Detecting dark particles from Supernovae

Gustavo Marques-Tavares, Stanford Institute for Theoretical Physics

In collaboration with W. deRocco, P. Graham, D. Kasen and S. Rajendran

Dark matter

WIMP searches

*Figure taken from arxiv:1709.00688

WIMP searches

Challenges for sub-GeV DM

Low kinetic energy: $v \sim 10^{-3}$

$$K \sim 10^{-6} m_{\chi} < keV$$

Challenges for sub-GeV DM

Low kinetic energy:

$$v \sim 10^{-3}$$

$$K \sim 10^{-6} m_{\chi} < keV$$

Large background:

Many strategies

- Search for electron scattering
- Accelerator searches
- New targets

. . .

Many strategies

- Search for electron scattering
- Accelerator searches
- New targets

. . .

Searching for boosted dark matter from Supernovae

Outline

- Model
- Source: Supernovae
- Computing fluxes and projected sensitivity
- Conclusion and future directions

$$\mathcal{L} \supset A'_{\mu} \bar{\chi} \gamma^{\mu} \chi + \epsilon F'_{\mu\nu} F^{\mu\nu}$$

$$\mathcal{L} \supset A'_{\mu} \bar{\chi} \gamma^{\mu} \chi + \epsilon F'_{\mu\nu} F^{\mu\nu}$$

$$m_{A'} \gtrsim 200 \text{ MeV} > m_{\chi}$$

$$\mathcal{L} \supset \frac{g_d e \epsilon}{m_{A'}^2} \bar{\chi} \gamma_\mu \chi J_{\text{EM}}^\mu$$

$$\mathcal{L} \supset \frac{g_d e \epsilon}{m_{A'}^2} \bar{\chi} \gamma_\mu \chi J_{\rm EM}^\mu$$

$$\sigma \sim \frac{\alpha y}{m_{\chi}^2}$$

$$\mathcal{L} \supset \frac{g_d e \epsilon}{m_{A'}^2} \bar{\chi} \gamma_\mu \chi J_{\rm EM}^\mu$$

^{*} Figure from US Cosmic Visions Report

$$\mathcal{L} \supset \frac{g_d e \epsilon}{m_{A'}^2} \bar{\chi} \gamma_\mu \chi J_{\rm EM}^\mu$$

$$y = \alpha_d \epsilon^2 \left(\frac{m_{\chi}}{m_{A'}}\right)^4$$

Supernovae

Core-Collapse Supernova

- Very massive stars, M > 8 M_{sun}, become unstable at the end of their life
- Once the iron core reaches the Chandrasekhar limit, M ~ 1.5 M_{sun}, electron degeneracy cannot support the core and it collapses
- Densities are so large neutrinos become trapped and the gravitational binding energy is transferred to a large lepton chemical potential

Core-Collapse Supernova

^{*} Figures from: G. Raffelt, "Stars as Laboratories for Fundamental Physics", 1996

Core-Collapse Supernova

- Inner region is hot and quasi-static from 1 to 10 seconds
- Dark matter flux will be mostly sensitive to what happens at radii < 10³ km

^{*} Figures from: G. Raffelt, "Stars as Laboratories for Fundamental Physics", 1996

SN1987a

Detected neutrino signal!

$$d \approx 55 \text{ kpc}$$

^{*} Figures from: G. Raffelt, "Stars as Laboratories for Fundamental Physics", 1996

Dark matter flux

Important effects

Must take into account

- Interactions are large, so dark matter is trapped inside Supernova out to larger radii:
 - Emits as a black-body (surface vs volume)
 - Lower temperature
- Significant velocity spread → signal is significantly spread in time

Velocity spread

$$\langle E_{\chi} \rangle \sim 60 \text{ MeV}$$

$$\langle v_{\chi} \rangle \sim 0.98$$

Velocity spread

$$\langle E_{\chi} \rangle \sim 60 \text{ MeV}$$

$$\langle v_{\chi} \rangle \sim 0.98$$

55 kpc ~ 180000 light years

- Dark matter from SN1987a: still some years to get here
- Signal spread:

$$\frac{\delta v}{v} \sim 1 \longrightarrow \frac{\delta t}{180000 \text{yr}}$$
 dilution

Semi-relativistic DM

- Dark matter from SN1987a: still some years to get here
- Signal spread: 10⁻¹³ dilution

- SN1987a not useful
- Sensitive to older SN (potentially much closer)
- Sensitive to diffuse background of older SN

Effects of large interactions?

- If interactions are large, dark matter can annihilate fast before getting out of Supernova
- It takes time for dark matter to move out since it bounces around scattering with other particles

Useful analogy with neutrino case

- Ultimately described by a Boltzmann equation
- Reasonable results can be obtained using a "freeze-out" calculation.

- Ultimately described by a Boltzmann equation
- Reasonable results can be obtained using a "freeze-out" calculation.

Freeze-out in time

Freeze-out in space

Rate ~ 1/timescale

e.g.

 $H \sim n \langle \sigma v \rangle$

- Ultimately described by a Boltzmann equation
- Reasonable results can be obtained using a "freeze-out" calculation.

Freeze-out in time

Rate ~ 1/timescale

e.g.

 $H \sim n \langle \sigma v \rangle$

Freeze-out in space

Mean free path ~ typical distance e.g.

$$\frac{1}{n(r)\langle\sigma\rangle} \sim r$$

Freeze-out Picture

R_N: Number sphere

$$\bar{\chi}\chi \to e^+e^-$$

R_E: Energy sphere

$$\chi e^{\pm} \to \chi e^{\pm}$$

▶ R_T: Transport sphere

$$\chi p \to \chi p$$

Radial freeze-out

Freeze-out requirement:

No other interactions

It takes
$$\left(rac{\lambda_{\mathrm{ann}}}{\lambda_T}
ight)$$
 longer to cover $\left(\lambda_{\mathrm{ann}}
ight)$

Radial freeze-out

Freeze-out requirement:

$$\tau_x = \int_{r_x}^{\infty} \frac{dr}{\lambda_x} = 2/3 \quad \longrightarrow \quad \tau_{\rm ann} = \int_{r_N}^{\infty} \frac{dr}{\sqrt{\lambda_{\rm ann} \lambda_T}} = 2/3$$

$$\lambda_T \ll \lambda_{\rm ann}$$

Annihilations become effectively more efficient

Freeze-out calculation

Treat as a perfect black-body

$$\Phi|_{r_N} = \frac{1}{4\pi^2} \int_{m_\chi}^{\infty} dE \frac{(E^2 - m_\chi^2)}{e^{E/T(r_N)} + 1}$$

Flux transmission

Flux decreases due to scattering with protons

Flux transmission

$$\Phi(r \gg r_N) = \frac{\Phi(r_N)}{(1 + \frac{3}{4}s_*)} \left(\frac{r_N}{r}\right)^2$$

$$s_* = \sigma_T \int_{r_N}^{\infty} dr \ n_p(r) \left(\frac{r_N}{r}\right)^2$$

Flux transmission

$$\Phi(r \gg r_N) = \frac{\Phi(r_N)}{(1 + \frac{3}{4}s_*)} \left(\frac{r_N}{r}\right)^2$$

$$s_* = \sigma_T \int_{r_N}^{\infty} dr \ n_p(r) \left(\frac{r_N}{r}\right)^2$$

Currently we treat the effect of the energy sphere by assuming it doesn't change the total flux but redistributes momenta according to the temperature in r_E

Computing the flux

Snapshot at 1.5 seconds post bounce

What is the flux on Earth?

Single Supernova near Earth

Diffuse signal from past Supernovae in the galaxy

Diffuse signal from extra galactic Supernovae

Diffuse background

- Estimated galactic rate is around 2 Supernovae per century (maybe higher in the past)
- Assuming constant rate across the galactic disk we can translate the diffuse flux in terms of an equivalent single event

$$\Phi_{\text{diff}} = 0.038\Phi_{1-sn}(R_{SN}) \left(\frac{R_{SN}}{\text{kpc}}\right)^2 \frac{\Delta t}{50 \text{years}}$$

Detecting DM flux

Electron targets:

$$\Delta k_e \approx m_e v_{\rm DM}$$

$$\sigma_{\chi e} \propto \frac{m_e}{E_\chi}$$

Detecting DM flux

Electron targets:

$$\Delta k_e \approx m_e v_{\rm DM}$$

$$\sigma_{\chi e} \propto \frac{m_e}{E_\chi}$$

Nuclear targets

$$\Delta k_n \approx 2p_{\chi}$$

$$\Delta k_n \approx 2p_\chi$$

$$\sigma_{\chi n} \propto Z^2$$

Detecting DM flux

Electron targets:

$$\Delta k_e \approx m_e v_{\rm DM}$$

$$\sigma_{\chi e} \propto \frac{m_e}{E_{\chi}}$$

Nuclear targets

$$\Delta k_n \approx 2p_\chi$$

$$\sigma_{\chi n} \propto Z^2$$

$$\sigma_{\chi n} \propto Z^2$$

$$E_r \approx \frac{2p_\chi^2}{m_n}$$

$$p_{\min}^{\mathrm{Xe}} \approx 17 \ \mathrm{MeV}$$

Cooling bounds

- We have observed the neutrinos from SN1987a with spectrum consistent with predictions
- A conservative criteria for when new particles lead to such large deviations that the expected neutrino signal would be significantly changed is:

$$L_{\chi} \gtrsim 3 \times 10^{52} \mathrm{ergs/s}$$

Preliminary reach plot

Galactic diffuse Supernovae flux

Preliminary reach plot

Galactic diffuse Supernovae flux

Conclusions

- Supernovae can be a source of boosted dark sector particles.
 Because of their large velocity, they are more easily detected than the local dark matter population.
- Some regions of parameter space might be probed by Xenon1T and a large region will be tested in future Xe experiments.
- Fluxes could be larger depending on time-scales associated with the Supernova.
- Need to explore profile dependence.
- We explored a minimal heavy dark photon portal scenario. This analysis can be extended to a number of other dark sector scenarios.
- These models might also lead to interesting new features in Supernovae that haven't been explored...