
be salient. Computationally, this task is not trivial.
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added to every trial to reduce signal-to-noise ratio, and make the
task more challenging while retaining the “natural” scene set-up.
Due to unavailability of higher pitched calls from the same bird,
background tokens are manually shifted three semitones higher
with Adobe Audition to be used as foreground tokens. Additional
foreground songs with 0 semitone pitch difference are also used,
with a change in another attribute (intensity or timbre) following
the factorial experimental design. Tokens are amplitude normal-
ized relative to their top 5%th value. Recordings of water and
wind sounds (one track for each) are each normalized to have
the same peak amplitude as the combined background, and fur-
ther added to the background. The foreground token is 2 or 8 dB
higher than the background. Three sequences of bird calls with
0.5 s phase shift are added for a total duration of 6 s. The fore-
ground token onset is randomly chosen between 58% and 68% of
the trial length. Each individual background token is used at most
two times within the same trial. The resulting experiment design
is (Pitch ∗ Intensity ∗ Timbre-foreground ∗ Timbre-background)
2 ∗ 2 ∗ 3 ∗ 3. Each condition is repeated eight times with addi-
tional 25% control trials. Control trial tokens vary in the same
range of pitch and intensity as background tokens of test trials.
Each third of the control trials uses one of the three bird sounds
in this experiment.

2.1.3. Experiment III: Speech
The background in the third experiment emulates a party scene
where one can perceive that people are speaking, but cannot make
out what is being said. A noisy telephone conversation recording
of two female Japanese speakers is selected from the CALLHOME
Database (http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC96S37). The choice of Japanese in this experiment
is deliberate to ensure non-linguistic interpretations from our
non-Japanese-speaking listeners. Further, unlike in Exp. I, one
cannot make out individual tokens even while actively attend-
ing to them, due to the high level of word overlap and noise
in the source recording. Fifty-six words in the 175–233 Hz (F3-
A#3) range and of 0.5–1.2 s length are manually extracted at
8 kHz to be in the background. Each word is allowed to appear
at most twice in one trial. Each token is amplitude normal-
ized with its top value and applied a 0.05 s long onset and
offset ramp. The background consists of a combination of four
sequences of tokens with no delay. Foreground tokens are 10
and 13 dB higher from the cumulative background. A foreground
token consists of a sample from a selection of 12 words with
approximately eight semitone difference from the background
between 349 and 369 Hz (F4-F#4), each 0.5 s long. Additional
foreground words with 0 semitone pitch difference are also used.
The foreground onset is also manipulated by placing it in one
of four 1.25 s long quadrants of the 5 s long trial, hence prob-
ing the effect of timing of foreground on perception of saliency.
The resulting experiment design is (Pitch ∗ Intensity ∗ Timbre-
foreground ∗ Timbre-background ∗ Time) 2 ∗ 2 ∗ 2 ∗ 2 ∗ 4.
Each condition is repeated four times, 7.25% are control tri-
als. Control trial tokens vary in the same range of pitch and
intensity as background tokens of test trials. Sixty percent of
control trials use one speaker, while forty percent use the other
speaker.

2.2. COMPUTATIONAL MODEL
2.2.1. Computation of sound features
The model starts by extracting acoustic attributes of the incom-
ing signal with a focus on intensity, pitch and timbre (Figure 3).
Intensity is derived from an estimate of the signal’s tempo-
ral envelope, extracted from the magnitude Hilbert transform,
Butterworth filtered with wc = 60 Hz, n = 6. Pitch and timbre
are extracted from the sound spectrogram, which is computed
with 1 ms frames. The spectrogram computation mimics the pro-
cessing known to occur from the cochlea to the mid-brain: Using
a bank of 128 constant-Q bandpass log-scale filters, followed
by high-pass, compression, and low-pass filtering then spectral
sharpening following the model of Chi et al. (2005). Pitch is
extracted from a harmonicity analysis of spectrogram spectral
slices, following a template matching approach (Shamma and
Klein, 2000; Walker et al., 2011). Only pitch estimates with a
good match to the template are retained, and further smoothed
using a median filter with a 5-sample window. Timbre is a more
abstract, less quantifiable attribute, than pitch or intensity. Earlier
work argued a close correspondence between timbre perception
and spectro-temporal details of sound events (Patil et al., 2012).
Here, we follow the same premise and first augment our feature
space directly with the channels of the spectrogram. In addition,
we extract bandwidth information that highlights broad vs. nar-
rowband spectral components; along with temporal modulations
that follow dynamic changes of sounds over time. The temporal
response of each spectrogram channel is analyzed using short-
term Fourier transform with 200 ms windows with 1 ms overlap.
Spectral slices of the spectrogram are processed further using
Gabor bandpass filters with characteristic frequencies logarith-
mically distributed between 2−2 and 24 cycles/octave to extract
bandwidth details (Chi et al., 2005). The top 64 and bottom 64
channels of the spectrogram are treated as separate features in
subsequent processing as high and low frequency spectrum fea-
tures. The full mapping consists of a 167-dimensional tensor.

FIGURE 3 | Schematic of the computational saliency model. The model
is structured along three stages. It starts with an acoustic waveform and
extracts relevant features along five dimensions. Regularities within each
feature dimension are then tracked used a Kalman-filter to make predictive
inferences about deviations from ongoing statistics in that corresponding
feature. Detected deviants are boosted according to interaction weights
learned using the experimental stimuli, then integrated across feature
dimensions to yield an overall saliency estimate of the entire auditory
scene. The final values mark salient timings in the scene.

Frontiers in Human Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 327 | 5
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FIGURE 6 | Comparisons of human and model results based on saliency
ratings and detection performance. (A) Correlation between averaged
model saliency scores and human saliency ratings shown for all experiments.
Averaging is performed between repeated experimental cases, and also
between subjects for the human ratings. (B) The time trend that emerged in
the model results for Experiment III. Diamonds show the d ′ for each quadrant
in model results, and dots represent the human responses. We observe a
similar trend as in Figure 2B. (C) We show that as saliency increases, the
model produces higher saliency scores. This is along the same lines with
human results. Control trials have no foreground token; there is no salient
event during the scene. Feature level 0 on the x-axis corresponds to a
foreground token with low level of saliency. As an example, for Experiment
III, this corresponds to no difference in pitch or timbre, but a 10 db difference

in intensity. Feature level 1 corresponds to the high level of difference, which
is 13 db for intensity in this experiment. Any change in timbre or pitch is also
counted as a high difference due to the experimental set-up, outlined in
Methods. The dashed lines in the left plot show where the threshold falls for
calculating the optimal d ′. The separability of control trials from test trials
demonstrated here is also reflected in the ROC plot. (D) The probabilistic
output of the saliency model leads to a detection curve in ROC space by
setting a threshold to distinguish true and false detections. The d ′ metric can
be computed for each point in this space, quantifying performance; d ′ is 0
when true and false detection rates are equal. We can infer from the curves
that the saliency scores of the control trials are most easily separable than
the saliency scores of the test trials for Experiment III, and that the
performance of the model is closest to humans for Experiment II.

a deviance detector is evaluated with an ROC curve, which maps
the discrimination ability of the classifier as true detections (“hit
rate”) against false detections (“false alarm”). Detection rates are
computed for every possible threshold in the range [0, 1] with a
step size of 0.001. The resulting ROC curves of the model (with
weights from training all experimental stimuli simultaneously)
are shown in Figure 6D, along with each subject’s performance
as mapped onto the ROC space. We select optimal thresholds on
the curve based on the d′ metric, which quantifies the discrimi-
nation ability of the classifier at each location of the ROC space.
The average human d′ values obtained from our psychoacoustic
experiments are: I: 3.61, II: 1.88, III: 2.67. Selecting the thresholds
for each experiment that produce the closest hit rate to human
results, we obtain d′ values of I: 1.11, II: 1.20, III: 3.10. On the
other hand, if the model is tuned as an absolute deviance detector
(i.e., based on ground truth of deviant events), it yields d′ values
of: I: 2.29, II: 1.72, III: 4.74. In comparison, the d′ values on the
same stimuli run through the Kayser et al. saliency model (Kayser
et al., 2005) are: I: 0.91, II: 0.78, III: 0.52 (scores correspond to
maximum amplitude of the saliency map, parallel to our defini-
tion of the saliency score in this study). Moreover, unlike the static
nature of previous auditory saliency models, the current compu-
tational model reveals a temporal build-up behavior similar to
that observed in the speech experiment (Figure 2B). The model
d′ values corresponding to the four quadrants are: 2.91, 3.10, 3.21,
3.21, illustrated in Figure 6B.

4. DISCUSSION
Results from our perceptual experiments reveal an intricate audi-
tory saliency space that is multidimensional and highly intercon-
nected. Some of the observed interactions are not unique to the
current study; but have been reported in other contexts of detec-
tion, classification and discrimination tasks (Melara and Marks,
1990; Moore, 2003; Allen and Oxenham, 2013). The current work
paints a more complete picture of the non-symmetric nature
of interactions in the context of complex dynamic scenes. Each
of the probed auditory attributes (pitch, timbre and intensity)
is a complex physical property of sound that likely evokes sev-
eral neural processing streams and engages multiple physiological
nuclei along the auditory pathway. It remains to be seen whether
the nature of interactions reported here reflects intrinsic neural
mechanisms and topographies of feature maps in the sensory sys-
tem; or reveals perceptual feature integration processes at play in
auditory scene analysis.

The study of bottom-up auditory attention appears to be
intimately linked to processes of auditory scene perception and
formation of auditory objects. The current work argues for a
strong link between tracking statistics of an auditory scene and
elicitation of deviance signals that flag salient sounds as aber-
rant events that would be attention grabbing. This process builds
strongly on the notion of predictive inference, and frames the
analysis of auditory scenes and selecting events of interest via pre-
dictive interpretations of the underlying events in the scene. The

Frontiers in Human Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 327 | 9
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FIGURE 7 | Summary of interaction weights that emerge from training
the computational model. The model is trained using the same stimuli
used in the experimental testing. Thicker lines denote higher weights. An
arrow between features indicates that the origin feature of the line boosts
the effect of the destination of the line. The different colors indicate the
computational features that encode effects of the experimental features,
the deeper the color, the stronger the relationship. As in Figure 4, the
weight and directionality of interactions in this figure are inferred from the
coefficients of the fitted model, and are limited by the levels of sound
features tested in the human experiments.

saliency processes presented here could be interpreted as signals
for marking the reset of the grouping process in auditory stream-
ing; flags of deviant events within an existing perceptual stream;
or indicators of initiation of a new auditory object which does not
fit within the expected fluctuations of the ongoing stream. Such
notion is intimately linked to the concept of regularity tracking
as an underlying mechanism for perception in auditory scenes
(Winkler et al., 2009), with accumulating evidence that strongly
tie predictive models of sensory regularity and stream segrega-
tion (Bendixen et al., 2010; Andreou et al., 2011). Some of the
computational primitives presented in the current model could
be seen as a shared neural infrastructure that mediates regular-
ity tracking in a sensory-driven way (Rahne and Sussman, 2009),
both to provide putative interpretations of the auditory scene as
well as flag pertinent events of interest (guided by bottom-up
attentional processes). The strong effect of timing on perception
of saliency demonstrated by our pyschoacoustical and computa-
tional findings further hints to ties between the inference process
observed here and the phenomenon of build-up of auditory
streaming (Bregman, 1978; Anstis and Saida, 1985; Micheyl et al.,
2005; Haywood and Roberts, 2010) or its perceptual stability
(Pressnitzer et al., 2008; Kondo et al., 2012).

The model presented here is a formal implementation of the
concept of regularity tracking and deviance detection in the con-
text of dynamic scenes. These concepts have often been linked
to studies of auditory attention, though the causal relationship
between attention and representations of regularity is still a mat-
ter of debate (Sussman et al., 2007). The physiological bases of
deviance detection is commonly probed using mismatch negativ-
ity (MMN) (Picton et al., 2000), a neural marker that emerges as
the difference between responses to the “standard” and “deviant”

in a stimulus often in an oddball paradigm (Winkler, 2007).
The underlying mechanisms eliciting this negativity have been
attributed to a potential role of memory (Naatanen et al., 1978;
Garagnani and Pulvermuller, 2011) or caused by neural habitua-
tion to repeated stimulation (May and Tiitinen, 2010). A unifying
framework for these mechanisms has been proposed in theo-
ries of Bayesian inference (Winkler, 2007; Bendixen et al., 2012;
Lieder et al., 2013). The premise is based on the notion that the
“Bayesian brain” continuously makes likelihood inferences about
its sensory input, conceivably by generating predictions about
upcoming stimuli (Friston, 2010). Predictive coding is arguably
the most biologically plausible mechanism for making these infer-
ences, implicating a complex neurocircuitry spanning sensory,
parietal, temporal and frontal cortex (Bastos et al., 2012). The
computational framework presented in this study follows the
same predictive coding premise to model mechanisms of bottom-
up auditory attention. It formalizes key concepts that emerge
from our perceptual findings; namely: use of dynamical system
modeling to capture the behavior of the acoustic scene and its
time-dependent statistics; tracking the state of the system over
time to infer evolution of sound streams in the scene; generat-
ing expectations about stimuli that adapt to the fidelity of sensory
evidence and lead to a build-up effect of saliency detection accu-
racy; multidimensional mapping of sensory data that enables
integrated cross-channel deviance detection while accounting for
complex interactions in this multi-feature space. Kalman filtering
is a natural fit for modeling such behavior. It provides an online
tool for tracking evolution of states of a dynamical system that
reflect past behavior and expected trajectory of the system. In
many respects, the Kalman filter is equivalent to iterative Bayesian
filtering under certain assumptions (Chen, 2003), and can be
implemented using biologically plausible computations in neural
circuits (Szirtes et al., 2005; Linsker, 2008). However, the Kalman
formulation remains a linearized approximation of the dynamic
behavior of acoustic scenes. More suitable frameworks such as
particle filtering (Ristic et al., 2004) or recurrent Bayesian mod-
eling (Mirikitani and Nikolaev, 2010) as well as non-Bayesian
alternatives based on Volterra system analysis (Korenberg and
Hunter, 1996) need to be investigated to provide a more complete
account of the inference process in everyday acoustic scenes.

The use of predictive coding in the model takes a different
direction from common modeling efforts of saliency in other
modalities, particularly in vision. There is an abundance of mod-
els that implement concepts of stimulus-driven visual attention in
which the theory of contrast as measure of conspicuity of a loca-
tion in a visual scene plays a crucial role (see Borji and Itti, 2013
for a recent review). These models vary in their biological plausi-
bility and anatomical fidelity to the circuitry of the visual system,
and differ in their focus on sensory-based vs. cognitive-based pro-
cesses for attentional bias of visual information. Very few models
have explored the role of Bayesian inference in modeling visual
saliency. Recent work has started exploring the notions of expec-
tation, predictability and surprise as a conceptual framework for
visual saliency (Itti and Baldi, 2006; Bruce and Tsotsos, 2009;
Chikkerur et al., 2010). While the notion of “prediction” or pre-
dictive coding is implicit in these models, they incorporate many
of its conceptual elements and could rely on the canonical circuits
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FIGURE 4 | Summary of interaction weights based on behavioral tests
with human listeners. Solid lines indicate two-way, dashed lines
three-way and dotted lines four-way interactions. Effects that emerged in
every experiment are shown black, and those that were found in at least
one experiment are shown gray. Arrow directions indicate direction of
interaction: the origin feature has a relatively larger effect on the destination
feature in all experiments. Double-sided arrows indicate that there is no
clear weight either way. The weight and directionality of interactions
observed are inferred from the coefficients of the fitted model, and are
limited by the levels of sound features tested in this study.

suggests a notion of accumulation of background statistics over
time, in agreement with our hypothesis.

3.2. COMPUTATIONAL MODEL
The computational model produces a one-dimensional signal
indicating the likelihood of salient events over time, correspond-
ing to a “saliency score.” The model is run on the same stimuli
used in the experiments, with interaction weights obtained by
training on the ground truth about salient events. Note that no
model training is done to match it to the human ratings. The
average model saliency scores for trials with salient tokens are
statistically significantly higher than those for control trials (t-
test, all experiments: p < 10−2). In most trials, the likelihood
of saliency is highest during the duration of the actual salient
event: I: 61%, II: 78%, III: 92% (Figure 5A). When contrast-
ing the model scores with human ratings, strong correlations are
observed (Figure 6A). The saliency scores of repeated factorial
cases are averaged for the model. The human responses, mapped
to 0 and 1, are averaged over factorial case repetitions, and also
averaged between subjects. Statistically significant correlations are
found in each experiment, when the model weights are calibrated
for stimuli and ground truth from all experiments simultane-
ously (Spearman’s rank correlation: I: ρ = 0.60, p < 10−5. II:
ρ = 0.63, p < 10−5. III: ρ = 0.61, p < 10−5.). Higher perfor-
mance is observed when the model is calibrated for ground truth
of each experiment separately (Spearman’s rank correlation: I:
ρ = 0.64, p < 10−5. II: ρ = 0.72, p < 10−5. III: ρ = 0.80, p <

10−5.). Furthermore, we observe that the model saliency scores
increase as the level of saliency increases. The level or strength
of saliency of a token is taken as the number of sound attributes
in which the foreground is different than background. Figure 6C
(left) shows the increase in model saliency score as the foreground
saliency strength increases (Spearman’s rank correlation: I: ρ =
0.67, p < 10−5, II: ρ = 0.61, p < 10−5, III: ρ = 0.64, p < 10−5).

FIGURE 5 | Analysis of model results. (A) The time instance where the
maximum likelihood of saliency was detected for foreground tokens in the
scene. Trials in which the maximum saliency was found outside the
duration of the foreground are not included. For musical notes and bird
songs, the deviance is detected soon after the token onset. For spoken
words, the deviance is detected during the first half of the token onset. In
some cases, the model finds the offset deviance instead of onset deviance.
(B) Regardless of whether the maximum likelihood of saliency was inside
the foreground token duration, the feature that the saliency was detected in
is shown. The features are, in order: Envelope, Harmonicity,
Spectrogram-top, Spectrogram-bottom, Bandwidth, Temporal modulation.

The behavior of human listeners is also similar, with average rat-
ings across subjects increasing as strength of saliency increases as
shown in the right plot in Figure 6C (Spearman’s rank correla-
tion: I: ρ = 0.83, p < 10−5, II: ρ = 0.81, p < 10−5, III: ρ = 0.64,
p < 10−5).

We perform further analysis on the model’s behavior and
observe that different acoustic features have varying levels of
contribution in different experiments; bandwidth and tempo-
ral modulation appear to be the most effective (Figure 5B). A
careful inspection of model feature interactions shows strong sim-
ilarity with psychoacoustic findings (Figures 4, 7), even though
the model interaction weights are trained based on ground truth
about deviant events, not on human results. In particular, pitch
and intensity have a strong interaction in both human perception
and the computational model. The effect of intensity is strongly
boosted by pitch; their opposite interaction is weaker. Features
capturing timbre have complex interactions between themselves
depending on the experiment. It is important to note that the
overall interactions observed reflect the redundancy in the com-
putational features—e.g., intensity is encoded, to some extent,
in the spectrogram, and thus bandwidth, therefore these features
tend to spike together, leading to likely interactions between them.
The observed effects should be interpreted within the context of
the feature levels tested in the human experiments.

The probabilistic saliency output of the model can function as
a discrete deviance detection mechanism by mapping the saliency
scores to a binary classification. The performance of the model as
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Tsuchida – Auditory Saliency using Natural Statistics 

Saliency definition 
 sx(t) ∝ −log P(Fx = fx)  

•  Similar to Bayesian surprise 
•  Rarity = salience 

 

Features 
•  Gammatone 
•  20 bands of channels 
•  PCA 
•  2-3 components per band 

Statistics 
•  GMM with 10 mixtures  
•  Recent vs. Long past 
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Audio waveform

Gammatone filterbank

Cochleagram
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...
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8 ms

Split into frequency bands

Features

Figure 1: Schematics for the feature transformation pipeline.
Input signals are first converted to smoothed cochleagram.
This is separated into 20 bands of 8 msec patches. The di-
mensions of each band are reduced using PCA.

2. “Animal”: collection of animal vocalizations in tropical
forests from (Emmons, Whitney, & Ross, 1997). Most of
the vocalizations are relatively long and repetitious.

3. “Speech”: collection of spoken English sentences from the
TIMIT corpus (Garofolo et al., 1993). This is similar to the
animal vocalizations, but possibly with less tonal variety.

4. “Urban”: this is a collection of sounds recorded from a city
(van den Berg, 2010), containing long segments of urban
noises (such as vehicles and birds), with a limited amount
of vocal sounds.

In the case of natural images, ICA filter responses follow
the generalized Gaussian distribution (Zhang et al., 2008).
However, the auditory feature responses from the sound col-
lections did not resemble any parameterized distributions.
Consequently, a Gaussian mixture model with 10 components
was used to fit the empirical distributions for each band from
each of the collections. Figure 2 shows examples of density
model fits against empirical distributions. The distributions
from each collection represent the lifetime statistics portion
of ASUN model, and each corresponds to a model of saliency
for an organism living under the influence of that particular
auditory environment.

The local statistics of the input signal were estimated us-
ing the same method: at each time step t of the input signal,
the probability distribution of the input signal from 0 to t �1
was estimated. For computational reasons, the re-estimation
of the local statistics were computed every 250 msec. Unfor-
tunately, this leads to a discontinuity in the local probability
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Figure 2: Gaussian mixture model fits (red) against the empir-
ical distribution of feature values (blue). The mixture model
is used to estimate P(Ft = ft |Ft�k�1, ...).

(a) Short and long tones

(b) Gap in broadband noise

(c) Stationary and modulated tones

(d) Single and paired tones

Figure 3: Spectrograms and saliency maps for simple stim-
uli. Left columns are the spectrograms of the stimuli, and
right columns are the saliency maps (top) and saliency values
summed over frequency axis (bottom). Due to the nonlin-
ear cochleogram transform, the y-axes of the two plots are
not aligned. (a) Between short and long tones, the long tone
is more salient. (b) Silence in a broadband noise is salient
compared to the surrounding noise. (c) Amplitude-modulated
tones are slightly more salient than stationary tones. (d) In
a sequence of closely spaced tones, the second tone is less
salient.

distribution every 250 msec. This will be improved in future
work, where we plan to apply continually varying mixture
models to eliminate such transitions.

Qualitative Assessments
In (Kayser et al., 2005), the auditory saliency model repro-
duces basic properties of auditory scene perception described
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Tsuchida – Qualitative Results 

Long tone is more salient 

 

 

Silence is salient in broadband noise 

 

 

AM modulated tones more salient than 
stationary 

 

Second tone less salient 
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Figure 1: Schematics for the feature transformation pipeline.
Input signals are first converted to smoothed cochleagram.
This is separated into 20 bands of 8 msec patches. The di-
mensions of each band are reduced using PCA.

2. “Animal”: collection of animal vocalizations in tropical
forests from (Emmons, Whitney, & Ross, 1997). Most of
the vocalizations are relatively long and repetitious.

3. “Speech”: collection of spoken English sentences from the
TIMIT corpus (Garofolo et al., 1993). This is similar to the
animal vocalizations, but possibly with less tonal variety.

4. “Urban”: this is a collection of sounds recorded from a city
(van den Berg, 2010), containing long segments of urban
noises (such as vehicles and birds), with a limited amount
of vocal sounds.

In the case of natural images, ICA filter responses follow
the generalized Gaussian distribution (Zhang et al., 2008).
However, the auditory feature responses from the sound col-
lections did not resemble any parameterized distributions.
Consequently, a Gaussian mixture model with 10 components
was used to fit the empirical distributions for each band from
each of the collections. Figure 2 shows examples of density
model fits against empirical distributions. The distributions
from each collection represent the lifetime statistics portion
of ASUN model, and each corresponds to a model of saliency
for an organism living under the influence of that particular
auditory environment.

The local statistics of the input signal were estimated us-
ing the same method: at each time step t of the input signal,
the probability distribution of the input signal from 0 to t �1
was estimated. For computational reasons, the re-estimation
of the local statistics were computed every 250 msec. Unfor-
tunately, this leads to a discontinuity in the local probability
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Figure 2: Gaussian mixture model fits (red) against the empir-
ical distribution of feature values (blue). The mixture model
is used to estimate P(Ft = ft |Ft�k�1, ...).

(a) Short and long tones

(b) Gap in broadband noise

(c) Stationary and modulated tones

(d) Single and paired tones

Figure 3: Spectrograms and saliency maps for simple stim-
uli. Left columns are the spectrograms of the stimuli, and
right columns are the saliency maps (top) and saliency values
summed over frequency axis (bottom). Due to the nonlin-
ear cochleogram transform, the y-axes of the two plots are
not aligned. (a) Between short and long tones, the long tone
is more salient. (b) Silence in a broadband noise is salient
compared to the surrounding noise. (c) Amplitude-modulated
tones are slightly more salient than stationary tones. (d) In
a sequence of closely spaced tones, the second tone is less
salient.

distribution every 250 msec. This will be improved in future
work, where we plan to apply continually varying mixture
models to eliminate such transitions.

Qualitative Assessments
In (Kayser et al., 2005), the auditory saliency model repro-
duces basic properties of auditory scene perception described
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Tsuchida – Natural Statistics Results 

Test Material 
•  Sound effects 
•  Measure with Kayser and Sun 
•  50 high saliency (both) 
•  50 low saliency (both) 
•  50 large difference (mismatch) 
•  Subjects 

Tests 
•  7 subjects 
•  75 pairs 

Compare  
Random 
Intensity 
Kayser 
ASUN 

Tsuchida T, Cottrell G. Auditory saliency using natural statistics. Society for Neuroscience meeting, New Orleans, LA 2012.  
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Figure 4: Correlation coefficient between various models and
human ratings of saliency (N=7.) ASUN models correlated
with the human ratings of saliency significantly better than
the Kayser model.

are not fit to individual subjects, this value provides the ceil-
ing for any model predictions. Because three of the seven
subjects went through the same trial pairs in the same order,
these trials were used to calculate the across-subject correla-
tion value, and the model responses. Figure 5 shows the cor-
relation values including the across-subject correlation. The
result shows that the difference between the across-subject
correlations (M = 0.6556,SD = 0.0544) and the ASUN
model predictions (M = 0.4831,SD= 0.0432) was significant
(t(2) = 16.9242, p = 0.0035), indicating that the models do
not yet predict saliency at the subject-consensus level. Never-
theless, the ASUN model correlations were still significantly
higher than the Kayser model (M = 0.1951,SD = 0.0815) at
(t(2) =�9.855, p = 0.0101).

The performance for the Kayser model in this experiment
was notably worse than what was reported in (Kayser et al.,
2005). There are several possible explanations for this. First,
the audio samples presented in this experiment were roughly
normalized for the perceived loudness. This implies that a
saliency model that derives saliency values from the loudness
measure in large part may not perform well in this experi-
ment. Indeed, the intensity model does not predict the result
above chance (t(6) = 0.66, p = 0.528). Although the Kayser
model does combine information other than the intensity im-
age alone, it is possible that the predictive power of the model
is produced largely by loudness information.

Second, as described previously, some of the trial pairs
were chosen intentionally to produce maximal difference be-
tween the Kayser and ASUN models, and this produced the
large performance disparity. Figure 6 support this hypothesis:
in the high saliency difference trials, both models performed
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Figure 5: Correlation coefficient between various models and
human ratings of saliency. A subset of data for which the
same trial pairs were presented was analyzed (N=3). Across-
subject performance was estimated using the correlation co-
efficients for all possible pairs from the three subjects.

equally well (t(6) = 0.3763, p = 0.7091.) In contrast, in high
model discrimination trials, ASUN models performed signif-
icantly better than the Kayser model (t(6) = 17.31, p < 0.01.)
Note that the high model discrimination group was not picked
based on the absolute value (or “confidence”) of the model
predictions, but rather solely on the large difference between
the two model predictions. This implies the procedure itself
does not favor one model or the other, nor does it guarantee
performance disparity on average. Nevertheless, the result
shows that the ASUN models perform better than the Kayser
model in those trials, suggesting the performance disparity
may be explained in large part from those trials.

Discussion
In this work, we demonstrated that a model of auditory
saliency based on the lifetime statistics of natural sounds is
feasible. For simple tone signals, auditory saliency maps cal-
culated by the ASUN model qualitatively reproduce phenom-
ena reported in the psychophysical literature. For more com-
plicated audio signals, assessing the validity of the saliency
map is difficult. However, we have shown that the relative
magnitudes of the saliency map peaks correlate with human
ratings of saliency. The result was robust across different
training sound collections, which suggest a certain common-
ality in the statistical structure of naturally produced sounds.

There are aspects of the saliency model that may be im-
proved to better model human physiology. For example,
there is ample evidence of temporal integration at multiple
timescales in human auditory processing (Poeppel, 2003).
This indicates that the feature responses of the input signal
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Kim – Machine learned salience 

Training data 
•  AMI Meeting Corpus 
•  12 hours of data 
•  “Mark the moment when you hear any 

sound which you unintentionally pay 
attention to or which attracts your 
attention.” 

Classifier 
•  Linear on cochlear channel loudness 

four non-linear features: (1) zero-crossing rate, (2) spectral flatness
measure (

R
logðSðf ; tÞÞdf # logð

R
Sðf ; tÞdf Þ, where Sðf ; tÞ is spectral en-

ergy at frequency f and time t) (Niyogi et al., 1999), (3) pitch (T0), and
(4) pitch prediction coefficient (RðT0Þ=Rð0Þ, where Rð$Þ is the auto-
correlation of the acoustic signal). These features cannot be linearly
calculated from the loudness, but they are commonly used as
acoustic features in speech signal processing; pitch and pitch pre-
diction, in particular, are probably computed by the auditory brain-
stem based on phase locking on the auditory nerve (Licklider,
1951; Cariani, 1999). Care should be taken when combining these
features with loudness features because the salience filter reflects
spectral relation. For instance, a zero-crossing rate (ZCR) attached
near the first Bark band of the loudness would result in a different
error rate from a ZCR attached near to the last Bark band. To elim-
inate dependency on the location of the second feature, we applied
only the spectral-context-independent saliency filter. The tempo-
ral length of the saliency filter used in this comparison is set to
60 ms (1 % 15). The EERs (Equal Error Rates) for the combinations
of loudness features with non-linear features (1)–(4) are shown in
Table 2. Note that the discrimination performance can get worse
even though more features are added since all the training and test
sets are different. As shown in Table 2, none of the feature combi-

nations outperform discrimination based only on loudness. The
fact that the same saliency filter is applied for all frequency ele-
ments in our approach means that our approach could cause
poorer performance when the additional features have different
temporal characteristics. Even if the additional features are related
to acoustic salience, the combination of the feature and the loud-
ness could perform worse than using just one of them. This fact
tells us that the results in Table 2 do not mean that the additional
features, zero-crossing rate, spectral flatness, pitch and pitch pre-
diction coefficient, have no connection to auditory salience. The
combination of the loudness and zero-crossing rate outperforms
the other combinations in Table 2. This should be interpreted to
mean that the linear relation between loudness and auditory sal-
ience is closer to that between the zero-crossing rate and auditory
salience than the other features.

We also tested Mel Frequency Cepstral Coefficients (MFCC) as
an input to the linear discrimination. The discrimination result is
shown in the bottom of Table 2, and is poorer than that produced
using loudness. There are at least two possible explanations for this
result. First, the MFCC may have less relation with auditory sal-
ience than loudness. Second, the consistency of the salience filter
in the Bark domain may be better than in the cepstral domain.

4.5. Selection of threshold for statistical purification

One of the crucial steps in this work is to build up ground truth
for auditory salience by thresholding polling data. The question
arises how the choice of the threshold affects the discrimination
results. So far we have used a threshold of 8 out of 12 annotations
for salience. What happens if we choose other values? We experi-
mentally tested other threshold values, and the results are shown
in Fig. 5. For this experiment, we did not segment the annotated
data into two parts but rather used all the data for training. Note
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Table 2
Equal Error Rate for linear discriminations with the feature combinations.

Features Dimension Equal error rate

Proposed method (loudness) 49 0.3198
Loudness + zero-crossing rate 50 0.3271
Loudness + spectral flatness 50 0.3958
Loudness + pitch (T0) 50 0.4345
Loudness + RðT0Þ=Rð0Þ 50 0.4313
Loudness + all the features 53 0.3922
MFCC 13 0.3446
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Fig. 5. Equal error rate varying thresholds for the number of salience annotations.
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four non-linear features: (1) zero-crossing rate, (2) spectral flatness
measure (

R
logðSðf ; tÞÞdf # logð

R
Sðf ; tÞdf Þ, where Sðf ; tÞ is spectral en-

ergy at frequency f and time t) (Niyogi et al., 1999), (3) pitch (T0), and
(4) pitch prediction coefficient (RðT0Þ=Rð0Þ, where Rð$Þ is the auto-
correlation of the acoustic signal). These features cannot be linearly
calculated from the loudness, but they are commonly used as
acoustic features in speech signal processing; pitch and pitch pre-
diction, in particular, are probably computed by the auditory brain-
stem based on phase locking on the auditory nerve (Licklider,
1951; Cariani, 1999). Care should be taken when combining these
features with loudness features because the salience filter reflects
spectral relation. For instance, a zero-crossing rate (ZCR) attached
near the first Bark band of the loudness would result in a different
error rate from a ZCR attached near to the last Bark band. To elim-
inate dependency on the location of the second feature, we applied
only the spectral-context-independent saliency filter. The tempo-
ral length of the saliency filter used in this comparison is set to
60 ms (1 % 15). The EERs (Equal Error Rates) for the combinations
of loudness features with non-linear features (1)–(4) are shown in
Table 2. Note that the discrimination performance can get worse
even though more features are added since all the training and test
sets are different. As shown in Table 2, none of the feature combi-

nations outperform discrimination based only on loudness. The
fact that the same saliency filter is applied for all frequency ele-
ments in our approach means that our approach could cause
poorer performance when the additional features have different
temporal characteristics. Even if the additional features are related
to acoustic salience, the combination of the feature and the loud-
ness could perform worse than using just one of them. This fact
tells us that the results in Table 2 do not mean that the additional
features, zero-crossing rate, spectral flatness, pitch and pitch pre-
diction coefficient, have no connection to auditory salience. The
combination of the loudness and zero-crossing rate outperforms
the other combinations in Table 2. This should be interpreted to
mean that the linear relation between loudness and auditory sal-
ience is closer to that between the zero-crossing rate and auditory
salience than the other features.

We also tested Mel Frequency Cepstral Coefficients (MFCC) as
an input to the linear discrimination. The discrimination result is
shown in the bottom of Table 2, and is poorer than that produced
using loudness. There are at least two possible explanations for this
result. First, the MFCC may have less relation with auditory sal-
ience than loudness. Second, the consistency of the salience filter
in the Bark domain may be better than in the cepstral domain.

4.5. Selection of threshold for statistical purification

One of the crucial steps in this work is to build up ground truth
for auditory salience by thresholding polling data. The question
arises how the choice of the threshold affects the discrimination
results. So far we have used a threshold of 8 out of 12 annotations
for salience. What happens if we choose other values? We experi-
mentally tested other threshold values, and the results are shown
in Fig. 5. For this experiment, we did not segment the annotated
data into two parts but rather used all the data for training. Note
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Table 2
Equal Error Rate for linear discriminations with the feature combinations.

Features Dimension Equal error rate

Proposed method (loudness) 49 0.3198
Loudness + zero-crossing rate 50 0.3271
Loudness + spectral flatness 50 0.3958
Loudness + pitch (T0) 50 0.4345
Loudness + RðT0Þ=Rð0Þ 50 0.4313
Loudness + all the features 53 0.3922
MFCC 13 0.3446
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Saliency – Unsolved Problems 

Data 
•  No good way to measure saliency effect 
•  Measuring detectability vs. distraction? 
•  No common datasets 

Model 
•  No direct evidence for attention hardware 
•  Machine-learned vs. Bayesian 
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Carlin – Attention-driven Plasticity 
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Carlin – STRF Adaptation 
Carlin and Elhilali Modeling plasticity in receptive fields

A B

C D

E F

FIGURE 3 | Validation of the Feature-Based Model on a variety of

behavioral tasks. Each panel shows an STRF in the passive and active

behavioral state, and the difference STRF illustrates the effects of the model

on STRF shape. (A,B) Tone detection: Target tones (red arrows) elicit

increased excitation at the target frequency. The difference pattern also

reveals a small degree of inhibition at non-target frequencies within the mask.

(C,D) Chord detection: Target tones elicit increased excitation at each of the

frequencies in the target complex, with regions of suppression between and

outside the targets. (E,F) Tone discrimination: Target tones elicit increased

excitation whereas reference tones (blue arrows) are suppressed. White lines:

isoline contours of the spectro-temporal mask at the 20% level. STRFs are

interpolated for display. Examples shown for λ = 10−4.5,C = 10−3.

(p ≪ 0.001, t-test and Wilcoxon signed-rank test). Importantly,
similar observations have been made in ferret recordings by Fritz
et al. (2003).

For chord detection, the target stimuli comprise three tones,
some of which may be near or far to a given neuron’s best
frequency (BF). Based on the Gaussian shape of the maskmk(t, f )
for a given filter, we expect that tones near BF would induce
stronger plasticity effects compared to those far from BF. We
verify this by computing the average "STRF aligned to target
tones nearest to and furthest from BF, and these results are shown
in Figure 4C. As shown, tones near BF induce stronger local
excitatory changes compared to tones far from BF. As suggested
previously in Figure 3, the suppressed sidebands surrounding
the target tones show that the active STRFs were suppressed in
between each of the target tones. The inhibitory effect is also

relatively stronger for tones near BF compared to those far from
BF. Importantly, this analysis has parallels with that of Fritz et al.
(2007c), and we again find a general correspondence with those
previously reported results. Finally, in Figure 4D, we consider the
distribution of"ATGT for near vs. far targets across all ensembles.
These distributions show that changes at the target tones are
overwhelmingly excitatory (mean +48.4 ± 9.8% vs. +35.1 ±

7.4%, near vs. far, s.e.m.) with heavy tails to the right, and are
stronger for targets near BF vs. those far from BF. For each
ensemble and across all targets, excitatory changes are significant
(p < 0.03, t-test and Wilcoxon signed-rank test).

Next, for tone discrimination, we considered "STRF aligned
to both the reference and target tones; these results are shown
in Figure 4E averaged across all ensembles and target/reference
combinations. As shown, the model induces local, inhibitory

Frontiers in Computational Neuroscience | www.frontiersin.org 6 August 2015 | Volume 9 | Article 106
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Carlin – Attention-driven Plasticity for VAD 

Voice Activity Detection (VAD) 

 

Model adapts 
•  Different STRF features for different tasks 

Task? 
•  Attention 
•  Discrimination 

Carlin M, Elhilali M. A framework for speech activity detection using adaptive auditory receptive fields. IEEE Trans Acoust , 
Speech, Signal Process 2015;23(12):2422 - 2433.  

2424 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2015

Fig. 1. Proposed discriminative framework for task-driven STRF adaptation.
Examples of speech and non speech stimuli are passed through a model of
the auditory periphery, and the resulting auditory spectrogram is analyzed by
a bank of STRFs derived from recordings from ferret primary auditory cortex.
Top-down feedback acts to assign a behaviorally meaningful categorical label
to observed population responses, which are subsequently discriminated using
logistic regression. Feedback from the discriminative model, in the form of the
regressor prediction error, is used to iteratively adapt the shapes of the STRFs
to improve prediction of speech vs. non speech sounds.

input to complex shapes preferring spectral, temporal, and joint
spectro-temporal variations.
In this paper, we consider ensembles of neurophysiological

STRFs estimated from recordings from non-behaving ferret
primary auditory cortex, collected in the context of studies
not specifically related to the current work [15], [16], [65].
We use neurophysiological STRFs because of their inherent
ability to form a rich, redundant, and over-complete neural
representation that captures the span of spectro-temporal mod-
ulations that characterize natural sounds [66], [67]. All STRFs
were derived from neural responses to modulated noise stimuli
known as temporally-orthogonal ripple combinations (TORCs)
[68]. TORCs represent a spectro-temporally rich stimuli for
driving cortical neuron responses, and facilitate a mathemati-
cally tractable method for estimating the transfer function of a
neuron, i.e., its STRF [13].

The STRFs spanned 5 octaves in frequency over 15 chan-
nels with starting frequencies of either 125, 250, or 500 Hz. The
choice of frequency range of each STRF was determined by ex-
perimental considerations, as discussed in neurophysiological
studies for which data was collected [15], [16], [65]. Further-
more, the STRFs spanned 250 ms in time over 13 bins. The
ensemble STRFs included in the current study were selected
from a larger sample of neurophysiological data based on two
criteria: (i) only STRFs with a signal-to-noise ratio (SNR)

were included; SNR was estimated based on the variance
of neural responses to different repetitions of the same stimuli
using a bootstrap procedure (further details can be found in
[68]). (ii) We sorted STRFs according to a separability index

, defined as , where is
the ’th singular value for a given STRF [12], [69]. All STRFs
with were removed from any further analysis. These
two criteria yielded 810 neurophysiological STRFs used for the
SAD experiments described later.

III. AN ADAPTIVE FRAMEWORK FOR SPEECH
ACTIVITY DETECTION

In this section, we first describe a computational framework
inspired by auditory processing to induce adaptive driven
changes in a set of neurophysiological STRFs. We then demon-
strate how the adapted STRFs yield features that improve SAD
performance across a variety of unseen noise conditions.

A. Methods

1) STRF Adaptation Framework: In earlier work, we ex-
plored a mathematical foundation for task-driven changes in
neurophysiological STRFs [31]. Here, we build on these con-
cepts to develop a model of task-driven STRF adaptation to re-
liably detect speech in noisy environments. The framework con-
sidered in this study is designed to be consistent with neural cir-
cuits thought to induce adaptive changes in cortical STRFs [70],
and a schematic of the process is shown in Fig. 1. In essence,
we model adaptation as an iterative process that alternates be-
tween (1) STRF perturbations that improve discrimination be-
tween speech and nonspeech sounds and (2) updates to the pa-
rameters of a linear discriminative model.
We first model the influence of top-down adaptation as

the assignment of a behaviorally relevant categorical label
to an observed ensemble response , where

is associated with examples of speech and
is associated with examples of nonspeech. To improve discrim-
ination between speech and nonspeech, we assume that the
adaptive feedback acts to maximize the conditional likelihood
of the labels defined as

where is the logistic function,
is a vector of regression coeffi-

cients, and denotes the size of the neural ensemble. To obtain
an ensemble response , we first define the firing rate of an
individual neuron as

(1)
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Patil – Task-driven Attentional Mechanism 

Attention modulates 
•  Sensors 
•  Object representation 

Task 
•  Identify one of 12 classes 

 

Patil K, Elhilali M. Task-driven attentional mechanisms for auditory scene recognition. Proceedings of the IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP); 2013.  

!"#$

%
&$

'
(

$
)

*+

!!!

!""#$"%&$'()

*&$"+&(

,#$-&+.)/'00%$1 234#5")6#0+#-#$"'"%&$

,-$*.&/.$#-/&012

3"1.$&4

5(6"./&+2

,-$*.&/7&0#

!"#$

%
&$

'
(

$
)

*+

8"#$)4"/)01".+2

&$6(*."/) ,/()62/9:$*.2

#0-4

"#$%&'()*#++

!"#$

� %

Fig. 1. Schematic of the proposed model used for the task of scene classification. Attention could be applied both at the sensory
stage and the object recognition stage.

2. METHODS

The proposed model is divided into Sensory Processing, Ob-
ject Representation and Adaptation modules as shown in
Fig1. Each of these modules and the experimental setup is
described below.

2.1. Sensory Processing

The incoming sound is processed to extract informative fea-
tures using techniques that mimic the behavior of the mam-
malian auditory system. This can be further divided into two
steps - the subcortical stage and the cortical processing stage.
In the subcortical stage, the waveform is passed through a
set of 128 asymmetric filters h(t; f) placed uniformly on a
logarithmic axis covering 5.3 octaves starting from 180Hz.
This is similar to the frequency-space transformation of the
cochlear membrane. This is followed by a spectral derivative
and a half wave rectification stage, which models the lateral
inhibition networks in the cochlear nucleus, sharpening the
frequency resolution of these filters. The mid brain process-
ing is implemented as a short term integration with window
µ(t; τ) = e−t/τu(t) and τ = 2ms followed by cubic root
compression. These subcortical transformations can be col-
lectively written as in Eq. 1 and the details of implementation
can be found in [19].

y(t, f) = (max(∂f (s(t)⊗t h(t; f)), 0)⊗t µ(t; τ))
1

3 (1)

where ⊗t represents convolution with respect to time.
This resulting time-frequency representation is referred to

as the auditory spectrogram. In the cortical stage, this spec-
trogram is analyzed locally for joint spectrotemporal modula-
tions using a bank of modulation tuned filters. These filters as
defined in Eq. 2, are shaped like 2D Gabors, which are known
to be a linear approximation to the receptive field shapes of
auditory cortex neurons [20, 21]. The temporal modulation
rate and spectral modulation rate are denoted by r and s re-
spectively. The filtering operation can then be written as sim-
ple two dimensional convolution as in Eq. 3 which yields a

four dimensional tensor representation.

MF (f, t; s, r) =
1

2πσtσf
e
−

1

2

(

t2

σ2
t
+ f2

σ2
f

)

e2πi(rt+sf) (2)

R(f, t; s, r) = |y(f, t)⊗f,t MF (f, t; s, r)| (3)

The MF filters are tuned to 10 upward rates and 10 downward
rates {r = 2, 3.4, 5.7, 9.5, 16, 26.9, 45.3, 76.1, 128, 215.3 Hz}
and 11 scales {s = 0.25, 0.35, 0.5, 0.71, 1, 1.41, 2, 2.83, 4,
5.66, 8 cycles/octave}, resulting in a total of 220 filters.

2.2. Object Representation

Each audio recording is windowed into non-overlapping 1s
segments. We integrate the cortical representation R over the
time duration of each window. To facilitate the machine learn-
ing module we reduce the number of dimensions via Tensor
Singular Value Decomposition [22] to keep 99% of the vari-
ance resulting in a 336 dimensional feature vector. We learn
the distribution of these feature vectors for each class using
a Gaussian Mixture Model (GMM) with 128 mixtures. We
use diagonal covariance for the mixtures and choose the best
fit among three random starts. To classify an unknown test
recording, we again extract features for non overlapping win-
dows of 1s duration and the class with the highest overall pos-
terior likelihood is chosen as the label.

2.3. Adaptation

We refer to adaptation as the changes in the system that take
place upon a given task. In the auditory system, top-down at-
tention mechanisms modulate the gain of neurons at the sen-
sory representation stage [11, 12], and are also known to op-
erate at the object representation stage[15, 17, 18].

2.3.1. Sensory Adaptation

We implement sensory adaptation similar to a Bayesian
framework where the class posterior is modulated by the
both the sensory mapping as well as priors about the class,

829

representing the general knowledge about the attended class;
here captured by R̄(f, s, r), the average sensory representa-
tion for the target class across the training data. Here, it is
applied in a multiplicative fashion, affecting the gains of the
modulation filters, as given in Eq. 4. α controls the degree
to which the representation is changed, and can be varied
between 0 (no change) and 1 (maximum change).

R(f, t; s, r) =

(

1− α+ α
R̄(.)

max R̄

)

× |y(f, t)⊗MF | (4)

2.3.2. Object Adaptation

To adapt the object representation stage we assume we have
some training examples drawn from the current scenario (i.e.
same target, same signal to noise ratio etc.). We then use these
examples X to adapt the trained GMM of the target class to
the new condition. This is done using the MAP adaptation
technique which has been proven useful for speaker verifi-
cation [23], image segmentation [24], EEG verification [25],
etc. The new model parameters θ̂ are chosen as in Eq. 5.

θ̂ = argmax
θ

P (X |θ)1−γ · p(θ)γ (5)

where γ = (1 + r)−1 and r is the relevance parameter
which controls the amount of adaptation. Increasing values
of r leads to more reliance of the new data. We adapt only the
means and the probabilities of each mixture. The specifics of
MAP adaptation can be found in [23].
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Fig. 2. Performance (d′) of the baseline MFCC and proposed
model with and without attention mechanism.

2.4. Experimental Setup

The task of auditory scene classification is done on the BBC
Sound Effects Database [26]. We chose 12 scene classes
containing 1954 recordings amounting to 46 hours of data.
These wavefiles are first downsampled to 16 kHz and pre-
emphasized with filter coefficients [1 -0.97]. The recordings
are then randomly divided into training and test according
to a 9:1 ratio. To simulate a multisource scenario, we mix
each scene of interest with other recordings randomly chosen
from a different scene class, at varying target to masker ra-
tios (TMR) ranging from -20 dB to 20 dB in steps of 5 dB.

Furthermore, we generate a set of priors for each scene at
each TMR level to be used for object adaptation (Sec. 2.3.2),
which consists of 180 randomly chosen 1 second segments
from train data mixed with other scene classes.

Performance is measured using the dprime(d′) metric. It
is defined as d′=Z(hit rate)-Z(false alarm rate) where Z is the
inverse cumulative distribution function of a standard normal
distribution. We calculate d′ for each target class at each con-
sidered TMR and report the overall average. This measure
has the advantage over classification accuracy of incorporat-
ing not only the hit rate, but also false alarm rate.

The proposed system is compared to a system where
MFCC representation [2, 8] is used instead of the sensory
representation stage. 13 dimensional MFCC coefficients are
calculated using a Hamming window of length 25ms with an
overlap of 15 ms. The C0 energy coefficient is ignored as
our analysis suggested that it is not useful. The mean, stan-
dard deviation and skew of these 12 coefficients is calculated
over the duration of the segment considered and concatenated
resulting in a 36 dimensional feature representation.

3. RESULTS

The proposed system is designed to attend to a target class in a
mixed class scenario. When the sensory adaptation parameter
α is set to 0 and object adaptation parameter r is set to ∞, the
system is denied any adaptation to the task. The performance
of such a system is d′ =0.53. When MFCC features are used
instead, the performance is 0.36 (Fig. 2). This relative im-
provement of 45% shows that the sensory representation by
itself is able to better capture relevant characteristics of indi-
vidual scene classes.

Next, we test the system with only sensory adaptation by
varying α over a range of values and setting r = ∞. When
the task is to attend to a particular target, we adapt the sensory
representation using prior knowledge of the target class as ex-
plained in Sec. 2.3.1. This system is tested against the entire
test set at each TMR value. This results in a classification con-
fusion matrix for each TMR and target class. The average d′

over all TMRs and target classes is considered, which yields
a small improvement in performance to 0.54 or 49% relative
when α = 0.2. This is consistent with physiological studies
which show the effect of task related attention on the gain of
neurons in terms of α to be in the range of 0.1 to 0.35 [27].
Similarly, we also test the performance of the system with
only object adaptation by varying r and setting α = 0. In
this case, given a particular target, we adapt the object repre-
sentation stage to that target class as explained in Sec. 2.3.2.
This system shows a marked improvement in d′ to 0.6 (See
Fig. 2) when r = 0.13 which is a relative improvement of
67% . This suggests that object adaptation is more effective
in enhancing the performance of the system as compared to
sensory adaptation. This is not surprising as we assume the
additional knowledge of TMR during object adaptation.

We then consider the situation where both sensory and

830
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Mesgarani – Attention Experiment 

Ringo !

Target :       “Ready Ringo go to  [Red]   [Two] now”
Distractor:  “Ready Tiger go to [Green] [Five] now”

ResponseCue Listen: Two simultaneous speakers

Blue
Red
Green

Two
Five
Seven

Target speaker changes randomly from trial to trial.

Target call sign changes after each trial block.
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Mesgarani – Decoding Attention with ECoG 

Mesgarani N, Fritz J, Shamma S. A computational model of rapid task-related plasticity of auditory cortical receptive fields. J 
Comput Neurosci 2010 Feb;28(1):19-27.  

The average and standard deviation of the correlation between recon-
structed and original spectrograms over 24 sentences were
0.606 0.034 (0.60 and 0.62 for the examples in Fig. 1e, f). When
attending to each of the two speakers, the reconstructed spectrograms
from the same speechmixture showed a marked difference depending
upon which speaker was attended (Fig. 1g, h). For each pair, the key
temporal and spectral features of the target speaker are enhanced rela-
tive to themasker speaker (Fig. 1g, h compared to Fig. 1e, f, respectively).
To compare directly, the energy contours from these reconstructed
spectrograms are overlaid in Fig. 1i. Important spectrotemporal details
of the attended speaker were extracted, while the masker speech was
effectively suppressed.
Attentionalmodulation of the neural representationwas quantified,

separately for correct and error trials, by measuring the correlation of
the reconstructed spectrograms from the mixture in two attended
conditions with original acoustic spectrograms of the speakers alone
(Fig. 2a–d). During correct trials (Fig. 2a, c), we observed a significant
shift of average correlation values towards the target speaker repres-
entation. During error trials, in contrast, no significant shift was

observed (Fig. 2b, d). Furthermore, the correlations between the
reconstructed mixture and the masker speaker were higher than the
average intrinsic correlation between randomly chosen original
acoustic speech phrases (Fig. 2c, d, dashed lines), revealing a weak
presence of the masker speaker in mixture reconstructions, even in
correct trials.
The difference in speaking rate of the two speakers, coupled with the

stereotyped structure of the carrier phrases, results in specific average
temporal modulation profiles for each speaker (average spectrogram
for each speaker is shown in Supplementary Fig. 1a, b). To investigate
encoding of the distinct spectral profile and characteristic temporal
rhythmof the target compared to themasker speaker, we estimated the
average difference between reconstructed spectrograms of the two
speakers, when presented alone and in the attended mixture (Fig. 2e,
f). The comparison between the two average difference reconstructed
spectrograms reveals enhanced encoding of both temporal and
spectral aspects of the attended speaker (Supplementary Fig. 1c, d).
To study the time course of attention-induced modulation of recon-
structed mixture spectrograms towards the attended speaker, we
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Figure 1 | Acoustic and neural reconstructed
spectrograms for speech from a single speaker or
a mixture of speakers. a, b, Example acoustic
waveform and auditory spectrograms of speaker
one (male; a) and speaker two (female;
b). c, Waveform and spectrogram of themixture of
the two shows highly overlapping energy
distributions. d, Difference spectrogram highlights
the mixture regions where speaker one (blue) or
two (red) has more acoustic energy. e, f, Neural-
population-based stimulus reconstruction of
speaker one (e) and speaker two (f) alone shows
similar spectrotemporal features as the original
spectrograms in a and b. g, h, The reconstructed
spectrograms from the same mixture sound when
attending to either speaker one (g) or two
(h) highly resemble the single speaker
reconstructions, shown in e and f, respectively.
i, Overlay of the spectrogram contours at 50% of
maximum energy from the reconstructed
spectrograms in e, f, g and h.
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Figure 2 | Quantifying the attentional
modulation of neural responses. a, b, Correlation
coefficients of reconstructed mixture spectrograms
under attentional control and the corresponding
single speaker original spectrograms in correct and
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outline). c, d, Mean and standard error of
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Mesgarani – Attention Results 

No decision yet Decision made 



61 

Decoding Attention with 
EEG 

61 



62 

EEG Approaches 
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Attention Decoding in a Competing Speaker 
Environment 
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Phrenology? 
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Decoding Architectures 
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Telluride Decoding Toolbox, November 2015 
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•  • 
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Attention correlates with performance 

Correlate 
•  Attention decoding accuracy (rattended) 
•   Performance on behavior (memory) task 
•  r=0.08, P=.005 

O’Sullivan, et al. Attentional Selection in a Cocktail Party Environment Can Be Decoded from Single-Trial EEG. Cerebral Cortex, 
July 2015 

Low correlation, but 
significant (blue lines). 

Tending towards 
longer reconstruction 

time lags. 
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A Model of Attention 
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Attending to Conversations 

58 26 34 
56 72 

18 12 38 
74 sex 26 

Task: Recognize the highest valued (two digit) numbers 

Where do I attend? 

? 
? ? 

? ? 
? 

? 
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Scene Analysis Experiments 
Fe

m
al

e 
M

al
e 

Overlapping Speakers 
Two-digit Sentences (even digit at the end) 
Template matching (utterance dependent) 

Time 
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Cognition 

ASR 
Binaural 
Receiver 

Novelty/ 
Salience 

Recognized Digits 
Male/Female 

     ITD 
Histogram 

Salience 
Attention 

A Cocktail Party Model 
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Scene Analysis Engineering 

        Cognition 
         (Python) 

ASR 
(Matlab) 

Binaural 
(jAER) 

Novelty 
(Python) 

State: Direction to 
attend, Digits 
recognized 
Task: Switch attention 
based on recognition 
and saliency 

UDP (ITD) 

HTML (Salience) HTML (digits) HTML (male/female) 

HTML (sound) 
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Distracted 

• Switch always 

• Anytime there is a salient 
event, switch to active 
channel 

Male digits are: 98 52 94 34 32 56 
14 38 54 94 14 38 58 36 32 38 
 
Female digits are: 54 98 52 12 54 52 
56 58 16 14 36 58 16 52 58 52 
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Assistive Listening 
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With eye gaze 
Speech Recognition 
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Eye Data for ASR 
“For all the talk among Democrats” 

Time and radius  
parameters? 
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•  Ideal system 

Modifying Language Models 

ASR 

Generic + 
gaze-specific 
language 
model 

ASR Rescoring 

N-best 
lattice 

Generic + 
page-specific 
language 
model 

Gaze-
specific 
language 
model 

•  Current implementation 
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• Get recognition results 
Rescore transition probabilities 
First pass: This is a test sentence. 
Second pass (with eye gaze): This is the guest sense. 

Lattice Rescoring 
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• Using eye gaze reduces LM perplexity 

 

 

 

• Approximately a 10% relative error rate 
reduction 

ASR with Eye Gaze 

Language Model Perplexity 

Generic (GLM) >1000 

GLM + page 26 

GLM + gaze 15 

GLM + page + gaze 14 
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• Timing 

 

 

 

 

• Radius 

Face Pose Approximates Eye Gaze 

Optimum radius with face pose 

Radius doubles, but 
perplexity only goes 
up by ~30% 
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Demo 
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Conclusions 

Salience matters 

 

What’s the right model? 

 

Where do we get data? 

 

What kind of data? 
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malcolm@ieee.org 
Thank you 
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Yin – Task Dependent STRFs 

Task 

Measure STRF of neurons 

Change before and after  

Yin P, Fritz JB, Shamma SA. Rapid spectrotemporal plasticity in primary auditory cortex during behavior. J Neurosci 2014 Mar 
19;34(12):4396-4408.  

those stimuli. In other studies, we had
chosen to illustrate task-related receptive
field plasticity by aligning the STRFs rela-
tive to their own BF rather than to stimu-
lus frequency (Atiani et al., 2009).

In the present case, however, neither of
these alignment approaches was suitable
for analyzing receptive field plasticity at a
population level because both reference
and target tone sequences were random in
frequency within a trial and throughout
the experiment (Yin et al., 2010). Instead,
it was necessary to stabilize the represen-
tation of the tone sequences and STRFs
with respect to frequency translations by
transforming them to the modulus of
their Fourier transformation, as depicted
in Figures 2 and 3.

STRFs changed during each behavioral
session by becoming more sensitized to
the direction of the similar shifts of the
reference tone sequences (always UP or
always DOWN steps). The changes oc-
curred in many STRFs regardless of their
original directional selectivity, band-
width, BFs, or other properties. This is il-
lustrated by the four single units in Figure
4. Two A1 neurons from FerUP (Fig. 4A)
had initial passive STRFs with opposite
tilts, as indicated by the asymmetry of
their F (STRFpre). During behavior, both
STRFs changed relative to their prior pas-
sive states so as to enhance the preference
of the STRF sensitivity toward downward
shifts (Fig. 4A, rightmost panels). This
is reflected by the asymmetries of F
(!STRFDur-Pre), which exhibit the antici-
pated opposite changes at LD and HD regions (LD " 0 and HD #
0), indicating that the cells became more responsive to downward
shifting tone sequence during the task. Two other A1 cells were
isolated in FerDN (Fig. 4B), where one neuron (top) was ini-
tially approximately directionally symmetric and the other
(bottom) had a strong preference to downward ripples. During
behavior, both STRFs became more sensitized to upward
shifting tone sequence, exhibiting F (!STRFDur-Pre) values
with an opposite asymmetry at the LD regions (LD # 0) and at
the HD region (HD " 0).

Given the expected variability across a population of cells with
a wide range of STRF properties, we computed the averaged F
(!STRFDur-Pre) from 112 neurons recorded in FerUP and 65 neu-
rons in FerDN, as shown in Figure 5. In both animals, there was a
significant enhancement of the directional sensitivity of the cells
during behavior (Fig. 5A) consistent with enhanced detection of
the pitch contours in reference tone sequence during the task.
The asymmetry is highlighted by comparing each of the LD and
HD regions within the dashed circles to the corresponding region
on the other side of the midline. For each animal, there were
larger enhancements within the predicted region resulting in
LD " 0 (i.e., LD $ %0.9) in FerUP (Fig. 5A, top left) whereas
LD # 0 (i.e., LD $ 0.7) in FerDN (Fig. 5A, top right). Also as
predicted, the opposite asymmetry occurs in the HD regions with
stronger activation in the UP (DN) regions leading to HD # 0
(i.e., HD $ 0.3) in FerUP and HD " 0 (i.e., HD $ %0.3) in

FerUP. These patterns of indices were also examined on an indi-
vidual cell basis through the scatter plots of LD versus HD indices
(Fig. 5A, bottom). The asymmetric indices are significantly
shifted toward opposite sides of the diagonal in the two animals.
The statistical significance of this pattern is confirmed by the
histograms of the difference between the indices (LD % HD) that
are overlaid on the plots, showing a significant shift to negative
(positive) values in FerUP (FerDN) (paired Wilcoxon signed
rank test: p $ 0.0389 in FerUP and p $ 0.0004 in FerDN). To
discover whether there was any topographic pattern in the ob-
served tasked-related changes, the neuronal population from
each animal was split into two subpopulations according to neu-
ronal BF: low BF (1000 – 4000 Hz) and high BF (4000 –16000 Hz).
A comparable pattern of the changes was observed in the sub-
populations for both FerUP and FerDN; hence, task-related
changes were independent of BF.

The enhancement of the representation of the reference tone
pairs persisted after task performance in one animal (FerUP), as
demonstrated by the asymmetry of the post-behavior F
(!STRFPost-Pre) measured after the behavioral experiment (Fig.
5B). However, the plasticity in the second animal (FerDN) was
present only during performance of the behavioral task and did
not persist. A possible explanation of this finding could be related
to a previous observation that the magnitude of plasticity effects
is correlated with behavioral performance. FerUP did indeed per-
form its tasks at a more proficient level than FerDN (Fig. 1C).
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Figure 4. Examples of STRF changes in A1 neurons during task performance. A, Examples of rapid changes in two single units
from FerUP. For each unit, we illustrate the original STRF (left panels), the STRF during performing task (second panels from left),
and the magnitudes of reversed-polar Fourier transform of the STRF (F (STRF)) (third panels from left) and the changes of STRF (F
(!STRF)) during performance of the task relative to the prior passive state (right panels). The STRFs adapted so as to enhance their
sensitivity to the pitch shifts of the reference tone sequence (e.g., the downward sequence in FerUP). The asymmetry indices for LD
and HD region of the reversed-polar transform are shown on the bottom and top right of each panel, respectively. As predicted in
Figure 2B, both neurons show an enhancement of the asymmetry at low density toward the DN selectivity, which is highlighted by
the dashed circles for (LD " 0). They also show an enhancement of the asymmetry toward the UP region (HD # 0) as predicted.
B, Examples of rapid changes in two single units from FerDN. All figure conventions are the same as in 4A above. As predicted in
Figure 2B, the STRFs adapted so as to enhance their sensitivity to the upward pitch shifts of the tone sequence on FerDN. Both
neurons show an enhancement of the asymmetry at low and high densities, which is highlighted by the dashed circles for (LD #
0; HD " 0).
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