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Outline
n Introduction

– What are compositional models
– Signal representation

n Application: source separation
n Algorithm: non-negative matrix factorization (NMF)
n Analyzing the semantics of sound
n Model alternatives
n Comparison to DNNs
n Missing data techniques
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Compositional model
n In general, sounds do not cancel each other
n Typically, individual components combine to form the 

sounds we hear
– Notes, but also multiple instruments, form music
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Compositional model
n In general, sounds do not cancel each other
n Typically, individual components combine to form the 

sounds we hear
– Notes, but also multiple instruments, form music
– Phoneme-like sounds combine to form speech

n The compositional model is a linear, additive combination of 
components that do not result in subtraction or diminishment 
of any of the constituents
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n Feature vector 𝒚" is decomposed into weighted sum of 
basis vectors 𝒂$

𝒚" ≈&𝒂$𝑥$"

�

$
n 𝑥$" are gains of the components in observation 𝑡
n Compositional model: both the basis vectors and weights

are constrained to be non-negative

Compositional model
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n Model in a vector-matrix form

Compositional model

𝑦+"
⋮
𝑦-"

≈
𝑎++ ⋯ 𝑎+0
⋮ ⋱ ⋮
𝑎-+ ⋯ 𝑎-0

2
𝑥+"
⋮
𝑥0"

𝒚" ≈ 𝑨𝒙"
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n We can efficiently write the compositional model

n for all 𝑇	observations (e.g. a spectrogram), as:

n Or even:

Model for multiple observations

𝒚" ≈ 𝑨𝒙", 	𝑡 = 1…𝑇

[𝒚+…𝒚<] ≈ 𝑨 2 [𝒙+ …𝒙<]

𝒀 ≈ 𝑨𝑿
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Visual representation

𝒀 ≈ 𝑨𝑿
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Visual representation

=

𝒀 ≈ 𝑨𝑿
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Visual representation

=

=

𝒀 ≈ 𝑨𝑿
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Visual representation

=

=

observed data

𝒀 ≈ 𝑨𝑿
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Visual representation

=

=

dictionary or basis (learned or constructed, updated or kept fixed)

𝒀 ≈ 𝑨𝑿
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Visual representation

=

=

mixture weights, sparse representations

𝒀 ≈ 𝑨𝑿
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Compositional generative model
n The compositional model explains how the

observations are generated, given the model
parameters

𝒑(𝒀|𝑨, 𝑿)
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Audio representation
n Compositional models require a non-negative representation
n Audio signals have both negative and positive values
n Need for a mid-level representation that is used for 

processing
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Audio representation
n Audio signal – amplitude as a function of time
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Magnitude spectrum
n Phases are discarded and only the magnitudes are used 

à non-negative representation
n Can use any spectral resolution (linear, logarithmic, 

perceptual…)
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Magnitude spectrum
n Natural sounds have a clear structure in the magnitude 

spectrum domain
n Discarding the phases makes the representation invariant to 

many factors
– Relative window position
– Phase of the acoustic impulse response from source to microphone

n Example: five consecutive frames from the earlier signal
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Spectrogram
n Spectra in each frame grouped to a matrix
n Represents the intensity of a sound as a function of time and 

frequency
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Linear superposition
n When multiple sound sources are present, the time-domain

signals add linearly

1 2( ) ( ) ( )...y t s t s t= +
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Additivity of magnitude spectra
n In the magnitude spectral domain, sounds are approximately

additive

n Exactly additive only when the phases are coherent
n For independent source, power spectra are additive inthe 

expectation sense:

n … sounds are also approximately additive in the power
spectral domain;

1 2( ) ( ) ( )...y t s t s t= +
1 2( ) ( ) ( ) ...Y f S f S f» +

{ } { } { }2 2 2
1 2( ) ( ) ( ) ...E Y f E S f E S f= +

2 2 2
1 2( ) ( ) ( ) ...Y f S f S f» +
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Additivity of magnitude spectra
n Magnitude vs. power spectrum representation?

– I.e., vs.
n Determines the dynamic scale of the representation
n Affects the relative importance of low vs. high-intensity 

observations
n Related to the compositional model estimation criterion (see 

later)
n Empirically observed that additivityof magnitudes works

better

2( )Y f( )Y f

B. King, C. Fevotte, and P. Smaragdis, "Optimal cost function and magnitude power for NMF-based speech separation and music interpolation," in Proceedings of 
IEEE International Workshop on Machine Learning for Signal Processing, Santander, Spain, 2012.
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Additivity of magnitude spectra
n How valid is the approximation?
n Natural sounds are sparse and therefore disjoint in the time-

frequency domain

n Additivity of magnitude or power spectrum works well 
enough in practice

n Lower frequency and time resolutions lead to lower 
sparseness and disjointness

1 2( , ) ( , ) 0S t f S t f »
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Compositional spectral model
n Clear interpretation:

– Signal modeled as a sum of components
– Each components has a fixed spectrum (basis vectors 𝒂$) 

and time-varying gain 𝑥$"	

𝒚" ≈&𝒂$𝑥$"

�

$

T. Virtanen, "Monaural sound source separation by non-negative matrix factorization with temporal continuity and sparseness criteria," IEEE Transactions 
on Audio, Speech, and Language Processing, vol. 15, no. 3, pp. 1066 - 1074, 2007.
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Mixture spectrogram
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Results with NMF
n Weights over time: separation of notes
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Results with NMF

NMF

n Bases correspond to individual notes

Original

Frequency / Hz

Frequency / Hz
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Wiener-style reconstruction

n k-th component reconstructed as:
AX
XAY :)(k,k)(:, •

Ä
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phases
from
mixture

estimated
magnitudes

Signal reconstruction
n For each component:

1. Use the phases of the mixture signal
2. IFFT
3. Overlap-add 

Figure source: Wikipedia Commons, Paolo Serena, University of Parma (Italy)

Overlap-add

IFFT
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Non-negative matrix factorization
n Minimize error between Y and AX while

restricting A and X to be entry-wise non-negative

n Supervised NMF – estimate only the weights, the bases
are given:

argmin ( , )d=|* *

A,X
A ,X Y AX

( , )d Y AX

argmin ( , )d=*
X

X Y AX
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NMF criteria
n Different distance measures
n Squared error (L2 norm):

n Generalized Kullback-Leibler divergence:

n Itakura-Saito divergence

n Each of these correspond to different generative
model 𝒑(𝒀|𝑨, 𝑿)

2 2
SQ

,
( ) ( [ ] ) || ||ft ft F

f t
d = - = -åY,AX Y AX Y AX

KL
,

( , ) log( /[ ] ) [ ]ft ft ft ft ft
f t

d = - +åY AX Y Y AX Y AX

IS
,

( , ) /[ ] log( /[ ] )ft ft ft ft
f t

d = -åY AX Y AX Y AX

• D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Proceedings of Neural Information Processing Systems, Denver, USA, 2000, pp. 556-
562.
C. Févotte, N. Bertin, and J.-L. Durrieu, "Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis," Neural Computation, 
vol. 21, no. 3, pp. 793-830, 2009.
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NMF algorithms
n The objective function is biconvex

n Global optimum cannot be found
n Iterative algorithms which repeatedly update A and X so that 

the cost decreases at each iteration

TX

argmin ( , )d=* *

A,X
A ,X Y AX



34

n Update rules under which the cost are guaranteed 
to be non-increasing

n Guarantees non-negativity of the parameters
n Easy to implement and to extend
n Updates for the KL divergence

where 1 is all-one matrix of size Y

T

T

( / )
¬ Ä

Y AX XA A
1X

T

T

( / )
¬ Ä

A Y AXX X
A 1

Multiplicative update rules
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Real-world examples
n Basketball game
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Real-world examples
n High-quality separation of complex auditory scenes in 

blind manner not achievable
n Multiple components required to represent an invidual

source
n Each component still corresponds to semantically

meaningful entity
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Supervised source separation
n Prior information easy to include by training the spectral 

basis A vectors in advance
n Optimization problem is convex and therefore finding the 

global optimum is guaranteed
n More efficient algorithms

n Yields impressive results in matched conditions

argmin ( , )d=|*
X

X Y AX



38

Supervised source separation
n Source separation (SS) scenario:

– Isolated training material of speech (s) and noise (n)
– Obtain basis spectra for each source separately
– Concatenate the dictionaries:

– Use NMF with the obtained dictionary – keep the dictionary fixed 
while updating the mixing weights

– Synthesize each source by using only its own basis vectors

AXXAXANSNSY =+=+»+= nnss
ˆˆ
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Separate overlapping speech

n Bases for both speakers learnt from 5 second recordings 
of individual speakers
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Semi-supervised separation
n We may not have training data for all sources

– But we usually know some
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Semi-supervised separation
n We may not have training data for all sources

– But we usually know some
n Two steps:

– Supervised: Train dictionary for known sources

Training data
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Semi-supervised separation
n We may not have training data for all sources

– But we usually know some
n Two steps:

– Supervised: Train dictionary for known sources
– Unsupervised: Train part of the dictionary unsupervised on target 

mixture

Keep fixedTraining data Mixture recording

Learn the 
weightsLearn extra frequency elements

that explain other sounds

Smaragdis, P. Raj, B. and Shashanka, M.V. 2007. Supervised and Semi-Supervised Separation of Sounds from Single-Channel Mixtures. In proceedings of 
the 7th International Conference on Independent Component Analysis and Signal Separation. London, UK. September 2007. 
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Semi-supervised separation

n Background music “bases” learnt from 5-seconds of music-
only segments within the song

n Guitar bases/voice learnt from the rest of the song

“Raise my rent” by David Gilmour Norah Jones singing “Sunrise”
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What is a good dictionary?
n It should be kept relatively small

– Overcomplete dictionaries have non-unique solutions without 
regularization

– To reduce computational complexity
n It should be capable of accurately describing the source, 

and generalize well to unseen data
n It should be discriminative: sources cannot be well 

represented using a dictionary of another source
a1

a2
a1

a2
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What is a good dictionary?
n It should be kept relatively small

– Overcomplete dictionaries have non-unique solutions without 
regularization

– To reduce computational complexity
n It should be capable of accurately describing the source, 

and generalize well to unseen data
n It should be discriminative: sources cannot be well 

represented using a dictionary of another source
– In the field of sparse representations, this is stated as: a source 

should be sparse in one dictionary and dense in the other



46

Dictionary learning
n Non-negative matrix factorization (NMF)
n Clustering

– k-means clustering
– Hierarchical clustering

n Approaches used in the field sparse representations and
compressed sensing (CS)

– Attempt to find dictionaries which sparsely represent sources
– Generally no non-negativity constraints
– Some exceptions, e.g. non-negative K-SVD

• M. Aharon, M. Elad, and A. Bruckstein, "K-SVD and its non-negative variant for dictionary design," in Proceedings of SPIE Conference on Wavelet 
Applications in Signal and Image Processing XI, San Diego, USA, 2005.

• R. G. Baraniuk, "Compressive sensing," IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 118-121, 2007.
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Dictionary learning
n Non-negative matrix factorization (NMF)
n Clustering

– k-means clustering
– Hierarchical clustering

n Approaches used in the field sparse representations and
compressed sensing (CS)

– Attempt to find dictionaries which sparsely represent sources
– Generally no non-negativity constraints
– Some exceptions, e.g. non-negative K-SVD

n Pros and cons
– Dictionaries generalize well to unseen data
– NMF and CS approaches consider additivity: smaller, parts-based 

dictionaries
– Parts-based representations are often less discriminative between 

sources
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Dictionary sampling
n Approach: directly use samples from the training data

– Often called “exemplars”
– This may lead to very large dictionaries!

• P. Smaragdis, M. Shashanka, and B. Raj, "A sparse non-parametric approach for single channel separation of known sounds," in Proceedings of 
Neural Information Processing Systems, Vancouver, Canada, 2009.

• J. F. Gemmeke, H. Van hamme, B. Cranen, and L. Boves, “Compressive sensing for missing data imputation in noise robust speech recognition,” IEEE 
Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 272–287, 2010.
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Dictionary sampling
n Approach: directly use samples from the training data

– Often called “exemplars”
– This may lead to very large dictionaries!

n Common techniques:
– random sampling: a random subset of the exemplars
– pruning: select a subset using some criterion

n Correlation between exemplars
n How often an exemplar is activated on development data

• P. Smaragdis, M. Shashanka, and B. Raj, "A sparse non-parametric approach for single channel separation of known sounds," in Proceedings of 
Neural Information Processing Systems, Vancouver, Canada, 2009.

• J. F. Gemmeke, H. Van hamme, B. Cranen, and L. Boves, “Compressive sensing for missing data imputation in noise robust speech recognition,” IEEE 
Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 272–287, 2010.
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Dictionary sampling
n Approach: directly use samples from the training data

– Often called “exemplars”
– This may lead to very large dictionaries!

n Common techniques:
– random sampling: a random subset of the exemplars
– pruning: select a subset using some criterion

n Correlation between exemplars
n How often an exemplar is activated on development data

n Pros and cons
– Dictionaries do not always generalize well to unseen data
– Does not consider additivity: large dictionaries (but activations are sparse)
– Dictionaries are discriminative between sources
– Simpler to use more time-context (many features)
– Requires little tuning

• P. Smaragdis, M. Shashanka, and B. Raj, "A sparse non-parametric approach for single channel separation of known sounds," in Proceedings of 
Neural Information Processing Systems, Vancouver, Canada, 2009.

• J. F. Gemmeke, H. Van hamme, B. Cranen, and L. Boves, “Compressive sensing for missing data imputation in noise robust speech recognition,” IEEE 
Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 272–287, 2010.
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Exemplar-based dictionary

…

5x+

eight four six one

zero two sevenone

four one nine

1x=

9x+

2x+ 3x+ 4x+

6x+ 7x+ 8x+

Nx+1-+ Nx+

“one”

J. F. Gemmeke, H. Van hamme, B. Cranen, and L. Boves, “Compressive sensing for missing data imputation in noise robust speech recognition,” IEEE 
Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 272–287, 2010.
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Exemplar-based source separation

+

eight four six one

= + + +

+++

…+

…+

Speech exemplars

Noise exemplars

“one”

J. F. Gemmeke, T. Virtanen, and A. Hurmalainen, "Exemplar-based sparse representations for noise robust automatic speech recognition," IEEE 
Transactions on Audio, Speech, and Language Processing, vol. 19, no. 7, pp. 2067 - 2080, 2011.



53

Analyzing the semantics of audio

one one four one

´+ 1.0´= 3.0  ´+ 4.0 ´+ 2.0
one

n Supervised dictionary allows using meta information about
each atom
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Speech recognition
one one four one

´+ 1.0´= 3.0  ´+ 4.0 ´+ 2.0
one
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Speech recognition
one one four one

´+ 1.0´3.0 ´+ 4.0 ´+ 2.0 one: 3
four: 1 one

classification

J. F. Gemmeke and L. ten Bosch and L. Boves and B. Cranen, “Using sparse representations for exemplar based continuous digit recognition” In Proc. 
EUSIPCO, pp. 1755-1759, 2009.
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Speech recognition

one: 3
four: 1 one

one: 0.9
four: 0.1 DNN/

GMM

TANDEM

classificationone one four one

´+ 1.0´3.0 ´+ 4.0 ´+ 2.0

Y. Sun, B. Cranen, J. F. Gemmeke, L. Boves, L. ten Bosch, and M. M. Doss, “Using sparse classification outputs as feature observations for noise-robust 
ASR,” in Interspeech 2012, Portland, USA, 2012.
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Speech recognition

one one four one

´+ 1.0´3.0 ´+ 4.0 ´+ 2.0 =

DNN/
GMM

one: 3
four: 1 one

one: 0.9
four: 0.1 DNN/

GMM

TANDEM

classification

𝑭𝒆𝒂𝒕𝒖𝒓𝒆
𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒎𝒆𝒏𝒕

one one four one

´+ 1.0´3.0 ´+ 4.0 ´+ 2.0

J. F. Gemmeke, T. Virtanen, and A. Hurmalainen, "Exemplar-based sparse representations for noise robust automatic speech recognition," IEEE 
Transactions on Audio, Speech, and Language Processing, vol. 19, no. 7, pp. 2067 - 2080, 2011.
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Music example

each atom corresponds to the spectrum of a piano note

• N. Bertin, R. Badeau, and E. Vincent, "Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic 
music transcription," IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 538 - 549, 2010. 

• T. Heittola, A. Klapuri, and T. Virtanen, "Musical instrument recognition in polyphonic audio using source-filter model for sound separation," 
in Proceedings of International Conference on Music Information Retrieval, Kobe, Japan, 2009.
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Music analysis problem

≈ × ?

• N. Bertin, R. Badeau, and E. Vincent, "Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic 
music transcription," IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 538 - 549, 2010. 

• T. Heittola, A. Klapuri, and T. Virtanen, "Musical instrument recognition in polyphonic audio using source-filter model for sound separation," 
in Proceedings of International Conference on Music Information Retrieval, Kobe, Japan, 2009.
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Music analysis problem

≈ ×

• N. Bertin, R. Badeau, and E. Vincent, "Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic 
music transcription," IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 538 - 549, 2010. 

• T. Heittola, A. Klapuri, and T. Virtanen, "Musical instrument recognition in polyphonic audio using source-filter model for sound separation," 
in Proceedings of International Conference on Music Information Retrieval, Kobe, Japan, 2009.
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Music analysis problem

• N. Bertin, R. Badeau, and E. Vincent, "Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic 
music transcription," IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 538 - 549, 2010. 

• T. Heittola, A. Klapuri, and T. Virtanen, "Musical instrument recognition in polyphonic audio using source-filter model for sound separation," 
in Proceedings of International Conference on Music Information Retrieval, Kobe, Japan, 2009.
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Regularization in NMF
n Place additional constraints on the NMF formulation:

n Leading to modified multiplicative updates:

n With          the matrix derivative of          with respect to X
n This necessitates an l-2 normalization of the columns of A

Google: “NMF regularization” J
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Model alternatives

Google: “NMF regularization” J
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Regularization in NMF
n A very popular regularizer is sparsity:
n Sparsity regularisation allows decomposition with 

overcomplete dictionaries
n Other commonly used regularizers:

– Temporal continuity (Virtanen 2007)
– Correlation of weights (Wilson et al. 2008)
– Correlation of spectra (Virtanen & Cemgil 2009)
– Correlation of components (Wilson & Raj 2010)
– Hidden Markov Models (Gemmeke et. al. 2013)

• J. Eggert and E. Korner, “Sparse coding and NMF,” in IEEE International Joint Conference on Neural Networks, pp. 2529–2533, 2004
• P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,” Journal of Machine Learning Research, vol. 5, pp. 1457–1469, 2004.
• T. Virtanen, “Monaural sound source separation by non-negative matrix factorization with temporal continuity and sparseness criteria,” IEEE Transactions on 

Audio, Speech, and Language Processing, vol. 15, no. 3, pp. 1066 – 1074, 2007.
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Multichannel audio
n How to use information about differences between 

channels?
n Phase differences: cannot be modeled with compositional

models, require additional modeling components
n Possible to model amplitude differences using

compositional models

S1 S2

𝒉𝟏𝟏

𝒉𝟏𝟐

𝒉𝟐𝟐

𝒉𝟐𝟏
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Multichannel audio
n Signal of each channel represented using spectrogram
n Combined into a 3-D tensor

time

fr
eq

ue
nc

y
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Multichannel audio
n Tensor decomposed

into a sum of 
components

n Each component 
presented as an 
outer product of

1. Spectral atoms
2. Temporal activations
3. Channel gains

• A. Ozerov and C. Févotte, "Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation," IEEE Trans. on Audio, 
Speech and Lang. Proc., vol. 18, no. 3, pp. 550-563, March 2010.

• H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Formulations and algorithms for multichannel complex NMF,” in Proceedings of IEEE International 
Conference on Audio, Speech and Signal Processing, Prague, Czech Republic, 2011.
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Tensor factorisation of modulation spectrograms

• T. Barker, T. Virtanen, "Blind separation of audio mixtures through nonnegative tesnsor factorisation of modulation 
spectrograms", in IEEE/ACM Transactions on Audio, Speech and Language Processing, Volume 24, Issue 12, December 
2016, pp. 2377-2389. 
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Temporal context
n Sound typically has much spectral and temporal structure
n The basic NMF model treats each frequency and frame as 

independent from each other
n Modelling contextual information (time-frequency patches) 

useful
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Temporal context: NMF deconvolution

, ,ˆ t k k t
k

xt t
t

-=ååy a

• P. Smaragdis, “Convolutive speech bases and their application to supervised speech separation,” IEEE Transactions on Audio, Speech, and Language 
Processing, vol. 15, no. 1, pp. 1 – 12, 2007. 

• P. D. O. Grady, “Sparse separation of underdetermined speech mixtures,” Ph.D. dissertation, National University of Ireland, Maynooth, 2007.
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Example

INPUT SPECTROGRAM

NMF dictionary atoms Discovered time-frequency 
“patch” atoms

n Two distinct sounds occurring with different repetition rates 
within a signal
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Invariant models
n The basic NMF model requires a separate atom to model

sounds with different pitch
n Modeling multiple pitches with a single atom?
n On a log-frequency scale, pitch shifting corresponds to 

translation
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NMF deconvolution in frequency
n Basic idea:

– Use logarithmic frequency axis
– Allow translating atoms a in frequency (convolution)
– Estimate activation xt for each amount t of translation
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NMF deconvolution
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Dereverberation
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Dereverberation

= +

n A convolutional model of reverberation:
– The spectrogram of the reverberated signal is a sum of the 

spectrogram of the clean signal and several shifted and scaled 
versions of itself
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Dereverberation
n A convolutional model of reverberation:

– The spectrogram of the reverberated signal is a sum of the 
spectrogram of the clean signal and several shifted and scaled 
versions of itself

– A convolution of the spectrogram and a room response

• N. Yasuraoka, H. Kameoka, T. Yoshioka, and H. G. Okuno, “I-divergence-based dereverberation method with auxiliary function approach,” in 
Proceedings of IEEE International Conference on Audio, Speech and Signal Processing, Prague, Czech Republic, 2011. 

• R. Singh, B. Raj, and P. Smaragdis, “Latent-variable decomposition based dereverberation of monaural and multi-channel signals,” in Proceedings of 
IEEE International Conference on Audio, Speech and Signal Processing, Dallas, USA, 2010.



78

Dereverberation
n A convolutional model of reverberation:

– The spectrogram of the reverberated signal is a sum of the 
spectrogram of the clean signal and several shifted and scaled 
versions of itself

– A convolution of the spectrogram and a room response
– Factorial model: Y=SH, with Y the reverberated spectrum, S the dry 

spectrum, and H the reverberation filter
n Sparsity must be enforced on the filter

• N. Yasuraoka, H. Kameoka, T. Yoshioka, and H. G. Okuno, “I-divergence-based dereverberation method with auxiliary function approach,” in 
Proceedings of IEEE International Conference on Audio, Speech and Signal Processing, Prague, Czech Republic, 2011. 

• R. Singh, B. Raj, and P. Smaragdis, “Latent-variable decomposition based dereverberation of monaural and multi-channel signals,” in Proceedings of 
IEEE International Conference on Audio, Speech and Signal Processing, Dallas, USA, 2010.
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Comparison to DNNs
n DNNs are discriminative models

– Ideal for classification
n Compositional models are generative

– Can explain the properties of the data better
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Comparison to DNNs
n DNNs give state of the art results in many application areas

– Applicable also on many mentioned problems (source separation, 
robust recognition)

n Given large amounts of training data, DNNs typically 
outperform compositional models

n Compositional models can be used with small amounts of 
training data

– Examplar-based dictionaries obtained from few examples
n Compositional models enable unsupervised processing that 

does not require training data
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Missing data
n Missing data occurs in many applications

– Packet or frame drops
– Signal clipping
– Audio corrupted at specific frequencies
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Missing data
n Missing data occurs in many applications

– Packet or frame drops
– Signal clipping
– Audio corrupted at specified frequencies
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Missing data
n Missing data occurs in many applications

– Packet or frame drops
– Signal clipping
– Audio corrupted at specified frequencies

n Original audio: 
n Missing data:

Axss =» ˆ
MAxsMMy =» ˆ

• Smaragdis, P., B. Raj, M. Shashanka, Missing data imputation for spectral audio signals, in IEEE international workshop on Machine Learning for 
Signal Processing (MLSP), 2009

• J. F. Gemmeke, H. Van hamme, B. Cranen, and L. Boves, “Compressive sensing for missing data imputation in noise robust speech recognition,” IEEE 
Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 272–287, 2010.
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Clean speech reconstruction

mask

x
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Clean speech reconstruction

one one four one

´+ 1.0´= 3.0  ´+ 4.0 ´+ 2.0



86

Clean speech reconstruction

one one four one

one one four one

´+ 1.0´3.0 ´+ 4.0 ´+ 2.0

´+ 1.0´= 3.0  ´+ 4.0 ´+ 2.0
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Clean speech reconstruction

one one four one

one one four one

´+ 1.0´3.0 ´+ 4.0 ´+ 2.0

´+ 1.0´= 3.0  ´+ 4.0 ´+ 2.0
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Bandwidth extension
n Problem: A given speech signal only has frequencies in the 

300Hz-3.5Khz range
– Telephone quality speech

n Goal: restore the missing frequencies

n Assumptions:
– We have full-bandwidth training data
– Training data is representative
– We know which frequencies are missing
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Bandwidth extension
n Almost trivial use of compositional models (using Matlab

notation):
– Step 1: Create a full-bandwidth dictionary A
– Step 2: Given the limited bandwidth observation G, in which only the 

frequency bands 1…f are retained, use a bandwidth-limited A(1:f,:) 
dictionary to obtain activations X

– Step 3: Reconstruct the full-bandwidth estimate Y using the full 
bandwidth dictionary A

D. Bansal, B. Raj, and P. Smaragdis, “Bandwidth expansion of narrowband speech using non-negative matrix factorization,” in 9th European Conference 
on Speech Communication and Technology, Lisbon, Portugal, 2003.
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Visual representation

= A(1:f,:)G

AY

X

X

Step 2

Step 1

D. Bansal, B. Raj, and P. Smaragdis, “Bandwidth expansion of narrowband speech using non-negative matrix factorization,” in 9th European Conference 
on Speech Communication and Technology, Lisbon, Portugal, 2003.
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Audio example

Training material

Bandwidth expanded version

Reduced BW data
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Getting started
n Literature

– Check the references J
– Tutorial article: T. Virtanen, J. F. Gemmeke, B. Raj, and P. 

Smaragdis. Compositional Models for Audio Processing. IEEE Signal 
Processing Magazine, March 2015

n Matlab code
– Supervised NMF-based SS: http://www.cs.tut.fi/~tuomasv/software.html
– SS, recognition and imputation: http://www.amadana.nl/software
– FASST, evalation, etc: http://www.loria.fr/~evincent/soft.html
– NMFlab: http://www.bsp.brain.riken.jp/ICALAB/nmflab.html
– PLCA: http://www.cs.illinois.edu/~paris/pubs/

n C++ code
– openBliSSART: http://openblissart.github.io/openBliSSART/



93

Summary
n Realistic sounds consist of components that combine purely 

additively
n Composition models are purely additive models that are 

powerful in modeling sound mixtures
n Good models for spectral representations of sound
n Applications in source separation and audio processing
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The end…


