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WIMP searches
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WIMP searches
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Challenges for sub-GeV DM

Low kinetic energy: v ~ 1073
K ~ 10 °m, < keV



Challenges for sub-GeV DM

Low kinetic energy: v ~ 1073
K ~ 10 °m, < keV
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Many strategies

» Search for electron scattering
» Accelerator searches

» New targets



Many strategies

» Search for electron scattering
» Accelerator searches

» New targets

Searching for boosted dark

matter from Supernovae
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Dark photon portal
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Dark photon portal
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Supernovae



Core-Collapse Supernova

» Very massive stars, M > 8 Msun,
become unstable at the end of
their life

» Once the iron core reaches the
Chandrasekhar limit, M ~ 1.5 Msun,
electron degeneracy cannot
support the core and it collapses

» Densities are so large neutrinos
become trapped and the
gravitational binding energy is
transferred to a large lepton
chemical potential




Core-Collapse Supernova

Collapse 1y, burst Kelvin—Helmholtz cooling
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Core-Collapse Supernova

Collapse 1y, burst Kelvin—Helmholtz cooling
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Dark matter flux will be
mostly sensitive to what
happens at radii < 103 km
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SN1987a

Detected neutrino signal!
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Dark matter flux



Important effects

Must take into account

» Interactions are large, so dark matter is trapped inside
Supernova out to larger radii:
» Emits as a black-body (surface vs volume)
» Lower temperature

» Significant velocity spread — signal is significantly spread
in time



Velocity spread
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Velocity spread
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Semi-relativistic DM

Dark matter from SN1987a: still some years to get here

Signal spread: 10-13 dilution

SN1987a not useful

Sensitive to older SN (potentially much closer)
Sensitive to diffuse background of older SN




Effects of large interactions?

» If interactions are large, dark matter can annihilate fast

before getting out of Supernova
» It takes time for dark matter to move out since it bounces

around scattering with other particles



Understanding Trapped Regime

Useful analogy with neutrino case

Other Flavors

vN < Nv

NN <> NNvv .
ete” & W _ Ffree
Ve <S> eV Streaming
Thermal Equilibrium Diffusion
\ //\\

N
Energy Sphere (ES) Transpor\@phere

Interactions that change
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Interactions that change
neutrino number and/or energy

Figure taken from: G. Raffelt astro-ph/0105250



Understanding Trapped Regime

» Ultimately described by a Boltzmann equation
» Reasonable results can be obtained using a “freeze-out”
calculation.



Understanding Trapped Regime

» Ultimately described by a Boltzmann equation
» Reasonable results can be obtained using a “freeze-out”
calculation.
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Understanding Trapped Regime

» Ultimately described by a Boltzmann equation
» Reasonable results can be obtained using a “freeze-out”

calculation.

Freeze-out
In time

Rate ~ 1/timescale

e.g.
H ~ n{ov)

Freeze-out
In_space

Mean free path ~ typical distance

e.g.

n(r){o)



Freeze-out Picture
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Radial freeze-out

Freeze-out requirement:

No other interactions Diffusion

It takes (/\f—;fl) longer to cover Aann



Radial freeze-out

Freeze-out requirement:

= dr < dr
Tx:/r )\_$:2/3 »Tann:/m 7 = 2/3

x aln )\T

)\T < )\ann

Annihilations become effectively more efficient




Freeze-out calculation
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Flux transmission

Flux decreases due to
scattering with protons




Flux transmission




Flux transmission

B> 1) = (1<I>_|(_7“§;)*) ()
Sy = O /TOO dr n,(r) (TTN)Z

assuming it doesn’t change the total flux but redistributes
momenta according to the temperature in re

. Currently we treat the effect of the energy sphere by




Computing the flux

Snapshot at 1.5 seconds post bounce
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What is the flux on Earth?

» Single Supernova near Earth

» Diffuse signal from past Supernovae in the galaxy

» Diffuse signal from extra galactic Supernovae



Diffuse background

» Estimated galactic rate is around 2 Supernovae per

century (maybe higher in the past)
» Assuming constant rate across the galactic disk we can
translate the diffuse flux in terms of an equivalent single

event

RSN>2 At

(I)diff — OOSSq)l_Sn(RSN) ( kpc 50years



Detecting DM flux

» Electron targets:
Ake ~ MMe VDM
Me
O-Xe O( .
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Detecting DM flux

» Electron targets:
Ake ~ MMe VDM

Me

Ly

» Nuclear targets

Ak, = 2p,

2
Oyn X 4



Detecting DM flux

» Electron targets:
Ak’e ~ MMe VDM

Me
Oye X
Ly
» Nuclear targets
B, ~ 20
Ak, = 2p, r S
_> My
Oym X 72 .
Doin ~ 17 MeV



Cooling bounds

» We have observed the neutrinos from SN1987a with
spectrum consistent with predictions

» A conservative criteria for when new particles lead to such
large deviations that the expected neutrino signal would be
significantly changed is:

L, > 3 x 10°%ergs/s



Preliminary reach plot

Galactic diffuse Supernovae flux
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Preliminary reach plot

Galactic diffuse Supernovae flux
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Conclusions

Supernovae can be a source of boosted dark sector particles.
Because of their large velocity, they are more easily detected
than the local dark matter population.

Some regions of parameter space might be probed by Xenon1T
and a large region will be tested in future Xe experiments.

Fluxes could be larger depending on time-scales associated with
the Supernova.

Need to explore profile dependence.

We explored a minimal heavy dark photon portal scenario. This
analysis can be extended to a number of other dark sector
scenarios.

These models might also lead to interesting new features in
Supernovae that haven't been explored...



