Hunting for new forces, Axions, and ultra-light Dark Matter with AMO-based sensors

A. Geraci, Northwestern University

Our lab has moved!

University of Nevada, Reno

Center for Fundamental Physics (CFP)

Center for Fundamental Physics (CFP)

• g-2 of electron

Predicted: $\mu/\mu_{\rm B} = -1.001\ 159\ 652\ 181\ 78\ (77)$ Measured: $\mu/\mu_{\rm B} = -1.001\ 159\ 652\ 180\ 73\ (28)$

electron EDM

ACME $|d_e| < 8.7 imes 10^{-29}~e$ cm

• Test of CPT with antihydrogen

A search is underway for a fourth faculty member

Brian Odom group

 Single molecule spectroscopy of trapped molecular ions

Does m_p/m_e Change in Time?

Our lab: fundamental physics with resonant sensors

Outline

• Testing gravity at short-range with optically levitated nanospheres

 Searching for axions and (ultra-)light Dark Matter The ARIADNE axion experiment
 Ultralight Scalar fields with interferometers

The Standard Model

Provides an adequate description of the electromagnetic, weak, and strong interactions.

- The Interactions:
 - Strong: Holds nucleons together
 - **Electromagnetic:** Acts between charged particles
 - Weak: Causes certain decays
 - **Gravity:** Attraction between masses

For two protons in nucleus:

Strong : Electromagnetic : Weak : Gravity= $20 : 1 : 10^{-36}$

The Hierarchy Problem: Why is Gravity so small?

Testing gravity at short range

$$V_N = -G \frac{m_1 m_2}{r} \left(1 + \alpha e^{-r/\lambda} \right)$$

Exotic particles (new physics)

 λ < 1 mm

Supersymmetry/string theory (moduli, radion, dilaton) Particles in large extra dimensions (Gravitons, scalars, vectors?)

Landscape for non-Newtonian corrections

E.G. Adelberger, B.R. Heckel, A.E. Nelson, Ann. Rev. Nucl. Part. Sci. 53 77, (2003)

Experimental challenge: scaling of gravitational force

In the range of experimental interest:

$$r \sim 10 \ \mu m$$
; $F_N \sim 10^{-21} N$

Experimental challenge: electromagnetic background forces

Casimir effect (1948):

Electrostatic Patch Potentials:

J. L. Garrett, D. Somers, J. N. Munday J. Phys.: Condens. Matter 27 (2015) 214012

Force-distance parameter space

Resonant force detection

• Cantilever is like a spring: F = -Kx

$$\omega_0 = \sqrt{\frac{K}{m}}$$

$$A_{(\omega=0)} = \frac{F}{k}$$
 Constant force
$$A_{(\omega=\omega_0)} = \frac{F}{k}Q$$
 Driving force on resonance
of cantilever ω_0

Q can be very large >100,000

Fundamental limitation: thermal noise

Brownian motion – random "kicks" given to particle due to thermal bath

• Random "kicks" are given to cantilever due to finite T of oscillator

$$\frac{1}{2}k\langle x^2\rangle = \frac{1}{2}k_BT \qquad \Longrightarrow \qquad F_{\min} = \left(\frac{4kk_BTb}{Q\omega_0}\right)^{1/2}$$

Example: Silicon microcantilevers

 $F_{min} \sim 10 \text{ x} 10^{-18} \text{ N/}\sqrt{\text{Hz}}$ at 4 K at Q=10⁵

Improving sensitivity

losses

Z. Yin, A. Geraci, T. Li, Int. J. Mod. Phys. B 27,1330018 (2013).

Projected sensitivity

AG, S.B. Papp, and J. Kitching, *Phys. Rev. Lett.* **105**, 101101 (2010)

Experimental Setup

Drive Mass fabrication

Buried drive mass technique – eliminates corrugation

MEMS actuator

• Device for positioning drive mass

Standing wave optical trap

feedback beams

Trap loading

 Acceleration required to release a nanometer-sized sphere from a substrate

$$a \propto \frac{1}{R^2}$$

Loading optical trap

Optical dipole trap

lasers

Trapping instabilities

Radiometric forces

Trap instabilities arise from uneven heating of the sphere surface

Important when mean free path ~ object size

Crooke's Radiometer

Radiometric forces

3D feedback cooling of a nanosphere

Needed to stabilize the particle, damp and cool it Mitigate photon recoil heating

$$F_{\min} = \sqrt{\frac{4kK_BTB}{\omega_0 Q}}$$

$$Q_{eff} = \frac{Q_0 \Gamma_0}{\Gamma_0 + \Gamma_{cool}}$$
$$T_{eff} = \frac{T_0 \Gamma_0}{\Gamma_0 + \Gamma_{cool}}$$

Ranjit et.al., PRA 91, 051805(R) (2015).

Zeptonewton force sensing

G. Ranjit, et.al., Phys. Rev. A, 93, 053801 (2016).

Zeptonewton force sensing

Electrostatic Calibration

90% of beads are neutral Neutral beads stay neutral Charge stays constant over days

G. Ranjit, et.al. , Phys. Rev. A, 93, 053801 (2016).

Zeptonewton force sensing

Optical lattice calibration

Useful for neutral objects

Method consistent with electric field approach

G. Ranjit, et.al. , Phys. Rev. A, 93, 053801 (2016).

Next: Cavity Trapping and cooling

1596nm beam to trap a bead at its antinode \rightarrow localization 1064nm beam to cavity cool the CM of bead \rightarrow position readout

Gravitational Wave Detection

- Laser intensity changed to match trap frequency to GW frequency
- For a 100m cavity, h ~ 10⁻²² Hz ^{-1/2} at high frequency (100kHz) (a = 75 um, d = 500 nm disc)
- Limited by thermal noise in sensor (not laser shot noise)

Position measurement \rightarrow force measurement

GW Strain Sensitivity

GW sources at high-frequency

- Astrophysical Sources Natural upper bound on GW frequency inverse BH size ~ 30 kHz
- Beyond standard model physics
 - QCD Axion \rightarrow Annihilation to gravitons in cloud around Black holes

A. Arvanitaki *et. al*, PRD, 81, 123530 (2010)
A. Arvanitaki *et al*. PRD 83, 044026 (2011)

Black hole superradiance

- String cosmology R. Brustein et. al. Phys. Lett. B, 361, 45 (1995)
- The unknown?

Fiber based FP Cavity

A. Pontin, L.S. Mourounas, AG, and P.F. Barker, arXiv:1706.10227New. J. Phys (2018), accepted

Quantum Regime

High fidelity quantum control: Internal states $|\uparrow\rangle$, $|\downarrow\rangle$ motional states Long coherence times

"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

https://commons.wikimedia.org/wiki

/File:QHarmonicOscillator.png#/media/File:QHarmonicOscillator.png

Levitated optomechanics

- Ashkin, Bell Labs, 1970s Optical tweezers → biology, biophysics
- Ashkin (76) Levitation in high vacuum
- Omori (97) r=1.5,2,2.5 μm

Recently → proposals/experiments for ground state cooling

D.E. Chang *et. al.*, PNAS (2009) O. Romero-Isart et.al. New J. Phys. (2010)
Sympathetic cooling with cold atoms

Ground state cooling from room temp

No ultra-high finesse cavity required (no resolved sideband limit)

G. Ranjit, et.al. Phys. Rev. A 91, 013416 (2015).

Matter-wave interferometry

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, J. I. Cirac Phys. Rev. Lett. 107, 020405 (2011). Bateman, J., S. Nimmrichter, K. Hornberger, and H. Ulbricht,, Nat. Commun. 5, 4788 (2014). A.G. and H. Goldman, Phys. Rev. D 92, 062002 (2015).

ng acceleration sensing

Projected reach-

nanosphere matter-wave interferometer

The Dark Sector

Evidence supporting a universe of dark matter and energy. Image: Kowalski *et al,* Astrophys. J. **686,** 794 (2008). Our best estimate for composition of universe. Image credit: ADMX

Enormous detectors to search for heavy dark matter particles, data from particle colliders. \rightarrow no uncontested evidence for the dark sector

Axions

- Light pseudoscalar particles in many theories Beyond Standard model
- Peccei-Quinn Axion (QCD) solves strong CP problem $\theta_{QCD} < 10^{-10}$
- Dark matter candidate

 \rightarrow Can be sourced locally

Experiments: e.g. ADMX, CAST, LC circuit, Casper

 Also mediates spin-dependent forces between matter objects at short range (down to 30 μm)

- R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977);
- S. Weinberg, Phys. Rev. Lett. 40, 223 (1978);
- F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
- J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130 (1984).

The Axion Resonant InterAction Detection Experiment (ARIADNE)

Mindy Harkness (UNR) Jordan Dargert (UNR) Chloe Lohmeyer (Northwestern) Asimina Arvanitaki (Perimeter) Aharon Kapitulnik (Stanford) Eli Levenson-Falk (Stanford) Sam Mumford (Stanford) Alan Fang (Stanford) Josh Long (IU) Chen-Yu Liu (IU) Mike Snow (IU) Erick Smith (IU) Justin Shortino (IU) Inbum Lee (IU) Evan Weisman (IU) Yannis Semertzidis (CAPP) Yun Shin (CAPP) Yong-Ho Lee (KRISS)

1 Institute for Basic Science

QCD Axion parameter space

Adapted from http://pdg.lbl.gov/2015/reviews/rpp2015-rev-axions.pdf

Axion and ALP searches

Source	Coupling	
	Photons	Nucleons
Dark Matter (Cosmic) axions	ADMX, HAYSTACK, DM Radio, LC Circuit, MADMAX, ABRACADABRA	CASPEr
Solar axions	CAST IAXO	
Lab-produced axions	Light-shining-thru- walls (ALPS, ALPS-II)	ARIADNE

Axion-exchange between nucleons

• Scalar coupling $\propto \theta_{\rm QCD}$

$$\mathcal{L} \supset \frac{\theta_{QCD}}{f_a} \mu \ a \bar{\psi} \psi$$

 $\mathcal{L} \supset \frac{\partial_{\mu}a}{f_a} \bar{\psi} \gamma_{\mu} \gamma_5 \psi$

• Pseudoscalar coupling

In the non-relativistic limit:

Spin-dependent forces

Monopole-Dipole axion exchange

$$U(r) = \frac{\hbar^2 g_s^N g_p^N}{8\pi m_f} \left(\frac{1}{r\lambda_a} + \frac{1}{r^2}\right) e^{-r/\lambda_a} (\hat{\sigma} \cdot \hat{r}) \equiv \mu \cdot B_{\text{eff}}$$

 $m_a < 6 \text{ meV} \longrightarrow \lambda_a > 30 \,\mu\text{m}$

Fictitious magnetic field

- Different than ordinary B field
- Does not couple to angular momentum
- Unaffected by magnetic shielding

Using NMR for detection

Spin precesses at nuclear spin Larmor frequency $\omega = \gamma B$

Axion B_{eff} modifies measured Larmor frequency

Constraints on spin dependent forces

ARIADNE: uses resonant enhancement

Time varying Axion B_{eff} drives spin precession \rightarrow produces transverse magnetization Amplitude is resonantly enhanced by Q factor $\sim \omega T_2$.

Can be detected with a SQUID

Concept for ARIADNE

Unpolarized (tungsten) segmented cylinder sources B_{eff}

Experimental parameters

11 segments
100 Hz nuclear spin precession frequency
2 x 10²¹ / cc ³He density
10 mm x 3 mm x 150 μm volume
Separation 200 μm
Tungsten source mass (high nucleon density)

A. Arvanitaki and AG., Phys. Rev. Lett. 113,161801 (2014).

Experimental challenges

Systematic Effect/Noise source	Background Level	Notes
Magnetic gradients	$3 imes 10^{-6} \mathrm{~T/m}$	Limits T_2 to ~ 100 s
		Possible to improve w/shield geometry
Vibration of mass	$10^{-22} { m T}$	For 10 μ m mass wobble at $\omega_{\rm rot}$
External vibrations	$5 \times 10^{-20} \text{ T}/\sqrt{\text{Hz}}$	For 1 μ m sample vibration (100 Hz)
Patch Effect	$10^{-21} (\frac{V_{\text{patch}}}{0.1\text{V}})^2 \text{ T}$	Can reduce with V applied to Cu foil
Flux noise in squid loop	$2 \times 10^{-20} \mathrm{T}/\sqrt{\mathrm{Hz}}$	Assuming $1\mu\Phi_0/\sqrt{\text{Hz}}$
Trapped flux noise in shield	$7 imes 10^{-20} \frac{\mathrm{T}}{\sqrt{\mathrm{Hz}}}$	Assuming 10 cm^{-2} flux density
Johnson noise	$10^{-20} (\frac{10^8}{f}) T / \sqrt{Hz}$	f is SC shield factor (100 Hz)
Barnett Effect	$10^{-22} (\frac{10^8}{f})$ T	Can be used for calibration above 10 ${\rm K}$
Magnetic Impurities in Mass	$10^{-25} - 10^{-17} (\frac{\eta}{1 \text{ppm}}) (\frac{10^8}{f}) \text{ T}$	η is impurity fraction (see text)
Mass Magnetic Susceptibility	$10^{-22} (\frac{10^8}{f})$ T	Assuming background field is 10^{-10} T
	J	Background field can be larger if $f > 10^8$

Table 1: Table of estimated systematic error and noise sources, as discussed in the text. The projected sensitivity of the device is $3 \times 10^{-19} (\frac{1000s}{T_2}) \text{ T}/\sqrt{\text{Hz}}$

- Design/Simulation Work: Magnetic gradient reduction strategy
- Experimental testing in progress: Vibration tests, Shielding factor f test thin-film SC

Superconducting Magnetic Shielding

→ Essential to avoid Johnson noise

Meissner Effect

 No magnetic flux across superconducting boundary

Method of Images

Make "image currents" mirrored across the superconducting boundary

The Problem of Unwanted Images

- ARIADNE uses
 magnetized spheroid
 - Constant interior field

• $B_{in} = \text{const.}$ • $\overline{B_{in}} \parallel \overline{m_i}$

- Magnetic shielding introduces "image spheroid" Interior field varies
- → variations in nuclear Larmor frequency

Flattening Solution

- 1 coil simple configuration
- Expected field from spheroid ~1 μT
 - I on the 0.1 1 A range

Gradient Cancellation

Tuning Solution – "D" Coils

- Tune field with Helmholtz coils
 - Helmholtz field only flat near the center
 - Geometry restrictions prevent the spheroid from being centered in traditional Helmholtz coils
- "D" coils look like Helmholtz coils when their images are included
- Inner straight-line currents cancel
- Outer currents do not

SQUID Magnetometers

Measured inside a magnetically shielded room (without Nb tube)

Nb sputtering tests

Younggeun Kim, Dongok Kim, Yun Chang Shin, Andrei Matlashov CAPP/IBS

Thickness of deposition : \sim 1um Tc = 7.3K

Work in progress on optimizing Tc and adhesion

Tungsten Source Mass Prototype

11 segments, 3.8 cm diameter Tungsten Sprocket prototype, Wire EDM

Magnetic impurities below 0.4 ppm

Residual magnetization

Nov 2017 In collaboration with Lutz Trahms, PTB, SQUID measurements in shielded room

- after degaussing, field approx. 2pT near surface in range of noise
- Johnson noise < 1-2 pT, agreeing with expectations
- Looks promising for target shielding factor of Nb film!

Speed stability test - direct drive stage

- **Optical encoder**
- Current feedback control

Ultra-light scalar Dark Matter

• Dark Matter mass scales:

>10⁻²² eV (size of dwarf galaxies)

Ultralight DM looks like coherent field rather than particle

$$\phi(\mathbf{r},t) = \phi_0 \cos{(\omega_{\phi}t - \mathbf{k}_{\phi} \cdot \mathbf{r} + \dots)}.$$

 $\phi_0 = \hbar \sqrt{2\rho_{\rm DM}} / (m_\phi c)$

> Techniques for detecting oscillating scalar DM:

Asimina Arvanitaki, Savas Dimopoulos, and Ken Van Tilburg, Phys. Rev. Lett. **116**, 031102 (2016) Asimina Arvanitaki, Junwu Huang, and Ken Van Tilburg, Phys. Rev. D 91, 015015 (2015) Asimina Arvanitaki, Peter W. Graham, Jason M. Hogan, Surjeet Rajendran, and Ken Van Tilburg Phys. Rev. D 97, 075020 (2018) Peter W. Graham, David E. Kaplan, Jeremy Mardon, Surjeet Rajendran, William A. Terrano Phys. Rev. D 93, 075029 (2016)

- Atomic clocks
- Bar detectors
- Torsion Balances
- Atom Interferometers

Time-varying acceleration of earth and masses of atoms

Atom inteferometry

$$\begin{split} \frac{\Delta g_n}{g} &= \frac{\Delta M_{\oplus}}{M_{\oplus}} \\ &= \left(\frac{2\rho_{\rm DM}\hbar^3}{m_{\phi}^2 c \Lambda_n^2}\right)^{n/2} \times \frac{1}{2^{(n-1)}} \cos(n\omega_{\phi}t - nk_{\phi} \cdot r + \dots) \\ g(t) &= g_0 [1 + \delta_g \cos\left(\omega t + \theta_0\right)], \\ m(t) &= m_0 [1 + \delta_m \cos\left(\omega t + \theta_0\right)], \end{split}$$

Sensitivity - higgs portal search

AG and Andrei Derevianko, Phys. Rev. Lett. 117, 261301 (2016).

Conclusions

AMO-based methods at the sensitivity frontier

• Calibrated zeptonewton force sensing with optically levitated nanospheres

 \rightarrow Micron-distance gravity tests

- \rightarrow High frequency gravitational waves
- ARIADNE → New resonant NMR method Gap in experimental QCD axion searches 0.1 meV < m_a < 10 meV Complementary to cavity-type (e.g. ADMX) experiments

No need to scan mass, indep. of local DM density

• Ultralight DM with atom interferometers

Acknowledgements

Back row (L to R): Cris Montoya (G), William Eom (UG), Jason Lim (UG), Harry Fosbinder-Elkins (UG), Mindy Harkness (UG), Andrew Geraci (PI) Front row (L to R): Ryan Danenberg (UG), Kathleen Wright (UG), Isabella Rodriguez (UG), Chloe Lohmeyer (G), Ohidul Mojumder (UG), Jordan Dargert (G), Chethn Galla (G), Colin Bradley (UG).

PHY-1205994 PHY-1506431 PHY-1506508 1510484, 1509176

Quantum "Mechanics"

Laser cooling of a nanomechanical oscillator into its quantum ground state Jasper Chan,¹, et.al. Nature 478, 89–92(2011)

Quantum ground state and single-phonon control of a mechanical resonator *A. D. O'Connell et.al.* Nature 464, 697 (2010).

 $k_{R}T \ll \hbar\omega$

Sideband cooling of micromechanical motion to the quantum ground state J. D. Teufel, ¹*et.al.* Nature 475, 359 (2011).

Quantum Regime

Ground state cooling of solid-state mechanical resonators

- Cryogenic cooling
- Feedback cooling
- Passive back-action cooling

