Resonant absorption of dark matter in molecules

Ken Van Tilburg (NYU & IAS) arXiv:1709.05354

with Asimina Arvanitaki (PI), Savas Dimopoulos (SU)

Karl Berggren (MIT), SaeWoo Nam (NIST)

work in progress with:

Masha Baryakhtar, Junwu Huang, Robert Lasenby (PI)

KITP, 2018/03/29

"Problems" in particle physics

Standard Model of particle physics accurately describes^{*} every known experiment and observation to the measured and calculated precision

theoretical frontiers:

mathematical structures | numerological curiosities | computational precision

experimental frontiers:

high-energy | cosmic | intensity | precision

*parametrized unknowns:

dark matter | baryon asymmetry | inflation

Scales of dark matter

absorption \rightarrow narrowband signal: $\omega = m\left(1 + \frac{v^2}{2}\right)$

Outline

(1) Dark matter fields can resonantly excite a molecular system bosonic DM couplings | two-level system dynamics | molecular levels

(2) Experimental setup

configurations | photon detection | backgrounds | discrimination

(3) Dark matter sensitivity 0.2 eV < m < 20 eVhidden vectors | moduli | axions

Outline

(1) Dark matter fields can resonantly excite a molecular system bosonic DM couplings | two-level system dynamics | molecular levels

(2) Experimental setup

configurations | photon detection | backgrounds | discrimination

(3) Dark matter sensitivity 0.2 eV < m < 20 eVhidden vectors | moduli | axions

Why is a molecular gas a good dark matter detector?

calculable signal rate discrimination power backgrounds power discrimination rules directional focusing: $\Delta\theta/\theta \lesssim 10^{-6}$

(1) Dark matter fields can resonantly excite a molecular system bosonic DM couplings | two-level system dynamics | molecular levels

(2) Experimental setup configurations | photon detection | backgrounds | discrimination

(3) Dark matter sensitivity 0.2 eV < m < 20 eVhidden vectors | moduli | axions

Why is a molecular gas a good dark matter detector? calculable $\begin{bmatrix} signal rate \\ backgrounds \end{bmatrix}$ discrimination power $\begin{bmatrix} energy resolution: \Delta \omega / \omega \ll 10^{-6} \\ -control variables: P, T, E, B \\ -selection rules \\ -directional focusing: \Delta \theta / \theta \lesssim 10^{-6} \end{bmatrix}$

e.g. hidden photon: $\delta \mathcal{L} = \epsilon A'_{\mu} J^{\mu}_{EM}$ $\delta H = \epsilon \mathbf{E}' \cdot \boldsymbol{\mu}_{e}$

3 kV/m

e.g. hidden photon: $\delta \mathcal{L} = \epsilon A'_{\mu} J^{\mu}_{EM}$ $\delta H = \epsilon \mathbf{E}' \cdot \boldsymbol{\mu}_{e} \qquad \boldsymbol{\mu}_{e} = e \sum_{\psi} q_{\psi} \mathbf{r}_{\psi}$ $\mathbf{Q} \mathbf{k} V/m$

3 kV/m

Bosonic dark matter fields and interactions $m(1 + v_{esc}^2)$ mproduction: { inflationary perturbations (spin-1) misalignment mechanism (spin-0)

e.g. hidden photon: $\delta \mathcal{L} = \epsilon A'_{\mu} J^{\mu}_{EM}$

$$\begin{split} \delta H &= \epsilon \mathbf{E}' \cdot \boldsymbol{\mu}_e \qquad \boldsymbol{\mu}_e = e \sum_{\psi} q_{\psi} \mathbf{r}_{\psi} \\ & \exists \, \mathrm{kV/m} \\ & \bigsqcup_{\mathbf{v}} \text{ equivalent to shining 20kW lase} \\ & \text{ in a 1m}^2 \text{ beam waist area} \end{split}$$

 $\langle 1|\delta H|0\rangle \sim \Omega\cos(\omega t)$

 $\langle 1|\delta H|0\rangle \sim \Omega\cos(\omega t)$

$$k = mv$$

$$\omega = m$$

$$k = m$$

$$M$$

 $\langle 1|\delta H|0\rangle\sim\Omega\cos(\omega t)$

Molecular levels and transitions

 $V = 300 \text{ cm}^3$ T = 100 KP = 5 bar

 $\epsilon = 10^{-12}$

 $\epsilon = 10^{-12}$

- $V = 300 \text{ cm}^3$
- $T = 100 {\rm K}$
- P = 5 bar
- P = 0.05 bar

(1) Dark matter fields can resonantly excite a molecular system bosonic DM couplings | two-level system dynamics | molecular levels

(2) Experimental setup

configurations | photon detection | backgrounds | discrimination

(3) Dark matter sensitivity 0.2 eV < m < 20 eVhidden vectors | moduli | axions

Why is a molecular gas a good dark matter detector? calculable $\begin{bmatrix} signal rate \\ backgrounds \end{bmatrix}$ discrimination power $\begin{bmatrix} energy resolution: \Delta \omega / \omega \ll 10^{-6} \\ -control variables: P, T, E, B \\ -selection rules \\ -directional focusing: \Delta \theta / \theta \lesssim 10^{-6} \end{bmatrix}$

Bulk configuration

Phase I $V = (0.3 \text{ m})^3$ T = 300 KDCR = 1 Hz

Phase II $V = (2 \text{ m})^3$ T = 100 K $DCR = 10^{-3} \text{ Hz}$

Bulk configuration

 $f(\mathbf{v}) \propto \exp\left[-\frac{(\mathbf{v} - \mathbf{v}_{\text{lab}})^2}{v_0^2}\right] \qquad \text{coherence length: } \lambda_{\text{coh}} = \frac{2}{mv_0}$ $\text{typical deBroglie wavelength: } \lambda_{\text{dB}} \sim \frac{2\pi}{mv_{\text{lab}}}$ $\text{photon wavelength: } \lambda_{\gamma} = \frac{2\pi}{m}$

 $|0\rangle + \varepsilon e^{-i[mt + \varphi(\mathbf{x})]}|1\rangle$

 $f(\mathbf{v}) \propto \exp\left[-\frac{(\mathbf{v} - \mathbf{v}_{\text{lab}})^2}{v_0^2}\right] \qquad \text{coherence length: } \lambda_{\text{coh}} = \frac{2}{mv_0}$ $\text{typical deBroglie wavelength: } \lambda_{\text{dB}} \sim \frac{2\pi}{mv_{\text{lab}}}$ $\text{photon wavelength: } \lambda_{\gamma} = \frac{2\pi}{m}$

 $|0\rangle + \varepsilon e^{-i[mt + \varphi(\mathbf{x})]}|1\rangle$

coherence length: $\lambda_{\rm coh} = \frac{2}{mv_0}$ typical deBroglie wavelength: $\lambda_{\rm dB} \sim \frac{2\pi}{mv_{\rm lab}}$ photon wavelength: $\lambda_{\gamma} = \frac{2\pi}{m}$

$$f(\mathbf{v}) \propto \exp\left[-\frac{(\mathbf{v} - \mathbf{v}_{\text{lab}})^2}{v_0^2}\right]$$

coherence length: $\lambda_{coh} = \frac{2}{mv_0}$ typical deBroglie wavelength: $\lambda_{dB} \sim \frac{2\pi}{mv_{lab}}$ photon wavelength: $\lambda_{\gamma} = \frac{2\pi}{m}$

$$f(\mathbf{v}) \propto \exp\left[-\frac{(\mathbf{v} - \mathbf{v}_{\text{lab}})^2}{v_0^2}\right]$$

Stack configuration

Stack configuration

Absorption + Cooperative emission

 $V = \pi (30 \text{ cm})^2 (1 \text{ mm})$

Key considerations

Photon detection

 $\Gamma_{\rm det} = \eta_{\rm det} \Gamma_{\rm rad} = \eta_{\rm det} \eta_{\rm rad} \Gamma_{\rm abs}$

 $\eta_{\rm det} \sim \eta_{\rm opt-thin} \eta_{\rm refl} \eta_{\rm transm} \eta_{\rm PD}$

Bulk Phase I: PMT

 $\eta_{\rm det} \sim 0.3$

Hamamatsu

Bulk Phase II: MKID Stack Phase I + II: $\eta_{\rm det} \sim 0.5$ $\Delta E \sim 0.1 \ {\rm eV}$

B. Mazin

Backgrounds

dark count rate (DCR): high-reflectivity coatings cryogenic photodetectors: SNSPD, MKID, TES

thermal occupation / BBR: $nVe^{-\frac{\omega_0}{T}} \ll 1$

natural/cosmogenic radioactivity: high-purity shield + components

10⁻¹² mass fraction ²³⁸U $\rightarrow \Gamma_{\rm RD} \sim 10^{-2} \ {\rm Hz}$ for meter-scale volume

veto trigger: { many, high-*E* particles ionized electrons timing + fast relaxation

Stack configuration: 84% of signal in 10⁻⁷ solid angle

cosmic rays: underground and/or muon scintillator (99.9%)

Signal discrimination

(1) Dark matter fields can resonantly excite a molecular system bosonic DM couplings | two-level system dynamics | molecular levels

(2) Experimental setup configurations | photon detection | backgrounds | discrimination

(3) Dark matter sensitivity 0.2 eV < m < 20 eVhidden vectors | moduli | axions

Why is a molecular gas a good dark matter detector? calculable $\begin{bmatrix} signal rate \\ backgrounds \end{bmatrix}$ discrimination power $\begin{bmatrix} energy resolution: \Delta \omega / \omega \ll 10^{-6} \\ -control variables: P, T, E, B \\ -selection rules \\ directional focusing: \Delta \theta / \theta \lesssim 10^{-6} \end{bmatrix}$

DM-induced transitions

DM type		Interaction Hamiltonian δH	Transition type and selection rules		$\Omega \left[\text{rad s}^{-1} \right]$	
		$(d_{m_e}+d_e) ilde{\phi}k_eR_eR$	vib	$\Delta v = 1, \Delta J = 0$	$5.5 \times 10^{-9} \frac{d_{m_e}}{10^6}$	
spin-0	parity-even	$(3d_{m_e}+4d_e)\tilde{\phi}\frac{k_e}{2}(R-R_e)^2$	vib	$\Delta v=2, \Delta J=0$	$7.1 \times 10^{-10} \frac{d_{m_e}}{10^6}$	
		$(d_g + Q_{\hat{m}_q} d_{\hat{m}_q}) \tilde{\phi} \frac{\boldsymbol{\nabla}_N^2}{2M}$		$\Delta v=2, \Delta J=0$	$2.4 \times 10^{-11} \frac{d_{\hat{m}_q}}{10^6} \frac{Q_{\hat{m}_q}}{0.1}$	
		$(\Delta Q_i d_i) M(\boldsymbol{\nabla} \tilde{\phi} \cdot \mathbf{R})$	vib	$\Delta v = 1, \Delta J = \pm 1$	$3.0 \times 10^{-10} \frac{d_i}{10^6} \frac{\Delta Q_i}{10^{-2}}$	
			rot	$\Delta J = 1$	$4.1\times 10^{-13}\frac{d_i}{10^2}\frac{\Delta Q_i}{10^{-2}}$	
		$(d_{m_e}+d_e) ilde{\phi}rac{oldsymbol{ abla}_e^2}{2m_e}$	el	$\Delta\Lambda=0,\Delta i=0$	$9.5 \times 10^{-10} \frac{d_{m_e}}{10^6}$	
		$d_{m_e}m_eoldsymbol{ abla} ec{\phi}\cdot \mathbf{r}_e$	el	$ \Delta\Lambda \leq 1, \Delta i=1$	$7.5 \times 10^{-11} \frac{d_{m_e}}{10^6}$	
	parity-odd	$G_{aNN} \partial_t a \boldsymbol{\sigma}_N \cdot rac{-i \boldsymbol{\nabla}_N}{M}$	vib	$\Delta v = 1, \Delta J = \pm 1, \Delta S_N \leq 1$	$1.7 \times 10^{-10} \frac{G_{aNN}}{10^{-8}/\text{GeV}}$	
			\mathbf{rot}	$\Delta J = 1, \Delta S_N = 1$	$2.5 \times 10^{-11} \frac{G_{aNN}}{10^{-8}/\text{GeV}}$	
		$rac{d_{ heta}}{f_a} a oldsymbol{\sigma}_N \cdot {f E}$	vib	$\Delta v = 1, \Delta J = \pm 1, \Delta S_N \leq 1$	$4.0 imes 10^{-12} rac{10^8 \text{ GeV}}{f_a}$	
			\mathbf{rot}	$\Delta J = 1, \Delta S_N \le 1$	$5.8 \times 10^{-13} \frac{10^8 \text{ GeV}}{f_a}$	
		$G_{aee} \partial_t a \boldsymbol{\sigma}_e \cdot rac{-\mathbf{i} \boldsymbol{\nabla}_e}{m_e}$	\mathbf{el}	$ \Delta\Lambda \leq 1, \Delta i = 1, \Delta S_e \leq 1$	$4.0 \times 10^{-10} \frac{G_{aee}}{10^{-10}/{ m GeV}}$	
		$G_{a\gamma\gamma}\int \mathrm{d}^3\mathbf{x}a\mathbf{E}\cdot\mathbf{B}$?	?	?	
spin-1	kinetic mixing	$\epsilon oldsymbol{\mu}_e \cdot \mathbf{E}'$	el	$ \Delta\Lambda \leq 1, \Delta i=1$	$1.5\times 10^{-6}\frac{\epsilon}{10^{-14}}$	
			vib	$\Delta v = 1, \Delta J = \pm 1$	$1.3 \times 10^{-5} rac{\epsilon}{10^{-12}}$	
			\mathbf{rot}	$\Delta J = 1$	$1.5\times10^{-2}\frac{\epsilon}{10^{-10}}$	
	B-L charge	$oldsymbol{\mu}_{B-L} \cdot \mathbf{E}_{B-L}$	el	$ \Delta\Lambda \le 1, \Delta i = 1$	$5.0 \times 10^{-6} \frac{g}{10^{-14}}$	
			vib	$\Delta v = 1, \Delta J = \pm 1$	$4.3 imes 10^{-7} rac{g}{10^{-14}}$	
			\mathbf{rot}	$\Delta J = 1$	$5.0 \times 10^{-10} \frac{g}{10^{-18}}$	

Kinematically mixed photon

B-L gauge boson

Modulus: electron coupling

Modulus: photon, quark, gluon

Axion: nuclear coupling

*m*_{*a*} [eV]

Axion: electron coupling

Conclusions

(1) Dark matter fields can resonantly excite a molecular system

dark matter absorption = weak, monochromatic signal gas of small molecules = multimode resonator with large signal rate

(2) Experimental setup

low background rates

tunable frequency response: superb discrimination power established field with photodetector technology advancements cooperative focusing effects: directional isolation and information

(3) Dark matter sensitivity 0.2 eV < m < 20 eV

spin-1: mixed photon, B-L gauge boson, ...

spin-0, parity-even: moduli fields for electron, quark, photon, gluon, ... spin-0, parity-odd: axion coupling to electrons, nucleons, photons, ...

Future: <u>m < 0.2 eV</u> | m > 20 eV | other use? | map out molecular forest Phase I prototypes Phase II R&D: slab/stack manufacturing | optimize photodetectors

Electronic states of a diatomic molecule

Molecular info

molecule	$\chi^{ m el}$	$T_e \ [\mathrm{cm}^{-1}]$	$\omega_e \ [{ m cm}^{-1}]$	$\omega_e x_e [{ m cm}^{-1}]$	$B_e \ [\mathrm{cm}^{-1}]$	$\alpha_e [{ m cm}^{-1}]$	R_e [Å]	T_b [K]
	$c^{-3}\Pi_u$	95938	2466.8	63.51	31.07	1.42	1.037	
	$\mathrm{EF}^{-1}\Sigma_{g}^{+}$	100082.3	2588.9	130.5	32.68	1.818	1.011	
$^{1}\mathrm{H}^{1}\mathrm{H}$	$C^{-1}\Pi$	100089.8	2443.77	69.524	31.362	1.664	1.0327	
	$\operatorname{B-}{}^{1}\Sigma_{u}^{+}$	91700	1358.09	20.888	20.015	1.184	1.2928	
	$X-^{1}\Sigma_{g}^{+}$	0	4401.21	121.33	60.853	3.062	0.74144	20.28
	$C^{-1}\Pi$	100092.9	2119.6	53.31	23.522	1.096	1.0329	
$^{1}\mathrm{H}^{2}\mathrm{H}$	$\operatorname{B-}{}^{1}\Sigma_{u}^{+}$	91698.3	1177.16	15.59	15.071	0.820	1.2904	
	$\mathrm{X}\text{-}{}^{1}\Sigma_{g}^{+}$	0	3813.1	91.65	45.655	1.986	0.74142	
$^{2}\mathrm{H}^{2}\mathrm{H}$	$\mathrm{X}\text{-}{}^{1}\Sigma_{g}^{+}$	0	3115.50	61.82	30.443	1.0786	0.74152	
¹⁶ O ¹⁶ O	$X-^{3}\Sigma_{g}^{-}$	0	1580.19	11.98	1.44563	0.0159	1.20752	90.19
	$A^{-1}\Pi$	65075.7	1518.2	19.40	1.6115	0.0232	1.2353	
$^{12}C^{16}O$	a'- ³ Σ^+	55825.4	1228.60	10.468	1.3446	0.0189	1.3523	
00	a- $^{3}\Pi$	48686.70	1743.4	14.3	1.69124	0.01904	1.20574	
	$X^{-1}\Sigma^+$	0	2169.81358	13.28831	1.93128	0.0175	1.12832	81.65
$^{12}\mathrm{C}^{18}\mathrm{O}$	$X-^{1}\Sigma^{+}$	0	2117.5	12.66	1.839	0.0163	1.128	
14N14N	$\mathrm{A}\text{-}{}^{3}\Sigma_{u}^{+}$	50203.6	1460.64	13.87	1.4546	0.0180	1.2866	
	$\mathrm{X}\text{-}{}^{1}\Sigma_{g}^{+}$	0	2358.57	14.324	1.99824	0.017318	1.09768	77.355
$^{1}\mathrm{H}^{35}\mathrm{Cl}$	$X^{-1}\Sigma^+$	0	2990.946	51.8	10.59341	0.30718	1.27455	188.10
127 ₁ 127 ₁	$\mathrm{B}\text{-}{}^3\Pi_{0^+u}$	15769.01	125.69	0.764	0.02903	0.000158	3.024	
1 1	X - $^{1}\Sigma_{g}^{+}$	0	214.50	0.614	0.03737	0.000113	2.666	457.4

Configuration summary

	Bulk	Stack		
Phase I	$V=(0.3~{\rm m})^3,P\sim 0.1$ bar, $T=300~{\rm K}$	$A = \pi (0.3 \text{ m})^2$, $D = 1 \text{ mm}$, $P \sim 10 \text{ bar}$, $T \sim 100 \text{ K}$		
	PMT, DCR = 1 Hz, $A_{det} = (0.3 \text{ m})^2$, $\eta_{\gamma} = 0.3$	MKID/TES, DCR $\lesssim 10^{-5}$ Hz, $A_{\rm det} = (0.3 \text{ mm})^2$, $\eta_{\gamma} = 0.5$		
	any electronic \rightarrow intermediate	E1-allowed electronic		
	-	E1-allowed vibrational		
	Stark/Zeeman tuning, $t_{\rm shot} = 10^2 {\rm ~s}$	collisional broadening, $t_{\rm shot} = 10^6 \ {\rm s}$		
	$\delta\Omega \approx 2.9 \times 10^{-7} \text{ rad s}^{-1}$	$\delta\Omega \approx 9.4 \times 10^{-9} \text{ rad s}^{-1}$		
Phase II	$V=(2~{\rm m})^3,P\sim 0.1$ bar, $T\sim 100~{\rm K}$	$A = \pi (2 \text{ m})^2$, $D = 100 \text{ mm}$, $P \sim 10 \text{ bar}$, $T \sim 100 \text{ K}$		
	MKID array, DCR $\lesssim 10^{-3}$ Hz, $A_{\rm det} = (0.1~{\rm m})^2,\eta_{\gamma} = 0.5$	MKID/TES, DCR $\lesssim 10^{-7}$ Hz, $A_{\rm det} = (2 \text{ mm})^2$, $\eta_{\gamma} = 1$		
	any electronic \rightarrow intermediate	E1-allowed electronic		
	any vibrational with optically thin fluorescence	E1-allowed vibrational		
	Stark/Zeeman tuning, $t_{\rm shot} = 10^3 {\rm s}$	collisional broadening, $t_{\rm shot} = 10^7 \ {\rm s}$		
	$\delta\Omega \approx 9.9 imes 10^{-10} m ~rad~s^{-1}$	$\delta\Omega \approx 1.8 \times 10^{-11} \text{ rad s}^{-1}$		

Cooperation number

$$A(t, \mathbf{x}, \mathbf{x}') = \frac{q}{4\pi |\mathbf{x} - \mathbf{x}'|} \cos \left[\omega \left(t - |\mathbf{x} - \mathbf{x}'|\right) + \alpha_{\mathbf{v}} - m\mathbf{v} \cdot \mathbf{x}'\right]$$

$$\begin{split} \langle A_{\text{tot}}(t,\mathbf{x})^2 \rangle_{\mathbf{v},\alpha} &= \left\langle \left(\sum_{\mathbf{x}'} A(t,\mathbf{x},\mathbf{x}') \right) \left(\sum_{\mathbf{y}'} A(t,\mathbf{x},\mathbf{y}') \right) \right\rangle_{\mathbf{v},\alpha} \\ &= \sum_{\mathbf{x}'} \left\langle A(t,\mathbf{x},\mathbf{x}')^2 \right\rangle_{\mathbf{v},\alpha} + \sum_{\mathbf{x}'} \sum_{\mathbf{y}' \neq \mathbf{x}'} \left\langle A(t,\mathbf{x},\mathbf{x}')A(t,\mathbf{x},\mathbf{y}') \right\rangle_{\mathbf{v},\alpha} \\ &\simeq \int_{V} \mathrm{d}^3 \mathbf{x}' n(\mathbf{x}') \frac{q^2}{2(4\pi)^2 L^2} \\ &+ \iint_{V} \mathrm{d}^3 \mathbf{x}' \mathrm{d}^3 \mathbf{y}' n(\mathbf{x}') n(\mathbf{y}') \frac{q^2}{2(4\pi)^2 L^2} \int \mathrm{d}^3 \mathbf{v} f(\mathbf{v}) \cos\left[m(\hat{\mathbf{x}} - \mathbf{v}) \cdot (\mathbf{x}' - \mathbf{y}')\right] \\ &\equiv \frac{q^2}{2(4\pi)^2 L^2} n V r(\hat{\mathbf{x}}) \end{split}$$

$$\bar{r} \simeq 1 + \frac{8\pi n}{m^4 R_z} \approx 1 + \frac{5 \times 10^6}{m R_z} \left(\frac{1 \text{ eV}}{m}\right)^3 \left(\frac{n}{n_0}\right)$$

Key considerations

frequency coverage

- collisional broadening
- molecular species/isotope
- Zeeman tuning
- Stark tuning:

radiative efficiency

$$-$$
 Bulk: $\gamma_0 + \sum_i \gamma_i \gtrsim \gamma_{\text{quench}}$
 $-$ Stack: $(\bar{r} - 1)\gamma_0 \sim \gamma_{\text{col}}$

