Absorbing bosonic dark matter with periodic dielectrics

Robert Lasenby, Perimeter Institute KITP, April 5, 2018

Light bosonic dark matter

- Dark matter mass could be anywhere within \sim 50 orders of magnitude, from $10^{-22}\,\mathrm{eV}$ to Planck scale
- For masses $\lesssim 100\,\mathrm{eV}$, DM must be bosonic (Pauli exclusion), and must be produced non-thermally
- Many such DM candidates, and early-universe production mechanisms, in BSM theories:
 - Axions, hidden photons, light moduli ...
 - Purely gravitational production during inflation, production during phase transitions, ...
- Direct detection experiments very different to WIMPs

Bosonic dark matter fields

- Bosonic DM expected to be coherent, classical-like oscillations of field
- Virialized velocity distribution within galaxies, $v \sim 10^{-3}$
 - Approximately Gaussian random field, with coherence length $\sim (mv)^{-1}$, coherence time $\sim (mv)^{-2}$

Bosonic dark matter fields

- Bosonic DM expected to be coherent, classical-like oscillations of field
- Virialized velocity distribution within galaxies, $v \sim 10^{-3}$
 - Approximately Gaussian random field, with coherence length $\sim (mv)^{-1}$, coherence time $\sim (mv)^{-2}$

- Detect heavy and/or fermionic DM through scattering
- Many light DM candidates can be absorbed
- Convert whole energy (including rest mass)
 of DM, versus just kinetic energy
- Existing experiments:
 ADMX for axions,
 Xenon for dark photons, ...

Detect heavy and/or fermionic DM through scattering

- Many light DM candidates can be
- Convert whole energy (including of DM, versus just kinetic energy
- Existing experiments:
 ADMX for axions,
 Xenon for dark photons, ...

Detect heavy and/or fermionic DM through scattering

- Many light DM candidates can be
- Convert whole energy (including of DM, versus just kinetic energy
- Existing experiments:
 ADMX for axions,
 Xenon for dark photons, ...

- Detect heavy and/or fermionic DM through scattering
- Many light DM candidates can be absorbed
- Convert whole energy (including root mass) of DM, versus just kinetic en
- Existing experiments:
 ADMX for axions,
 Xenon for dark photons, ...

Coherent absorption

Incoherent vs coherent absorption:

 Coherent absorption can take advantage of large target volume, while still absorbing into specific modes

Coherent absorption

- · Photons often a good signal easily manipulated and detected
- In large target, photons are relativistic momentum mismatch with DM:

Photonic materials

Materials with periodic optical properties

Dielectric haloscopes

• DM can Bragg-convert in medium, producing photons:

Axion conversion

Axion-photon coupling

$$\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} a)^{2} - \frac{1}{2} m^{2} a^{2} - \frac{1}{4} g a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$= \frac{1}{2} (\partial_{\mu} a)^{2} - \frac{1}{2} m^{2} a^{2} + g a E \cdot B,$$

Modifies Maxwell equations to

$$\nabla \cdot E = \rho - g\nabla a \cdot B \qquad \qquad \nabla \times B = \partial_t E + J + g(\dot{a}B + \nabla a \times E)$$

Instantaneous power transfer

$$P_{\mathrm{DM} \to \mathrm{SM}} \simeq \int dV \, E \cdot (g \dot{a} B)$$

Axion conversion

Axion-photon coupling

$$\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} a)^{2} - \frac{1}{2} m^{2} a^{2} - \frac{1}{4} g a F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$= \frac{1}{2} (\partial_{\mu} a)^{2} - \frac{1}{2} m^{2} a^{2} + g a E \cdot B,$$

Modifies Maxwell equations to

$$\nabla \cdot E = \rho - g \nabla a \cdot B$$

$$\nabla \times B = \partial_t E + J + g(\dot{a}B + \nabla a \times E)$$

Instantaneous power transfer

$$P_{\mathrm{DM} \to \mathrm{SM}} \simeq \int dV \, E \cdot (g \dot{a} B)$$

Axion conversion

Axion-photon coupling

$$\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} a)^{2} - \frac{1}{2} m^{2} a^{2} - \frac{1}{4} g a F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$= \frac{1}{2} (\partial_{\mu} a)^{2} - \frac{1}{2} m^{2} a^{2} + g a E \cdot B,$$

Modifies Maxwell equations to

$$\nabla \cdot E = \rho - g\nabla a \cdot B \qquad \qquad \nabla \times B = \partial_t E + J + g(\dot{a}B + \nabla a \times E)$$

Instantaneous power transfer

$$P_{\mathrm{DM} \to \mathrm{SM}} \simeq \int dV \, E \cdot (g \dot{a} B)$$

Photon modes

• In infinite periodic material, have photon Bloch modes $E(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{\vec{k}}(z)$

Photon modes

• In infinite periodic material, have photon Bloch modes

Half-wave stack

• For equal phase depths, $n_1d_1 = n_2d_2$, have no bandgaps at k=0:

• Axion oscillations excite mode with non-zero $\int dVE$

Half-wave stack

• For equal phase depths, $n_1d_1=n_2d_2$, have no bandgaps at

k=0:

• Axion oscillations excite mode with non-zero $\int dVE$

Converted power

• For stack of N periods, with area A, converted power from DM at halfwave frequency is

$$P_{\text{abs}} \simeq g^2 B_0^2 \frac{\rho_{\text{DM}}}{m^2} QAN \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \left(\frac{1}{n_2} - \frac{1}{n_1}\right)^2$$

- For ''open cavity'', $Q \propto N$
- Frequency coverage:

- Higher peak power compensated for by reduced bandwidth: frequency-averaged conversion power $\propto N$

Converted power

• For stack of N periods, with area A, converted power from DM at halfwave frequency is

$$P_{\text{abs}} \simeq g^2 B_0^2 \frac{\rho_{\text{DM}}}{m^2} QAN \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \left(\frac{1}{n_2} - \frac{1}{n_1}\right)^2$$

- For ''open cavity'', $Q \propto N$
- Frequency coverage:

- Higher peak power compensated for by reduced bandwidth: frequency-averaged conversion power $\propto N$

Collimated emission

 Material periodicity "donates" momentum in parallel direction, doesn't affect DM momentum in perpendicular directions

- Converted photons emitted in narrow cone around layer normal, opening angle $\sim v^{-1} \sim 10^{-3}$
- Allows focussing down to area $\sim 10^{-6} A$

Optical-frequency absorption

- Analogous scheme proposed at microwave frequencies: MADMAX experiment
- At higher frequencies, photon detection becomes much harder ...
- until we reach near-IR/optical frequencies!
- Experimental challenges:
 - low noise photon detection
 - background suppression (thermal, radioactive, cosmic)
 - fabrication and scanning

Photon detection

- Collimated emission means that emitted photons can be focused down to area $\sim 10^{-6}$ of layers' area
 - e.g. $(100 \, \mu \mathrm{m})^2$ detector for $(10 \, \mathrm{cm})^2$ layers
- Enables use of small, low-noise detectors
 - Widely-available: PMT, CCD DCR $\sim 10^{-3}\,\mathrm{Hz}$
 - Lower-noise superconducting detectors: TES, MKID, nanowires $DCR < 10^{-5} \, Hz$

Thermal backgrounds

• Blackbody photons: if detector's field of view is at temperature T, number of blackbody photons hitting detector is

$$\Gamma_{\rm BB} \sim \frac{\Delta\omega \,\omega^2}{4\pi^2} A_{\rm det} e^{-\omega/T}$$

$$A_{\rm det} = (100 \, \mu \rm m)^2$$

Radioactivity / cosmic rays

- Materials of target, shielding, detector etc will contain some radioactive isotopes; unpurified materials could result in $\sim 100~{\rm decays}~/~{\rm sec}$
- Cosmic ray muons: flux $\sim 1/(10\,{\rm cm^2\,sec})$, each deposits energy in target $\sim 1-100\,{\rm keV}$
- All of these events much more energetic than signal photons, and unless they shower into very many particles, unlikely to hit small detector
- Characterise these backgrounds: active veto / purification / shielding if necessary

Dark photon conversion

Simplest form of spin-I DM interaction is coupling to EM current:

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m^2 A'^2 + J_{\text{EM}} (A + \kappa A')$$

- Also least constrained by current experiments, because of mixing with photon
- Non-relativistic dark photon DM oscillation acts like effective current density, $J_{A'} \simeq \kappa m \partial_t A'$
- Comparing to "axion current" $J_a \simeq g\dot{a}B_0$, dark photons convert to photons in dielectric layers, even without magnetic field

$$P_{\text{abs}} \simeq \frac{2}{3} \kappa^2 m \rho_{\text{DM}} QAN \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \left(\frac{1}{n_2} - \frac{1}{n_1} \right)^2$$

Axion sensitivity

$$t_{\rm int} = 10^6 \, {\rm sec}$$

$$B_0 = 10 \,\mathrm{T}$$

$$DCR = 10^{-5} \, Hz$$

$$\eta_{\rm det} = 0.9$$

Scanning

- For half-wave stack, $P_{\rm abs} \propto N^2$ but bandwidth $\delta \omega/\omega \sim 1/N$
- Increasing conversion rate requires more layers, but this decreases the mass range covered by a given stack
- What happens for other configurations?

Frequency-averaged power

• Imagine short "pulse" a(t) of DM field

· In general, frequency-averaged power converted is

$$P_{\text{av}} \simeq (ga_0B_0)^2 A \sum_i \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \left(\frac{1}{n_2} - \frac{1}{n_1}\right)^2$$

independent of layer thicknesses and spacings!

Frequency-averaged power

• Imagine short "pulse" a(t) of DM field

In general, frequency-averaged power converted is

$$P_{\text{av}} \simeq (ga_0B_0)^2 A \sum_i \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \left(\frac{1}{n_2} - \frac{1}{n_1}\right)^2$$

independent of layer thicknesses and spacings!

Scanning

 Converted power as a function of frequency is strongly affected by structure:

- · For periodic layers, half-wave stack has broadest frequency profile
- To increase conversion rate, want more layers, but this tends to decrease bandwidth - need to scan somehow

Scanning

- If experiment not background-free, signal-to-noise improved by scanning a narrow frequency profile
- At optical frequencies, backgrounds are low bigger issue is expense of fabricating different configurations
- Possibilities:
 - Altering refractive indices
 - Combining stacks of different periodicities

Other DM candidates

- To convert spin-0 DM to photons, target must provide "direction" to determine polarization of photon (otherwise rate suppressed by $v_{\rm DM}^2\sim 10^{-6}$)
- For $aE \cdot B$ coupling, magnetic field provides polarization direction
- For other couplings, require directional materials (e.g. spin-polarized for axion-fermion couplings)
- Constraints from existing experiments generally tighter as well: longer-term prospects

Summary

- Detection of bosonic DM at higher frequencies is an important gap in the experimental program
- Coherent absorption has attractive features; for absorption to photons, it requires wavelength-scale structure in the target
- Layered dielectrics are a simple way to absorb DM candidates with couplings to photons
- Pilot experimental proposals are being worked on!
- Extending downwards to lower frequencies?

Extending to lower frequencies

- At energies below $\sim 0.2\,\mathrm{eV}$, single-photon detection becomes significantly more difficult
- Well-motivated parameter space
 - a generic QCD axion has $m \lesssim 0.06\,\mathrm{eV}$ from SN1987a bounds
 - post-inflationary QCD axion DM at masses $\gtrsim 10^{-5}\,\mathrm{eV}$
 - dark photons from higher-scale inflation, $m \gtrsim 10^{-5} \, \mathrm{eV}$
- Bolometric detectors exist, with NEP $\sim 10^{-20} \mathrm{W}/\sqrt{\mathrm{Hz}}$
- KSVZ axion gives converted power $10^{-22}\,\rm W \simeq meV/sec$ from 1000 layers, of area $(10\,\rm cm)^2$, in a $10\,\rm T$ magnetic field
- No known fundamental obstacles to improved superconducting detectors for this frequency range