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Introduction

In higher dimensional gravity one is naturally lead to consider
questions about black holes in higher dimensions. In this talk
we will focus on the issue of black hole topology.

The natural starting point is Hawking’s original theorem on
black hole topology which states roughly:

In a 4-dimensional spacetime obeying suitable
energy conditions the surface of a steady state
black hole is topologically a 2-sphere

This result also extends to apparent horizons.

Aim is to present a generalization of Hawking’s theorem to
higher dimensions. The natural conclusion in higher
dimensions is that the surface of a steady state black hole is
of positive Yamabe type, i.e., admits a metric of positive
scalar curvature.



Hawking’s theorem

Theorem

Suppose (M, g) is a 4-dimensional AF stationary black hole
spacetime obeying the dominant energy condition (DEC). Then
cross sections of the event horizon are spherical.

AF = admits a regular scri (conformal infinity) I = I + ∪I−

E = event horizon = ∂I−(I +)

cross section = closed 2-surface Σ obtained as intersection
of E with a spacelike hypersurface.



Hawking’s theorem

Idea of proof:

By stationarity, Σ is marginally outer trapped, θ = 0.

If Σ 6≈ S2, i.e., if g ≥ 1 then using Gauss-Bonnet and DEC,
Hawking shows that Σ can be deformed to an outer trapped
surface, θ < 0, outside the black hole region, which is
forbidden by standard results.



Hawking’s theorem

Remark: Actually the torus T 2 is borderline for this argument.

g = 1 ⇒ ∂θ

∂t

∣∣∣∣
t=0

≤ 0

But can have Σ ≈ T 2 only under special circumstances:

Σ must be flat

null expansion and shear vanish on Σ

A certain energy-momentum term vanishes along Σ.

So, by Hawkings’ argument, generically, Σ ≈ S2.



Hawking’s theorem for apparent horizons

The conclusion of Hawking’s theorem holds for apparent horizons
in spacetimes that needn’t be stationary.

Consider,

M4 = 4-dim spacetime

V 3 = spacelike hypersurface in M4

Σ = closed 2-surface in V 3

Suppose Σ separates V 3 into an “inside” and an “outside”:



Hawking’s theorem for apparent horizons

We say Σ is an outer apparent horizon provided:

Σ is marginally outer trapped, i.e.,

θ = 0 wrt outward null normal

there are no outer trapped surfaces outside of Σ.

Heuristically, Σ is the “outer limit” of outer trapped surfaces.

Theorem

Let M4 be a spacetime satisfying the DEC. If Σ is an outer
apparent horizon in V 3 then Σ ≈ S2 (generically).

Remark: This theorem includes the result on the topology of
stationary black holes as a special case.

Our aim is to obtain a higher dimensional version of this theorem.



Topological censorship

A completely different approach to studying black hole topology
arose in the 90’s based on the notion of topological censorship.

(Friedman, Schleich, Witt, Woolgar, G., ..)

From the point of view of topological censorship the domain of
outer communications - the region of spacetime outside of all black
holes and white holes - should have simple topology.



Top cen and the topology of black holes

Theorem (G.)

Let M be a 4-dim AF spacetime obeying the NEC. Suppose that
the DOC

D = I−(I +) ∩ I+(I−)

is globally hyperbolic. Then D is simply connected.



Top cen and the topology of black holes

Fact: DK is globally hyperbolic and simply connected.

V = closure of V in M

= V ∪ Σ

V simply connected ⇒ Σ ≈ S2



Top cen and the topology of black holes

Remark: Topological censorship holds in arbitrary dimension. As
long as scri is simply connected the DOC will be simply connected.
However, this fact cannot be used to determine the topology of
black holes in higher dimensions. Only in 3 spatial dimensions does
the simple connectivity of space determine the topology of its
boundary.

Thus, e.g., topological censorship does not appear to give any
useful information in D = 4 + 1.

However, in a recent paper (hep-th/0509013) Helfgott, Oz and
Yanay were able to get some additional mileage out of topological
censorship in D = 5 + 1.



Generalization of Hawking’s Theorem

Let

Mn+1 = (n + 1)-dim spacetime, n ≥ 3

V n = spacelike hypersurface in Mn+1

Σn−1 = closed (n − 1)-surface in V n

Suppose Σ separates V n into an “inside” and an “outside”:

K = U + N = outward null normal to Σ



Generalization of Hawking’s Theorem

Null expansion of Σ (wrt to K):

χ : TpΣ× TpΣ → R ,

χ(X ,Y ) = 〈∇XK ,Y 〉

θ = trχ = habχab

= divΣK

Just as in 3 + 1 case, we say Σn−1 is an outer apparent horizon
provided:

Σ is marginally outer trapped, i.e.,

θ = 0 wrt outward null normal

there are no outer trapped surfaces outside of Σ.



Generalization of Hawking’s Theorem

Theorem (G. and Schoen)

Let (Mn+1, g), n ≥ 3, be a spacetime satisfying the DEC. If Σn−1

is an outer apparent horizon in V n then Σn−1 is of positive Yamabe
type, i.e., admits a metric of positive scalar curvature, unless,

Σ is Ricci flat (flat if n = 3, 4) in the induced metric

χ ≡ 0 on Σ

T (U,K ) = TabU
aV b ≡ 0 on Σ

I.e., generically, Σ is of positive Yamabe type.



Topological restrictions

There are many known topological obstructions to the existence of
positive scalar curvature metrics in higher dimensions, beginning
with the famous result of Lichnerowicz on the vanishing of the
Â-genus (and generalizations by Hitchin).

A key advance was made in the late 70’s/early 80’s by Schoen-Yau
and Gromov-Lawson.

Focus attention on dim Σ = 3 (dim M = 4 + 1) case.

Fact

If Σ is a closed orientable 3-manifold of positive Yamabe type then
Σ must be a connected sum of spherical manifolds and S2 × S1’s.

Thus, the basic horizon topologies in dim Σ = 3 case are S3 and
S2 × S1



Topological restrictions

Here is a simple obstruction that holds in arbitrary dimensions:

Fact (Gromov-Lawson)

A compact manifold that admits a metric of nonpositve sectional
curvatures, K ≤ 0, cannot carry a metric of positive scalar
curvature.

This rules out many obvious topologies.



Proof of the theorem

Proof: We consider normal variations of Σ in V , i.e., variations
t → Σt of Σ = Σ0 with variation vector field

V =
∂

∂t
|t=0 = φN, φ ∈ C∞(Σ) .

Let

θ(t) = the null expansion of Σt ,

wrt Kt = U + Nt and Nt is the unit normal field to Σt in V .

Since there are no outer trapped surfaces outside of Σ, one can
show (Cai-G., Andersson-Mars-Simon) that there exists a normal
variation of Σ with

φ > 0 and
∂θ

∂t

∣∣∣∣
t=0

≥ 0



Proof, cont.

∂θ

∂t

∣∣∣∣
t=0

= −4φ+ 2〈X ,∇φ〉+
(
Q + div X − |X |2

)
φ ,

where

Q =
1

2
S − T (U,K )− 1

2
|χ|2 and X = tan (∇NU) .

Since LHS ≥ 0, completing the square on the RHS gives

−4φ+ (Q + div X )φ+ φ|∇ lnφ|2 − φ|X −∇ lnφ|2 ≥ 0

Setting u = lnφ we obtain,

−4u +Q +div X −|X −∇u|2 ≥ 0



Proof, cont.

Absorbing laplacian term into divergence term,

Q + div (X −∇u)− |X −∇u|2 ≥ 0

Setting Y = X −∇u, we have

−Q + |Y |2 ≤ div Y

For any ψ ∈ C∞(Σ), multiply through by ψ2,

−ψ2Q + ψ2|Y |2 ≤ ψ2div Y

= div (ψ2Y )− 2ψ〈∇ψ,Y 〉 (IBP)

≤ div (ψ2Y ) + 2|ψ||∇ψ||Y | (Schwarz ineq)

≤ div (ψ2Y ) + |∇ψ|2 + ψ2|Y |2 (2ab ≤ a2 + b2)

Canceling and integrating arrive at ...



Proof, cont.

∫
Σ |∇ψ|

2 + Qψ2 ≥ 0 ∀ψ ∈ C∞(Σ)

where Q = 1
2S − T (U,K )− 1

2 |χ|
2

Consider equation

−4ψ + Qψ = 0

and corresponding eigenvalue problem,

−4ψ + Qψ = λψ

Have λ1 ≥ 0. Let f be corresponding eigenfunction; can choose
f > 0.

Then g̃ = f 2/(n−2)g has nonnegative scalar curvature.



Final Comments

Consider case: dim M = 5 + 1 dim Σ = 4

From Seiberg-Witten theory we know that there are many
compact 4-manifolds - even simply connected ones - that do
not admit metrics of positive scalar curvature.

In the recent paper hep-th/0509013 of Helfgott, Oz and
Yanay, the authors use topological censorship to argue that if
the horizon is simply connected then either it is
homeomorphic to S4 or to a connected sum of S2 × S2’s.

They make use of results from 4-manifold topology and
cobordism theory.


