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Strong CP Problem

• Axions are arguably the simplest and most 
minimal solution to the Strong CP problem 

• Closest competitor is the minimal LR symmetric models 

• Solves a problem and can be dark matter 

• If it is dark matter, how can we look for it?



Axion dark matter

• Axion dark matter obtains its number 
abundance through the misalignment 
mechanism 

• Produces cold dark matter regardless how light the axion is 

• The axion is a classical field due to large 
number abundance

a(t) ⇠ a0 cosmat

• Non-relativistic, v ~ 10-3



Axion is localized to a distance

So it takes a time

Until whole axion wave passes by and replaced 
by a new axion wave

L ⇠ 1

mav

⌧ ⇠ 1

mav2

Axion dark matter



Axion dark matter

• Axion dark matter is a wave with  

• It has a quality factor of 
! ⇠ ma ± 10�6ma

Q =
1

!⌧
⇠ 106



Looking for the axion

L � a

4f
F F̃

• Looking for the axion through the coupling 
to gluons is HARD 

• Very few experiments can reach the QCD axion line 

• Instead look for the axion through its 
coupling with the photon



DISCLAIMER

• QCD Axion 
• Solves the Strong CP problem 

• Couples to photons and gluons and fermion spin 

• ALP (Axion like particles) 
• Does NOT solve the Strong CP problem 

• Couples to photons and/or fermion spin 

• Axions 
• Can be either 

• Figure it out from context



Effect of photon coupling

L � a

4f
F F̃
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We propose using interferometry of circularly polarized light as a mechanism by which to test for
axion dark matter. These interferometers di↵er from standard interferometers only by the addition
of a few quarter waveplates to preserve the polarization of light upon reflection. We show that using
current technology, interferometers can probe new regions of axion parameter space up to a couple
orders of magnitude beyond current constraints.

I. INTRODUCTION

One of the leading candidates for dark matter (DM) is
a light pseudo-scalar derivatively coupled to the Standard
Model (SM). The most well-known example of such a
candidate is the QCD axion [1–4]. The axion can have a
multitude of di↵erent couplings to the SM. The coupling
that produces the e↵ect of interest in this article is

L � a

4f
F F̃ (1)

which is the axion coupling to photons. While in the
simplest models of the QCD axion, the axion-photon cou-
pling is a function of the axion mass, there exist models
where the coupling to photons is a free parameter (i.e. f
is independent of m

a

) [5, 6]. We consider axions, which
do not necessarily have to be the QCD axion, where f

and m

a

are independent of each other. These generalized
axions are sometimes called axion-like particles (ALPs).
There are many proposals for experiments to look for
axions and ALPs. See Refs. [7–13] for a small subset of
these proposals.

In the presence of ALP dark matter, the coupling
shown in Eq. 1 generates a di↵erence in phase velocity be-
tween right and left circularly polarized light. This e↵ect
is often equivalently stated as the fact that a background
axion field causes the polarization angle of linearly po-
larized light to slowly rotate. The dispersion relation of
a beam of circularly polarized light (A±) is

�!

2 + k

2 ⌥ da

dt

k

f

= 0 (2)

Thus the phase velocity of left and right polarized light
is

v

phase

⇡ 1± ȧ

2kf
(3)

As the e↵ect of axion dark matter is to change the
phase velocity of circularly polarized light, the natural
experiment to build is an interferometer where one arm
has left circularly polarized light while the other arm has
right polarized light. Axion DM would produce a di↵er-
ence in phase velocity between the two arms, generating
an interference pattern.

II. MAPPING BETWEEN GRAVITATIONAL
WAVES AND AXION DM

If the light in the interferometer is circularly polarized,
there is an exact mapping between the e↵ects of axions
and gravitational waves. Therefore all of the literature
on gravitational wave interferometry can be imported di-
rectly into axion interferometry.
To map between gravitational waves and axions, we

compare an axion interferometer with left and right po-
larized light respectively in each of the two arms with a
gravitational wave interferometer with arms along the x

and y directions subject to a + polarized gravitational
wave propagating along the z-axis. Since the velocity of
dark matter is small (v ⇠ 10�3), the length of the inter-
ferometer is ⌧ 1/m

a

v, so it is safe to neglect the e↵ect
of the spatial gradients of the axion field. The equivalent
GW propagates along the z-axis because this maps to
the situation of having negligible spatial gradients in the
axion DM.
To map between the amplitude of the gravitational

wave h

0

and the e↵ect of the axion DM, we note that
the axion field behaves as a classical field due to its large
occupation number. The axion field is approximately

a(t) = a

0

cos(m
a

t+ k

a

z). (4)

Using the dispersion relation and neglecting spatial gra-
dients, this gives us an e↵ective path length of

L ,� =

Z
t0+⌧

t0

1± m

a

a

0

2f!
cos(m

a

t) dt (5)

Comparison to the standard formula for path length in
the case of gravitational waves [14]

L

x,y

=

Z
t0+⌧

t0

1± 1

2
h

0

cos(!
g

t) dt (6)

shows that the correct mapping between the two scenar-
ios is

h

0

! m

a

a

0

f!

=

p
2⇢

DM

!f

!

g

! m

a

(7)

• For circularly polarized light
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2kf
(3)

As the e↵ect of axion dark matter is to change the
phase velocity of circularly polarized light, the natural
experiment to build is an interferometer where one arm
has left circularly polarized light while the other arm has
right polarized light. Axion DM would produce a di↵er-
ence in phase velocity between the two arms, generating
an interference pattern.

II. MAPPING BETWEEN GRAVITATIONAL
WAVES AND AXION DM

If the light in the interferometer is circularly polarized,
there is an exact mapping between the e↵ects of axions
and gravitational waves. Therefore all of the literature
on gravitational wave interferometry can be imported di-
rectly into axion interferometry.
To map between gravitational waves and axions, we

compare an axion interferometer with left and right po-
larized light respectively in each of the two arms with a
gravitational wave interferometer with arms along the x

and y directions subject to a + polarized gravitational
wave propagating along the z-axis. Since the velocity of
dark matter is small (v ⇠ 10�3), the length of the inter-
ferometer is ⌧ 1/m

a

v, so it is safe to neglect the e↵ect
of the spatial gradients of the axion field. The equivalent
GW propagates along the z-axis because this maps to
the situation of having negligible spatial gradients in the
axion DM.
To map between the amplitude of the gravitational

wave h

0

and the e↵ect of the axion DM, we note that
the axion field behaves as a classical field due to its large
occupation number. The axion field is approximately

a(t) = a

0

cos(m
a

t+ k

a

z). (4)

Using the dispersion relation and neglecting spatial gra-
dients, this gives us an e↵ective path length of

L ,� =

Z
t0+⌧

t0

1± m

a

a

0

2f!
cos(m

a

t) dt (5)

Comparison to the standard formula for path length in
the case of gravitational waves [14]

L

x,y

=

Z
t0+⌧

t0

1± 1

2
h

0

cos(!
g

t) dt (6)

shows that the correct mapping between the two scenar-
ios is

h

0

! m

a

a

0

f!

=

p
2⇢

DM

!f

!

g

! m

a

(7)



Effect of photon coupling

• Phase velocity of circularly polarized light is 
different depending on which polarization it 
is 

• Device most sensitive to differences in 
phase velocities is an interferometer
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Axion interferometry

• One-to-one mapping between axion 
interferometry and gravity wave interferometry 

• An axion interferometer can double as a gravity 
wave detector 

• Axion dark matter appears in the same manner 
as a continuous gravity wave signal with a 
quality factor of 106



Gravity wave interferometry

Laser

Detector

M
irror

Mirror

Consider a plus polarized 
gravity wave incident 
perpendicular to the 

interferometer



No Gravity Wave

The next thing to do is to analyze the case where you don’t actually know the signal. It turns
out that you can prove that the optimal way to look for the signal is to look for excess power

E = 4

Z
df

s(f)2

S

n

(f)
(2.12)

Note that with just noise, E ⇠ T . So that in order to get a SNR of one, we need a signal that
grows like E ⇠ T . Compare this with matched filtering where such a signal gives SNR ⇠ p

T . So
it’s clear that this is inferior to matched filtering. This approach can be generalized into a wavelet
analysis.

2.2 Gravity waves at a basic interferometer

We first discuss how a basic interferometer finds gravity waves before going on to the actual Fabry
Perot interferometer. Assume you have an interferometer with legs in the x and y directions. We
send in light E

0

e

�iw

L

(t�x into the interferometer. The interferometer is a 50/50 interferometer.
Assume that the beam splitter has a reflective surface on the first edge of the glass hit. This means
that the reflected light will have a minus sign while the transmitted will not. Both will acquire a
1/
p
2 due to the 50/50 nature of the beam splitter. When they arrive back the transmitted beam

is now reflected but does not acquire a minus sign. Thus the electric field is

E =
1

2
E

0

e

�iw

L

(t�2L

x

) � 1

2
E

0

e

�iw

L

(t�2L

y

)

E

2 = E

0

sin2

w(L
x

� L

y

) (2.13)

so that the final power/number of photons is given by the di↵erence in distance between the two.
Now we put in a time varying gravity wave coming through. Assume that we are in TT gauge

so that the gravity wave is the standard cosine form and dx = (1� 1

2

h

+

(t))dt. Where for simplicity
we assume only plus polarization so that x is squeezed and y is expanded. Of course we will only
be working in linear order in the gravity wave h. The time it takes to travel the length of one arm
and back is

2L
x

= (1� 1

2
h

+

(t))

Z
t0+⌧

t0

dt (2.14)

⌧ = 2L
x

+

Z
2L

x

0

h

0

cosw
g

t

2
dt = 2L

x

+
h

0

2w
g

(sinw
g

(t
0

+ ⌧)� sinw
g

t

0

) (2.15)

⌧ = 2L
x

+ h

0

L

x

sinw
g

L

x

w

g

L

x

cosw
g

(t
0

+ L

x

) = 2L
x

+ L

x

h(t
0

+ L

x

)
sinw

g

L

x

w

g

L

x

(2.16)

we can get the time it takes to go in the y direction by replacing L
x

with L

y

and sending h
0

! �h

0

.
We follow before and get

E = �iE

0

e

�iw

L

t+iw2L sin(w
L

(L
x

� L

y

) + w

L

Lh(t� L

x

)
sinw

g

L

w

g

L

) (2.17)

�� =
w

L

h(t� L

x

)

w

g

sinw
g

L cos(w
g

t+ ↵) (2.18)
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x
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3

Typically adjust Lx and Ly so that the 
electric field at the detector is small

Relative minus sign due to reflection 
at beam splitter



Gravity wave

Time it takes for the light to go to the 
mirror and back

The next thing to do is to analyze the case where you don’t actually know the signal. It turns
out that you can prove that the optimal way to look for the signal is to look for excess power
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h+ = h0 cos!gt
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so that the final power/number of photons is given by the di↵erence in distance between the two.
Now we put in a time varying gravity wave coming through. Assume that we are in TT gauge

so that the gravity wave is the standard cosine form and dx = (1� 1

2
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+

(t))dt. Where for simplicity
we assume only plus polarization so that x is squeezed and y is expanded. Of course we will only
be working in linear order in the gravity wave h. The time it takes to travel the length of one arm
and back is
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we can get the time it takes to go in the y direction by replacing L
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Gravity wave

Look for the oscillations in the 
amplitude of the electric field

The next thing to do is to analyze the case where you don’t actually know the signal. It turns
out that you can prove that the optimal way to look for the signal is to look for excess power
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(2.12)

Note that with just noise, E ⇠ T . So that in order to get a SNR of one, we need a signal that
grows like E ⇠ T . Compare this with matched filtering where such a signal gives SNR ⇠ p

T . So
it’s clear that this is inferior to matched filtering. This approach can be generalized into a wavelet
analysis.

2.2 Gravity waves at a basic interferometer

We first discuss how a basic interferometer finds gravity waves before going on to the actual Fabry
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1. Optimal Length is as expected 

2. Broadband detector

where we assume that the di↵erence in arm length is small compared to the arm length in the
term linear in h

0

. But with this, we see the standard statement that a gravity wave is formally
equivalent to a di↵erence in arm length
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We can now find the optimal length by maximizing the phase shift with respect to L. So that the
optimal length is
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2.3 Fabry Perot interferometer

Notice that the optimal length is pretty ridiculously large. Thus LIGO does something else, it uses
Fabry Perot interferometers. Lets do a quick review of these things. A Fabry Perot interferometer
is basically two parallel mirrors. These guys bounce light between each other a lot and only let
out a small amount of the light. The only thing you need to know about mirrors is that if you
bounce o↵ of less dense mirror, (glass going to air transition) you do not pick up a minus sign in
the overall sign of E. If you bounce o↵ of a more dense mirror (air going to glass transition) you
do pick up up minus sign in the overall sign of E.

Now lets calculate stu↵ about a Fabry Perot interferometer. We first calculate the reflected
light. There are combinations coming from the straight reflected light and the light that was sent
into the cavity in the past and bounces around inside.
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where we use the fact from conservation of energy that r2 + t

2 + l = 1 defining l to be the energy
absorbed by the mirror. The energy in the cavity is
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Lets now look at what a resonant Fabry Perot cavity looks like. This happens with constructive
interference of all of the light. Looking at the power in the cavity
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plot this and you’ll see extremely sharp peaks in power around where w
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To study these cavities people typically use a parameter called the fitness F . The fitness is the
full width at half maximum divided by the distance between resonances.
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No Axion DM

Exactly the same as a gravity wave 
interferometer

Experiment doubles as a gravity 
wave detector

No need to send the legs in different 
directions otherwise



Time it takes for the light to go to the 
mirror and back

Can get the y result by Lx to Ly and 
a(t) to -a(t)
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gravity wave interferometer!
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The next thing to do is to analyze the case where you don’t actually know the signal. It turns
out that you can prove that the optimal way to look for the signal is to look for excess power
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Note that with just noise, E ⇠ T . So that in order to get a SNR of one, we need a signal that
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T . So
it’s clear that this is inferior to matched filtering. This approach can be generalized into a wavelet
analysis.

2.2 Gravity waves at a basic interferometer

We first discuss how a basic interferometer finds gravity waves before going on to the actual Fabry
Perot interferometer. Assume you have an interferometer with legs in the x and y directions. We
send in light E

0

e

�iw

L

(t�x into the interferometer. The interferometer is a 50/50 interferometer.
Assume that the beam splitter has a reflective surface on the first edge of the glass hit. This means
that the reflected light will have a minus sign while the transmitted will not. Both will acquire a
1/
p
2 due to the 50/50 nature of the beam splitter. When they arrive back the transmitted beam

is now reflected but does not acquire a minus sign. Thus the electric field is

E =
1

2
E

0

e

�iw

L

(t�2L

x

) � 1

2
E

0

e

�iw

L

(t�2L

y

)

E

2 = E

0

sin2

w(L
x

� L

y

) (2.13)

so that the final power/number of photons is given by the di↵erence in distance between the two.
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We propose using interferometry of circularly polarized light as a mechanism by which to test for
axion dark matter. These interferometers di↵er from standard interferometers only by the addition
of a few quarter waveplates to preserve the polarization of light upon reflection. We show that using
current technology, interferometers can probe new regions of axion parameter space up to a couple
orders of magnitude beyond current constraints.

I. INTRODUCTION

One of the leading candidates for dark matter (DM) is
a light pseudo-scalar derivatively coupled to the Standard
Model (SM). The most well-known example of such a
candidate is the QCD axion [1–4]. The axion can have a
multitude of di↵erent couplings to the SM. The coupling
that produces the e↵ect of interest in this article is

L � a

4f
F F̃ (1)

which is the axion coupling to photons. While in the
simplest models of the QCD axion, the axion-photon cou-
pling is a function of the axion mass, there exist models
where the coupling to photons is a free parameter (i.e. f
is independent of m

a

) [5, 6]. We consider axions, which
do not necessarily have to be the QCD axion, where f

and m

a

are independent of each other. These generalized
axions are sometimes called axion-like particles (ALPs).
There are many proposals for experiments to look for
axions and ALPs. See Refs. [7–13] for a small subset of
these proposals.

In the presence of ALP dark matter, the coupling
shown in Eq. 1 generates a di↵erence in phase velocity be-
tween right and left circularly polarized light. This e↵ect
is often equivalently stated as the fact that a background
axion field causes the polarization angle of linearly po-
larized light to slowly rotate. The dispersion relation of
a beam of circularly polarized light (A±) is

�!

2 + k

2 ⌥ da

dt

k

f

= 0 (2)

Thus the phase velocity of left and right polarized light
is

v

phase

⇡ 1± ȧ

2kf
(3)

As the e↵ect of axion dark matter is to change the
phase velocity of circularly polarized light, the natural
experiment to build is an interferometer where one arm
has left circularly polarized light while the other arm has
right polarized light. Axion DM would produce a di↵er-
ence in phase velocity between the two arms, generating
an interference pattern.

II. MAPPING BETWEEN GRAVITATIONAL
WAVES AND AXION DM

If the light in the interferometer is circularly polarized,
there is an exact mapping between the e↵ects of axions
and gravitational waves. Therefore all of the literature
on gravitational wave interferometry can be imported di-
rectly into axion interferometry.
To map between gravitational waves and axions, we

compare an axion interferometer with left and right po-
larized light respectively in each of the two arms with a
gravitational wave interferometer with arms along the x

and y directions subject to a + polarized gravitational
wave propagating along the z-axis. Since the velocity of
dark matter is small (v ⇠ 10�3), the length of the inter-
ferometer is ⌧ 1/m

a

v, so it is safe to neglect the e↵ect
of the spatial gradients of the axion field. The equivalent
GW propagates along the z-axis because this maps to
the situation of having negligible spatial gradients in the
axion DM.
To map between the amplitude of the gravitational

wave h

0

and the e↵ect of the axion DM, we note that
the axion field behaves as a classical field due to its large
occupation number. The axion field is approximately

a(t) = a

0

cos(m
a

t+ k

a

z). (4)

Using the dispersion relation and neglecting spatial gra-
dients, this gives us an e↵ective path length of
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2f!
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t) dt (5)

Comparison to the standard formula for path length in
the case of gravitational waves [14]
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shows that the correct mapping between the two scenar-
ios is
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2. Resonant detector

L = �g/2

ωg

Δϕ

Resonant interferometry



Fabry-Perot

Laser

Detector

M
irror

Mirror

Mirror

M
irror



M
irror

M
irror

Fabry-Perot Cavity

Fabry-Perot



The phase accumulated over a 
single round trip is

Many things you calculate are enhanced by this factor when you’re close to resonance. One
example is the average time a photon spends inside of the cavity. Imagine that r
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The real cool things about Fabry Perot interferometers comes when you consider the phase
of the reflected light. The phase is just the di↵erence of phases between the numerator and the
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you can plot the phase and you notice an interesting fact. Away from resonance, � ⇡ 2⇡n.
However, near resonance, the phase changes super super quickly from one multiple to another.
We can calculate this sensitivity expanding around 2w

L

L = 2⇡n+ ✏ using the simplification that
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this to be compared with a normal interferometer for which this derivative is 1. So a resonant
Fabry Perot interferometer is much more sensitive to changes in path length.

2.4 Fabry Perot interferometers and gravity waves

To do this, we first take our previous Michelson interferometers and rewrite it slightly.
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so one way to interpret what gravity waves do is to generate sidebands in your otherwise monochro-
matic beam of light.

We can now use this interpretation to find out how to generalize the Fabry Perot interferometer
to gravity waves. The main issue is how do the phase factors change since the reflection coe�cients
all remain the same. Lets figure out what is the phase shift over one there and back. Assume that
you can a wave at the left that starts o↵ as
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and upon returning has a new form
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The phase accumulated over a 
single round trip is

Many things you calculate are enhanced by this factor when you’re close to resonance. One
example is the average time a photon spends inside of the cavity. Imagine that r
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The real cool things about Fabry Perot interferometers comes when you consider the phase
of the reflected light. The phase is just the di↵erence of phases between the numerator and the
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you can plot the phase and you notice an interesting fact. Away from resonance, � ⇡ 2⇡n.
However, near resonance, the phase changes super super quickly from one multiple to another.
We can calculate this sensitivity expanding around 2w
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this to be compared with a normal interferometer for which this derivative is 1. So a resonant
Fabry Perot interferometer is much more sensitive to changes in path length.

2.4 Fabry Perot interferometers and gravity waves

To do this, we first take our previous Michelson interferometers and rewrite it slightly.
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so one way to interpret what gravity waves do is to generate sidebands in your otherwise monochro-
matic beam of light.

We can now use this interpretation to find out how to generalize the Fabry Perot interferometer
to gravity waves. The main issue is how do the phase factors change since the reflection coe�cients
all remain the same. Lets figure out what is the phase shift over one there and back. Assume that
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Effect of gravity waves is to create side bands 
( light with slightly different frequencies)
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What comes out of a Fabry-Perot 
Cavity is an infinite sum of light that 
has bounced around many times

Now look at what is the ideal wavelength. The ideal wavelength turns out to be Fw

g

L ⇠ O(1).
Because F � 1, this means that w

g

L ⌧ 1 so we can do some expansions in small w
g

L. Using the
expression for fitness we have
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where f is the frequency and f

p

is the pole frequency which is roughly just the inverse of the
storage time.

Thus we see that if we take an standard interferometer and replace it with a Fabry Perot
interferometer we get an enhancement of 2F

⇡

. Thus you can do much better and reach within
order one of the optimal basic interferometer without going to crazy long lengths.

2.5 Gaussian Beams

So it turns out that you need to be a little bit tricky with things because of the uncertainty
principle. Say that your laser has a thickness a. Thus there is necessarily momentum in the y-z
direction p = 1/a. After a distance x, your beam size will be larger by an amount �p/px. There
is a critical distance x

c

when the beam size has doubled. This occurs when x

c

⇠ a

2

/�. For LIGO
if the beam size is smaller than 2.5 cm, then after a single trip, the beam will have expanded by
a lot. Since we need a hundred trips or so, we need to be smart about the uncertainty principle
and squeezing the state.

What we want to do is find out how waves propogate. we first expand the electric field in

E = Ee�iwt+ikx (2.48)

The equations of motion for remaining electric field, using the fact that the change in E is small
compared to k gives
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where the general solution is given in terms of a green’s function.
The mode that is most interesting is the solution which is called the gaussian beam
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b

2
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(2.52)

where �

0

is the minimum width that the gaussian reaches at x = 0. b is essentially the critical
distance that was mentioned before. R is the curvature radius. If we look at regions of constant
phase, then taking the variation of the arctan and R to be small, we find that the constant phase
wavefront is approximately spherical with a radius R.
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An enhanced sensitivity over the standard 
interferometer by Finesse ~ number of times 

light bounces around before escaping
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• For low frequencies Fabry Perot Cavity better 
by a factor of Finesse 

• Get an interferometer whose arm length is 
effectively longer

�� = h0!LL
2F

⇡
�� = h0!LL

Fabry-Perot



Fabry-Perot
Better sensitivity at low frequency but not as 

broadband as before

ωg

Δϕ



Axion Interferometer

Laser

1/4

1/4

1/4

1/4

1/2

Detector

M
irror

Mirror

Mirror

M
irror

The axion equivalent of a 
standard interferometer (still acts 

like a gravity wave detector) 

Add 4 wave plates



Axion Interferometer

Same Mapping as before 

Otherwise identical to Gravity 
wave detector



Noise

• An interferometer counts the number of 
photons arriving at the detector a second 

• How the number of photons a second 
changes tells us about a time varying 
phase 

• Main sources of noise 
• Shot Noise 

• Radiation Pressure



Shot Noise

Thus we have a phase shift which is
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Plotting this function, we see that there is a sharp maximum at m

a

L = ⇡ which in terms of
wavelength is L = �/2 just as you expect. Since flipping the sign of the e↵ect every half wavelength
means that you gain a lot.

We find that the maximum value is
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with a peak and full width half maximum of
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We will see that we will want F as large as the coherence time of the axion. Any larger and the
approximation of the sin wave for the axion wave is wrong.

Now we calculate the shot noise. What we are doing is measuring the power at some point.
Because of the poisson nature of photons, we have an unavoidable error which comes from statis-
tics.
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Lets make sure that we get it correct for a gravity wave so that we trust our calculation. For
FP, we look back and find that
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Plotting this function, we see that there is a sharp maximum at m
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L = ⇡ which in terms of
wavelength is L = �/2 just as you expect. Since flipping the sign of the e↵ect every half wavelength
means that you gain a lot.

We find that the maximum value is
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We will see that we will want F as large as the coherence time of the axion. Any larger and the
approximation of the sin wave for the axion wave is wrong.

Now we calculate the shot noise. What we are doing is measuring the power at some point.
Because of the poisson nature of photons, we have an unavoidable error which comes from statis-
tics.
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Lets make sure that we get it correct for a gravity wave so that we trust our calculation. For
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In some time T, there are an average 
number of photons that arrive

The number is given by Poisson 
statistics



Shot Noise

aLIGO sits slightly off the dark spot
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Plotting this function, we see that there is a sharp maximum at m
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We will see that we will want F as large as the coherence time of the axion. Any larger and the
approximation of the sin wave for the axion wave is wrong.

Now we calculate the shot noise. What we are doing is measuring the power at some point.
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This is so that when a signal arrives
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Plotting this function, we see that there is a sharp maximum at m
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L = ⇡ which in terms of
wavelength is L = �/2 just as you expect. Since flipping the sign of the e↵ect every half wavelength
means that you gain a lot.
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We will see that we will want F as large as the coherence time of the axion. Any larger and the
approximation of the sin wave for the axion wave is wrong.

Now we calculate the shot noise. What we are doing is measuring the power at some point.
Because of the poisson nature of photons, we have an unavoidable error which comes from statis-
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Linear piece would vanish is sitting 
on dark spot



Shot Noise
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Plotting this function, we see that there is a sharp maximum at m
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We will see that we will want F as large as the coherence time of the axion. Any larger and the
approximation of the sin wave for the axion wave is wrong.

Now we calculate the shot noise. What we are doing is measuring the power at some point.
Because of the poisson nature of photons, we have an unavoidable error which comes from statis-
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so that the shot noise is
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where we have set cos�
0

= 1/
p
2 since that’s when you’re most sensitive to changes in �. Note

that up to a slightly di↵erent definition of the Fitness type parameters, this is the result that
LIGO claims.
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where we are assuming that the length has been tuned to look for the axion on resonance.
Now comes the issue of the coherence time. The axion is coherent on timescales ⌧ = 2⇡/m

a

v

2.
In order for our calculation of the ��

x

to be valid, we need gravity waves to be a pure cosine.
Thus we are optimistic and set the average time spent by a photon in the cavity equal to the
coherence scale
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Now the coherence time is T = 2⇡/m
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2 and after that we have the t1/4 growth. Thus our SNR is
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Now we assume that ⇢
DM

= 0.3 GeV/cm3, t = hour, �
L

= 1064 nm, a power of 250 Watts, and
v = 10�3. This lets us make a plot. We plot the QCD axion line like CAST does as a comparison.
ADMX appears in the 10�6 � 10�5 eV region as well.

We can now try to take advantage of the large v scaling of our final result where f
a

⇠ p
⇢/v

5/2.
Note that most of this scaling comes from the Fitness so I’m assuming that we’re able to jack up
the fitness as needed. In the standard halo model, the distribution of dark matter is
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where v

c

⇠ 220 km/s ⇠ 7⇥ 10�4. We need a factor of 100 gain. Thus if we take
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Thus we find that if fnew

a

/f

a

⇠ 100, then we need ✏ ⇠ 10�5 which requires a Fitness of 1010. We
could also hope for a factor of 10 gain from squeezing (which LIGO is starting to do and getting
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Shot Noise is constant at low frequencies
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Plotting this function, we see that there is a sharp maximum at m
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L = ⇡ which in terms of
wavelength is L = �/2 just as you expect. Since flipping the sign of the e↵ect every half wavelength
means that you gain a lot.
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We will see that we will want F as large as the coherence time of the axion. Any larger and the
approximation of the sin wave for the axion wave is wrong.

Now we calculate the shot noise. What we are doing is measuring the power at some point.
Because of the poisson nature of photons, we have an unavoidable error which comes from statis-
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Lets make sure that we get it correct for a gravity wave so that we trust our calculation. For
FP, we look back and find that
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Shot Noise increases at high frequencies



Radiation pressure

• When a photon hits beam splitter 50/50 
chance of going up or down 

• Sometimes more photons go up than down 

• Thus the force on the mirrors are not always 
the same 

• Position of the mirrors will fluctuate 

• Frequency of restoring force small compared to frequency of 
gravity wave so mirror is effectively a freely falling object 

• The fact that Lx and Ly vary in time induces 
a background for gravity wave detection



Radiation pressure

Via similar calculation to before

4

FIG. 5: Same as Fig. 4 but using the configuration shown
in Fig. 3. Radiation pressure noise is cancelled leaving only
radiation torque noise. We take the beams to be separated
by 1 cm and the mirror to be circular and 10 cm in diameter.

cavity is taken to be 1). The radiation pressure noise is
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where M is the mass of the mirror and F is the finesse of
a cavity (r ⇡ 1� ⇡

F ).
This noise can be reduced by running the interferom-

eter in the configuration shown in Fig. 3. Since both
cavities are now formed by the same mirrors, any change
in the displacement of the mirror occurs equally in both
cavities, hence the overall displacement noise due to ra-
diation pressure is cancelled. What remains is radiation
torque noise, which arises when fluctuations in power be-
tween the two beams cause a torque on the mirror, lead-
ing to slightly di↵erent path-lengths for the two beams.
This noise is then given by

S

radiation torque

=
Mr

2

I

S

radiation

(10)

where r is the distance between a beam and the center of
a mirror and I is the moment of inertia of the mirror. By
reducing r, the noise from radiation torque can be made
to be several orders of magnitude smaller than the usual
radiation pressure noise.

To compute the reach shown in Fig. 4 and Fig. 5, we
set SNR = 1 and solve for f as a function of m

a

. The
dominant experimental constraint is the power contained
within the cavity, which is given by ( 2

⇡

)P
0

F . The inci-
dent power and finesse must be chosen such that this
quantity does not exceed several hundreds of kW, which
is the maximal power that can be currently contained
within a cavity [17]. For this reason, one cannot increase
P

0

arbitrarily without a corresponding reduction in fi-
nesse.

Fig. 4 (Fig. 5) was made taking L = 40 m using the
design shown in Fig. 2 (Fig. 3). Solid (dotted) lines have
a finesse of 102 (106). We took a standard 1064 nm laser,

�

0

= ⇡/4, M = 10 kg, and T = 30 days. As one of the
limiting factors is the power stored in the cavity, we show
exclusions in black (red) using the reasonable (futuristic)
value of 1 kW (1 MW) of power stored in the cavity.
The general shape of the reach curves can be under-

stood as follows. At low frequencies, the reach curves
weaken due to radiation pressure noise. At high frequen-
cies, a given reach curve has two di↵erent slopes in dif-
ferent regimes of the axion mass. The first, more gradual
weakening of the reach curve comes from the change in
the coherence time as the mass increases. The second,
steeper slope occurs when the axion field is fluctuating
on time-scales comparable to or shorter than the trapping
time of the cavity. The phase shift begins to be averaged
out since the light is trapped for greater than one half-
period of the axion field. A longer trapping time (equiva-
lently a longer e↵ective arm length) therefore means that
the interferometer starts losing sensitivity at higher axion
masses.
An interesting aspect of this experimental design is

that interferometers with larger e↵ective arm length do
not necessarily probe more of parameter space than in-
terferometers with smaller e↵ective arm length. As can
be seen from the figures, interferometers with di↵erent
finesses probe di↵erent regions of parameter space. The
reason for this di↵erence is that, as mentioned before,
larger finesse cavities require lower power input lasers.
Lower power on the beam splitter results in larger noise
that can degrade sensitivity. Therefore axion interferom-
eters of di↵erent finesses and laser powers can comple-
ment each other to better cover parameter space.
It is worth noting that unlike a gravitational wave de-

tector, the reach of an axion interferometer improves for
decreasing !. This is due to the inverse !-dependence
of h

0

, which is not present in the case of gravitational
waves. Though the fact that longer wavelengths of light
are preferred might suggest that the experiment should
attempt to use the longest wavelengths possible, the as-
sumption of shot noise limitation is no longer valid for
wavelengths much longer than those of visible light due
to the inability to detect single low energy photons. This
makes experimental control of noise significantly more
di�cult at longer wavelengths and weakens the potential
sensitivity. Optimistically, if future advances in Tran-
sition Edge Sensors [22] and/or Microwave Kinetic In-
ductance Devices [23] allow for the use of a meV scale
standard quantum limited maser, then the reach would
be improved by a factor of ⇠ 30.

V. CONCLUSION

In this article, we proposed an interferometer-based
search strategy for ALP dark matter. Because there is
a direct mapping between gravitational wave interferom-
eters and axion interferometers, much of the technology
developed for interferometry applies equally well to axion
detection. The only technical di↵erence is the addition

1/2

Radiation pressure relevant at low 
frequencies



SNR

Thus the final SNR is

Errors added in quadrature
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FIG. 3: A diagram of our proposed axion interferometer
where the same mirrors are used to form both cavities. The
dotted line is linearly polarized light, the red line is  polar-
ized light and the blue line is � polarized light. Two quarter
waveplates and a half waveplate are used to maintain the
circular polarization of the light. This setup cancels the radi-
ation pressure noise associated with the displacement of the
mirror, leaving only noise due to radiation torque. Torque
noise in this setup can be several orders of magnitude smaller
than the radiation pressure noise experienced by the setup in
Fig. 2.

the arms do not need to be perpendicular to each other
and could be run using the same mirrors for both cavities
to reduce noise. This improved version of the interferom-
eter is shown diagrammatically in Fig. 3.

Since our proposed experiment requires the addition of
various waveplates, the waveplates must be assessed for
potential sources of systematic error. One e↵ect is that
the waveplates are not perfect. Losses in the waveplates
and increased thermal noise due to absorption will likely
limit the highest possible finesse achievable within a cav-
ity. As such, we choose to display the reach of axion
interferometers using finesses of both the easily realiz-
able 102 and the much more speculative 106, which is
the highest finesse that current cavities can attain in the
absence of any waveplates [17].

Another possible source of noise is due to birefringent
e↵ects coming from reflecting o↵ of these polarization-
preserving mirrors. Previous experiments have mainly
focused on controlling birefringent e↵ects in the context
of linearly polarized light [18, 19]. It will be an experi-
mental question whether or not these e↵ects can be suf-
ficiently suppressed as to be a subdominant source of
noise.

IV. PARAMETER SPACE PROBED BY AXION
INTERFEROMETERS

In this section, we calculate the reach of an axion inter-
ferometer assuming that noise from the waveplates has
been mitigated such that we are at the standard quantum
limit (SQL) as is the case in LIGO and the Holometer for
a range of frequencies. Under this assumption, the data
analysis is identical to that of a continuous gravitational
wave detector. The standard SQL signal-to-noise ratio

FIG. 4: The reach of an axion interferometer in ga�� = 1/f
as a function of mass. We cut o↵ the plot at frequencies of
roughly 10 Hz where there start to be unavoidable sources
of noise stemming from gravity gradient and seismic noise.
The plot was made assuming a 40 m long interferometer and
10 kg mirrors. The solid (dotted) line shows F = 102 (F =
106). The black (red) line assumes a power of 1 kW (1 MW)
circulating inside the Fabry-Perot cavities. Bounds placed by
CAST are shown in blue [20]. Constraints coming from the
production of axions in supernova and subsequent conversions
into photons in the interstellar medium are shown in dotted
blue [21].
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where P
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is the power incident on the beam-splitter, � is
the wavelength of laser light, �

0

is how far o↵ of the dark
spot the interferometer is tuned to, L is the length of the
cavity, and r is the reflectivity of the mirror closer to the
beam-splitter (the reflectivity of the further mirror in a

1
Stochastic backgrounds are usually searched for by looking for

correlations in the output power of multiple detectors. Unlike

most stochastic backgrounds, the axion has a large coherence

time. A version of the usual search modified to apply to large Q
signals would give similar sensitivity to our matched waveform

approach.
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SNR only grows like T1/2 until approximation that 
signal is a sin wave breaks down
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Qualitatively : Add these units of time in 
quadrature to get T1/4 growth
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than the radiation pressure noise experienced by the setup in
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eter is shown diagrammatically in Fig. 3.
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Signal Processing

• There is an optimal way to look for a signal 
called matched filtering 

• Given a hypothetical data stream

Notes : Interferometers as an axion detector

Anson

August 30, 2017

1 Overview

We are going to use the fact that interferometers measure di↵erences in phase velocity in order to
try and test the axion. If the two arms use di↵erent circular polarizations, then the waves travel
at di↵erent velocities and interfere di↵erently. I will be fairly sloppy with complex conjugations
when I do stu↵.

2 Review about LIGO

I give some basic review over various things we need to know about gravity waves and their
analysis.

2.1 Data analysis

We first ask given a hypothetical data stream s(t) = h(t) + n(t). Using a constant shift, we have
that

hn(t)i = 0 hn(f)n(f 0)i = �(f � f
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The second equation comes from the assumption that noise is white noise and uncorrelated. The
factor of 1/2 comes from the fact that we will restrict to positive frequencies which is clear from
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Let us first use a stupid form of filtering to dig out results rather than optimal filtering. We
will consider the quantity

s =
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dts(t)h(t) (2.3)
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Signal Processing

• Define a signal we are interested in

where again h(t) is the known signal we’re looking to dig out. We are interesting in the signal to
noise of the quantity s which gives
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where ⌧ is some characteristic time scale for the noise and the
p
T part comes from a random

walk. Thus we see that we can gain in SNR with sqrt of time.
Now lets do the optimal thing. This is called optimal filtering. Now we define
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and will find the optimal function K in a continuous time data. As before we will be optimizing
with respect to SNR. The average signal and average noise are
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Now that we have our awesome way of getting a good SNR, lets look at how it performs for
periodic sources. Lets first take a cosine with a particular frequency f
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so we see that a pure cosine will grown like
p
T forever and ever.
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• Average signal and background are
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Signal Processing

• Define a dot product
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• Maximizing SNR corresponds to choosing 
an optimal vector
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Signal Processing

• Clearly the best way to maximize the signal 
is to choose u proportional to h
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• Gives the general formula for calculating 
SNR called waveform matching
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FIG. 3: A diagram of our proposed axion interferometer
where the same mirrors are used to form both cavities. The
dotted line is linearly polarized light, the red line is  polar-
ized light and the blue line is � polarized light. Two quarter
waveplates and a half waveplate are used to maintain the
circular polarization of the light. This setup cancels the radi-
ation pressure noise associated with the displacement of the
mirror, leaving only noise due to radiation torque. Torque
noise in this setup can be several orders of magnitude smaller
than the radiation pressure noise experienced by the setup in
Fig. 2.

the arms do not need to be perpendicular to each other
and could be run using the same mirrors for both cavities
to reduce noise. This improved version of the interferom-
eter is shown diagrammatically in Fig. 3.

Since our proposed experiment requires the addition of
various waveplates, the waveplates must be assessed for
potential sources of systematic error. One e↵ect is that
the waveplates are not perfect. Losses in the waveplates
and increased thermal noise due to absorption will likely
limit the highest possible finesse achievable within a cav-
ity. As such, we choose to display the reach of axion
interferometers using finesses of both the easily realiz-
able 102 and the much more speculative 106, which is
the highest finesse that current cavities can attain in the
absence of any waveplates [17].

Another possible source of noise is due to birefringent
e↵ects coming from reflecting o↵ of these polarization-
preserving mirrors. Previous experiments have mainly
focused on controlling birefringent e↵ects in the context
of linearly polarized light [18, 19]. It will be an experi-
mental question whether or not these e↵ects can be suf-
ficiently suppressed as to be a subdominant source of
noise.

IV. PARAMETER SPACE PROBED BY AXION
INTERFEROMETERS

In this section, we calculate the reach of an axion inter-
ferometer assuming that noise from the waveplates have
been mitigated such that we are at the standard quantum
limit (SQL) as is the case in LIGO and the Holometer for
a range of frequencies. Under this assumption, the data
analysis is identical to that of a continuous gravitational
wave detector. The standard SQL signal-to-noise ratio
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FIG. 4: The reach of an axion interferometer in ga�� = 1/f
as a function of mass. We cut o↵ the plot at frequencies of
roughly 10 Hz where there start to be unavoidable sources
of noise stemming from gravity gradient and seismic noise.
The plot was made assuming a 40 m long interferometer and
10 kg mirrors. The solid (dotted) line shows F = 102 (F =
106). The black (red) line assumes a power of 1 kW (1 MW)
circulating inside the Fabry-Perot cavities. Bounds placed by
CAST are shown in blue [20].

(SNR) [14] is
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where T is the observation time, ⌧ is the coherence time
of the axion field (= 2⇡
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The SQL is a combination of shot noise and radiation
pressure noise, S

SQL

= S

shot

+ S

radiation

. The shot noise
is

S

1/2

shot

=
1

4L

r
2�

⇡P

0

sin�
0

sin 2�
0

p
1 + r

2 � 2r cos 2m
a

L (9)

where P
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is the power incident on the beam-splitter, � is
the wavelength of laser light, �

0

is how far o↵ of the dark
spot the interferometer is tuned to, L is the length of the
cavity, and r is the reflectivity of the mirror closer to the
beam-splitter (the reflectivity of the further mirror in a
cavity is taken to be 1). The radiation pressure noise is
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where M is the mass of the mirror and F is the finesse of
a cavity (r ⇡ 1� ⇡

F ).
This noise can be reduced by running the interferom-

eter in the configuration shown in Fig. 3. Since both
cavities are now formed by the same mirrors, any change
in the displacement of the mirror occurs equally in both

Axion Interferometer

Seismic Noise becomes an issue

40 m arm Length 

10 kg mirror 

Red : 1 MW power 

Black : 1 kW power 

Dotted : F = 106 

Solid : F = 102



Axion Interferometer

• If detector is dedicated to an axion search 
and not gravity wave search, can do better! 

• Radiation pressure can be mitigated if 
same mirror is used for both arms!
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Radiation Pressure replaced by Radiation Torque



Radiation Torque

Via similar calculation to before

Mirrors can only be made so heavy

S1/2
torque

=
Mr2

I
S1/2
rad

=
16r2F
ILm2

a

r
P

⇡�

maL

sinmaL

Geometry is much easier to manage
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FIG. 5: Same as Fig. 4 but using the configuration shown
in Fig. 3. Radiation pressure noise is cancelled leaving only
radiation torque noise. We take the beams to be separated
by 1 cm and the mirror to be circular and 10 cm in diameter.

cavities, hence the overall displacement noise due to ra-
diation pressure is cancelled. What remains is radiation
torque noise, which arises when fluctuations in power be-
tween the two beams cause a torque on the mirror, lead-
ing to slightly di↵erent path-lengths for the two beams.
This noise is then given by

S

radiation torque

=
Mr

2

I

S

radiation

(10)

where r is the distance between a beam and the center of
a mirror and I is the moment of inertia of the mirror. By
reducing r, the noise from radiation torque can be made
to be several orders of magnitude smaller than the usual
radiation pressure noise.

To compute the reach shown in Fig. 4 and Fig. 5, we
set SNR = 1 and solve for f as a function of m

a

. The
dominant experimental constraint is the power contained
within the cavity, which is given by ( 2

⇡

)P
0

F . The inci-
dent power and finesse must be chosen such that this
quantity does not exceed hundreds of kW, which is the
maximal power that can be currently contained within
a cavity [17]. For this reason, one cannot increase P

0

arbitrarily without a corresponding reduction in finesse.
Fig. 4 (Fig. 5) was made taking L = 40 m using the

design shown in Fig. 2 (Fig. 3). Solid (dotted) lines have
a finesse of 102 (106). We took a standard 1064 nm laser,
�

0

= ⇡/4, M = 10 kg, and T = 30 days. As one of the
limiting factors is the power stored in the cavity, we show
exclusions in black (red) using the reasonable (futuristic)
value of 1 kW (1 MW) of power stored in the cavity.

The general shape of the reach curves can be under-
stood as follows. At low frequencies, the reach curves
weaken due to radiation pressure noise. At high frequen-
cies, a given reach curve has two di↵erent slopes in dif-
ferent regimes of the axion mass. The first, more gradual
weakening of the reach curve comes from the change in
the coherence time as the mass increases. The second,
steeper slope occurs when the axion field is fluctuating

on time-scales comparable to or shorter than the trapping
time of the cavity. The phase shift begins to be averaged
out since the light is trapped for greater than one half-
period of the axion field. A longer trapping time (equiva-
lently a longer e↵ective arm length) therefore means that
the interferometer starts losing sensitivity at higher axion
masses.

An interesting aspect of this experimental design is
that interferometers with larger e↵ective arm length do
not necessarily probe more of parameter space than in-
terferometers with smaller e↵ective arm length. As can
be seen from the figures, interferometers with di↵erent
finesses probe di↵erent regions of parameter space. The
reason for this di↵erence is that, as mentioned before,
larger finesse cavities require lower power input lasers.
Lower power on the beam splitter results in larger noise
that can degrade sensitivity. Therefore axion interferom-
eters of di↵erent finesses and laser powers can comple-
ment each other to better cover parameter space.

It is worth noting that unlike a gravitational wave de-
tector, the reach of an axion interferometer improves for
decreasing !. This is due to the inverse !-dependence
of h

0

, which is not present in the case of gravitational
waves. Though the fact that longer wavelengths of light
are preferred might suggest that the experiment should
attempt to use the longest wavelengths possible, the as-
sumption of shot noise limitation is no longer valid for
wavelengths much longer than those of visible light due
to the inability to detect single low energy photons. This
makes experimental control of noise significantly more
di�cult at longer wavelengths and weakens the potential
sensitivity. Optimistically, if future advances in Tran-
sition Edge Sensors [21] and/or Microwave Kinetic In-
ductance Devices [22] allow for the use of a meV scale
standard quantum limited maser, then the reach would
be improved by a factor of ⇠ 30.

V. CONCLUSION

In this article, we proposed an interferometer-based
search strategy for ALP dark matter. Because there is
a direct mapping between gravitational wave interferom-
eters and axion interferometers, much of the technology
developed for interferometry applies equally well to axion
detection. The only technical di↵erence is the addition
of quarter waveplates to preserve the polarization of the
light. If an experiment of this sort were to be undertaken,
it would be able to push beyond current constraints on
ALPs by several orders of magnitude for reasonable re-
gions of parameter space. Once the ALP mass is known,
other designs such as resonant gravity wave interferome-
ters [23, 24] could be transformed into axion interferom-
eters and used as well.
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Conclusion

• Axion dark matter changes the phase 
velocity of circularly polarized light 

• Can look for this effect in an interferometer 

• Can extend bounds by up to 2-3 orders of 
magnitude over some range of parameters 

• Do not need the newest fanciest 
technology  

• Need to make sure that birefringent backgrounds are under 
control!


