Electrical detection of Spin liquids in double moire layer

Ya-Hui Zhang (Harvard)

Ya-Hui Zhang and Ashvin Vishwanath, arxiv: 2005.12925

Outline

I. Review of two recent experimental progress

- (1) Exciton condensation in Quantum Hall bilayer
- (2) Correlated insulator in a moire superlattice

II. Propose moire bilayers

- III. Certain spin liquids can be easily detected
- **IV.** Thereotical evidence for these spin liquids

Exciton condensation in QH bilayer:

Jia Li,..., C.R.Dean, Nature Physics (2017) Xiaomeng Liu,..., Philip Kim, Nature Physics (2017)

See also review by J.P. Eisenstein (2014)

Measurement of Exciton transport

KT transition was confirmed !

"Spin" in QH bilayers

Two quantum numbers:

$$Q = N_{top} + N_{bottom}$$

 $S_z = N_{top} - N_{bottom}$

Distance d: 1 nm; magnetic length I_B: 10 nm

Symmetry

 $U(1)_c$: Conservation of Q $U(1)_s$: Conservation of S_z

Easy-plane anisotropy: SU(2) spin rotation is broken

Interaction: $H_V = UN_{top}N_{top} + UN_{bottom}N_{bottom} + 2U'N_{top}N_{bottom} = UQQ + \delta US_zS_z$

$$U \sim \frac{e^2}{\epsilon l_B} \qquad \qquad U' \sim \frac{e^2}{\epsilon \sqrt{l_B^2 + d^2}} \qquad \qquad \delta \sim \frac{U - U'}{U} \sim (\frac{d}{l_B})^2$$

SU(2) spin rotation is recovered at d/I_B<<1 limit.

A unified picture

bilayer	"spin" language	"exciton" language	
$c_{botom}^{\dagger} 0>$	$ \downarrow>$	0 >	
$c_{top}^{\dagger} 0>$	↑ >	$ 1> = b^{\dagger} 0>$	
$\frac{1}{2}(n_{top} - n_{bottom})$	S_{z}	$n_b - \frac{1}{2}$	
$c_{top}^{\dagger}c_{bottom}$	S^\dagger	b^{\dagger}	
Counterflow current: <i>I</i> _{top} – <i>I</i> _{bottom}	spin current	exciton current	
Phase I	XY FM: $\langle S_x \rangle \neq 0$	exciton condensation $\langle b \rangle \neq 0$	
Phase II	Neel order	super solid	
Phase III	Valence bond solid	Crystalized insulator	
Phase IV	chiral spin liquid	exciton FQHE	
Phase V	spinon Fermi surface	exciton metal	

From quantum Hall bilayer to Hubbard bilayer

In Landau level, spin correlation is ferromagnetic (QHFM)

To have antiferromagnetic coupling: lattice Hubbard model

Lattice constant: a_M

In the d<<a_M limit, layer can be viewed as a "spin" with SU(2) rotation symmetry.

We need a superlattice!

Hubbard model has been realized for single moire layer:

ABC trilayer	graphene	aligned	with hBN

TMD hetero-bilayer: TMD1 aligned with TMD2

Guorui Chen,..., Feng Wang, Nature Physics (2019)

Kin Fai Mak, et.al, Nature (2020); Feng Wang et.al., Nature (2020)

We will use two of these systems to build a moire bilayer: 1+1>2!

"Spin" in moire bilayers

Kin Fai Mak, et.al, Nature (2020); Feng Wang et.al., Nature (2020)

Guorui Chen,..., Feng Wang, Nature Physics (2019)

A minimal model on triangular lattice:

WSe₂

$$H = -t \sum_{ij} c^{\dagger}_{i;\alpha} c_{i;\alpha} + U \sum_{i} n_i (n_i - 1) + \delta U \sum_{i} \rho_{i;z}^2 \qquad \delta \sim (\frac{d}{a_M})^2$$

Graphene

 α is flavor index : spin-layer (SU(4)) or spin-valley-layer (SU(8))

A simplified case: two flavor model

Let us assume spin, valley are polarized. A "spin" 1/2 Hubbard model:

$$H = -t \sum_{ij} c_{i;\alpha}^{\dagger} c_{i;\alpha} + U \sum_{i} n_{top} n_{bottom} \qquad \alpha = top, bottom$$

At n_top+n_bottom=1 and U>>t limit, Mott insulator: charge is frozen

At low energy, "spin" or exciton at each site:

Counterflow current: $I_{top} - I_{bottom}$

spin current

exciton current

Spin model/exciton model at low energy

At U>>t and n=1, we have a spin 1/2 or a hard-core boson (exciton) at each site:

$$S_z \leftrightarrow n_b - rac{1}{2} \quad S^\dagger \leftrightarrow b^\dagger \quad S^- \leftrightarrow b$$

Phase diagram from numerics (DMRG):

Two candidates for the weak Mott regime:

- (I) Chiral Spin Liquid or Exciton FQHE
- (II) Spinon Fermi surface or Exciton metal

Spin liquid in language of exciton

fractional quantum anomalous hall effect of exciton !

(II) Spinon Fermi Surface and Exciton metal

One exciton split to two fermions, each then forms a Fermi surface

Couterflow transport: $\rho_{xx} \sim T^{\alpha}$

Counterflow current:
$$I_{s} = I_{top} - I_{bottom}$$
$$\longleftrightarrow \text{ spin current } \leftrightarrow \text{ spin current}$$

Phase diagram for SU(N) spin model

Let us add spin-valley flavors within each layer:

SU(4) or SU(8) spin model at integer $\nu_T = 1, 2, 3, \dots, N-1$

Large N mean field theory based on Abrikosov fermion:

(1) For SU(8) at $\nu_T = 1$, Heisenberg limit is a chiral spin liquid (exciton FQHE)

(2) For SU(4) at $\nu_T = 3$, weak mott regime (t/U>0.06) is a chiral spin liquid (exciton FQHE)

Still anomalous Hall effect in counter-flow transport.

Summary

I. Generalize QH bilayer to Hubbard bilayer

each layer is a moire superlattice with narrow band

II. Two promising spin liquidphases

exciton FQHE or chiral spin liquid exciton metal or spinon Fermi surface

III. Smoking gun evidence from counter-flow transport