Ultralight Dark Matter and Gravitational Wave Detection

Peter Graham

Stanford

Dark Matter Direct Detection

new, precision detectors required

Detect coherent effects of entire field

(like gravitational wave detector)

Frequency range accessible!

DM Radio

with

Kent Irwin
Saptarshi Chaudhuri
Jeremy Mardon
Surjeet Rajendran
Yue Zhao

DM Radio Experiment

Widely tunable, lumped element EM resonator

- low dissipation/low noise resonator $Q \sim 10^6$
- high precision magnetometry/amplifiers (SQUIDs)

start with hidden photon detection, later add B field for axion detection

Pathfinder: 4 K 300 cm³

under construction, initial results ~ 2018

Stanford: Arran Phipps, Dale Li, Saptarshi Chaudhuri, Peter Graham, Jeremy Mardon, Hsiao-Mei Cho, Stephen Kuenstner, Carl Dawson, Richard Mule, Max Silva-Feaver, Zach Steffen, Betty Young, Sarah Church, Kent Irwin **Berkeley:** Surjeet Rajendran

Collaborators on DM Radio extensions:

Tony Tyson, UC Davis, Lyman Page, Princeton

see also Lindley Winslow's talk

Optimizing Electromagnetic Axion Detectors

Chaudhuri, Irwin, PWG, Mardon arXiv:1803.01627

optimal experiment:

- make highest resonator Q possible, even above 106
- "out of band": take analysis bandwidth (step size) much broader than resonator and dark matter bandwidth

single resonator essentially reaches ultimate Bode-Fano limit

must also include quantum noise

can enhance sensitivity by orders of magnitude

DM Radio Sensitivities

Ultralight DM Direct Detection

DM Radio

Cosmic Axion Spin Precession Experiment (CASPEr)

with

Dmitry Budker
Micah Ledbetter
Surjeet Rajendran
Alex Sushkov

SIMONS FOUNDATION

PRX 4 (2014) arXiv:1306.6089

PRD 88 (2013) arXiv:1306.6088

PRD 84 (2011) arXiv:1101.2691

Cosmic Axion Spin Precession Experiment (CASPEr)

search for oscillating nuclear EDM (not derivative suppressed)

and axion "wind" (spin precession)

Applied EM fields cause NMR-style resonance

SQUID measures resulting transverse magnetization

Only known way to reach QCD axion at lowest masses ~ kHz - MHz

Sensitivity comes from:

- NMR technology
- high precision magnetometry

first results out very soon!

under construction at Mainz and BU

Ultralight DM Direct Detection

Ultralight DM Effects

spin coupling:
$$(\partial_{\mu}a)\bar{\psi}\gamma^{\mu}\gamma_{5}\psi \rightarrow H \ni \nabla a \cdot \vec{\sigma}_{N}$$

axion DM field gradient torques electron and nucleon spins oscillates with axion frequency proportional to axion momentum ("wind")

scalar coupling: $aH^{\dagger}H$ e.g. change electron mass

DM field gradient can exert a force oscillatory and violates equivalence principle

same effects allow searches for hidden photons

Force/Torque from Ultralight Dark Matter

arXiv:1709.07852

arXiv:1512.06165

New oscillatory force/torque from dark matter

New Direct Detection Experiments:

Torsion Balances scalar balance for force spin-polarized for torque

Atomic Interferometers (Clocks) split + recombine atom wavefunction measure atom spin and acceleration

Pulsar Timing Arrays measure relative acceleration of earth and pulsar

In construction Kasevich/Hogan groups

See Mina Arvanitaki's talk

ultralight DM and gravitational wave detection similar!

Ultralight DM Direct Detection

these + many more new experiments (and ideas) will hopefully cover entire mass range for ultralight DM!

Gravitational Wave Detection with Atom Interferometry

PRD **97** (2018) arXiv:1710.03269

PRD 94 (2016) arXiv:1606.01860

PRL 110 (2013) arXiv:1206.0818

GRG 43 (2011) arXiv:1009.2702

PLB 678 (2009) arXiv:0712.1250

PRD 78 (2008) arXiv:0806.2125

Gravitational Spectrum

Gravitational waves open a new window to the universe

Every new EM band opened has revealed unexpected discoveries,

Advanced LIGO can only detect GW's > 10 Hz → How look at lower spectrum?

New detectors?

Atomic Clock

can measure times $t \sim \frac{1}{\Delta E} \sim 10^{-10} \,\mathrm{s}$

Gravitational Wave Detection

Gravitation Wave Detector LIGO Atom Interferometry

inertial test masses mirrors atoms

baseline laser laser

good clock second arm atoms

A Different Kind of Atom Interferometer

run atom interferometer as hybrid clock/accelerometer

PWG, Hogan, Kasevich, Rajendran PRL 110 (2013)

as a clock, measure light travel time -> remove laser noise with single baseline as an accelerometer - atoms excellent inertial test masses

e.g. no seismic noise, no thermal noise, no gas collision noise, don't charge

MAGIS-100 Proposal at Fermilab

LASER HUTCH

ATOM SOURCE

- 100 m atom interferometer drop tower
- Detect dark matter (see Mina Arvanitaki's talk)
- Equivalence Principle test
- Demonstrator for future gravitational wave detectors (~ km-scale terrestrial and satellite detectors)

Atom Interferometry for Gravitational Waves

Future detectors (terrestrial + satellite) could access mid-frequency band:

• good measurement of BH spins

ATOM SOURCE localize and predict BH and NS binary mergers for EM telescopes to observe

Initial Black Hole Spins Preliminary

LIGO can't measure well, needs lower frequencies → atoms (terrestrial or satellite) could measure? gives info on formation history, etc. of BH's

Recent Experimental Results

(Kasevich and Hogan groups)

Stanford Test Facility

demonstrate necessary technologies:

Macroscopic splitting of atomic wavefunction:

Some Thoughts

Light dark matter (axions) and gravitational wave detection similar: detect coherent effects of entire field, not single particles

Combination of several experiments will cover QCD axion dark matter fully

Many new experimental techniques!

- EM resonators
- laser interferometry
- atom interferometry/clocks
- molecules
- NMR
- high-precision magnetometry (SQUIDs, atomic systems)
- torsion pendulums
- optically-levitated dielectric spheres
- . . .

Many more possibilities we haven't thought of yet...

Backup Slides

Atomic Clock Sensitivity

current technology already allows many new searches, and will improve by orders of magnitude

Possibilities for Light Dark Matter

Effective field theory \rightarrow only a few possible couplings to us either scalar or vector, four types of experiments:

current axion searches e.g. ADMX

e.g. aids axion detection

Can cover all these possibilities

Axion Limits on $\frac{a}{f_a}G\widetilde{G}$

CASPEr Sensitivity

