Black holes, fuzzballs and foam

Thomas S. Levi

University of Pennsylvania
tslevi@sas.upenn.edu
P. Berglund, E.G. Gimon and TSL, hep-th/0505167
V. Balasubramanian, E.G. Gimon and TSL, in progress

Motivation

- The fuzzball conjecture offers a promising approach to the black hole information paradox

Motivation

- The fuzzball conjecture offers a promising approach to the black hole information paradox
- So far, only geometries for two-charge microstates have been found. These geometries have classically vanishing horizon area.
- Want to find geometries that could be microstates for three-charge black holes and the new black ring solutions, which have classically finite horizons.
- Want to find geometries that could be microstates for four-dimensional black holes
- Connect the old picture of D-brane state counting with the new fuzzball picture
- Offer fresh insights into ideas surrounding quantum foam and geometric transitions
- Find new smooth, stable SUGRA backgrounds

Outline

1. The fuzzball hypothesis
2. The Bena-Warner ansatz
3. Solving the equations for a three-charge system and global constraints
4. Reduction to IIA
5. Reduction to 4D and special geometry
6. Scaling and quivers
7. Discussion and conclusions

The fuzzball hypothesis

- In the usual black hole picture we have a horizon, empty space and all interesting physics concentrated at the singularity

The fuzzball hypothesis

- In the usual black hole picture we have a horizon, empty space and all interesting physics concentrated at the singularity
- In the fuzzball, the region between the "horizon" and the singularity is not empty. Instead there is interesting geometry and physics in this region
- The singular black hole geometry with a horizon is an emergent phenomenon that results from coarse graining. Each microstate is smooth and horizon free.

More on fuzzballs

- Each microstate looks the same asymptotically. Closer in we see differences
- Our three-charge solutions will replace a core region of singular brane sources with a geometric transition to a bubbling foam of two-cycles threaded by flux
- The intricate geometry of these cycles will distinguish individual microstates
- Along the way we will find rules for arranging the cycles
- We will reduce to 4 D and show how to connect the picture of D-brane state counting with microstates via a smooth running of g_{s}

The Bena-Warner ansatz

- We utilize an ansatz due to Bena-Warner for 3-charge, 1/8 BPS solutions in 5D
- The setup is M-theory on a T^{6} with 3 stacks of M2-branes wrapped on each 2 -cycle. These will induce M5-brane dipole charge
- The 5D space is time fibred over a hyperkahler base space, $H K$

$$
\begin{aligned}
d s_{11}^{2} & =-\left(Z_{1} Z_{2} Z_{3}\right)^{-2 / 3}(d t+k)^{2}+\left(Z_{1} Z_{2} Z_{3}\right)^{1 / 3} d s_{H K}^{2}+d s_{T^{6}}^{2}, \\
d s_{T^{6}}^{2} & =\left(Z_{1} Z_{2} Z_{3}\right)^{1 / 3}\left(Z_{1}^{-1}\left(d z_{1}^{2}+d z_{2}^{2}\right)+Z_{2}^{-1}\left(d z_{3}^{2}+d z_{4}^{2}\right)+Z_{3}^{-1}\left(d z_{5}^{2}+d z_{6}^{2}\right)\right) . \\
d s_{H K}^{2} & =H^{-1} \sigma^{2}+H\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right), \\
\sigma & =d \tau+f_{a} d x^{a}, \star_{3} d \sigma=d H, \tau \sim \tau+4 \pi
\end{aligned}
$$

- The C -field is given by

$$
\begin{aligned}
C_{(3)}= & -(d t+k)\left(Z_{1}^{-1} d z_{1} \wedge d z_{2}+Z_{2}^{-1} d z_{3} \wedge d z_{4}+Z_{3}^{-1} d z_{5} \wedge d z_{6}\right) \\
& +2 a^{1} \wedge d z_{1} \wedge d z_{2}+2 a^{2} \wedge d z_{3} \wedge d z_{4}+2 a^{3} \wedge d z_{5} \wedge d z_{6}
\end{aligned}
$$

Bena-Warner ansatz continued

Define $G^{i}=d a^{i}$. The BW ansatz solves the EOM if

$$
\begin{aligned}
G^{i} & =\star G^{i}, \\
d \star d Z_{i} & =2 s_{i j k} G^{j} \wedge G^{k}, \\
d k+\star d k & =2 G^{i} Z_{i} .
\end{aligned}
$$

Where $s^{i j k}=\left|\epsilon^{i j k}\right|$ is the symmetric tensor and the Hodge dual is only on $H K$.

Solving the EOM

- We can solve the EOM using 8 harmonic functions ($r_{p}=\left|\vec{x}-\overrightarrow{x_{p}}\right|, i=1 \ldots 3$)
$H=\sum_{p=1}^{N} \frac{n_{p}}{r_{p}}$,
$M_{i}=1+\sum_{p=1}^{N} \frac{Q_{i}^{p}}{4 r_{p}}$,
$K=l_{0}+\sum_{p=1}^{N} \frac{l_{p}}{r_{p}}, \quad h^{i}=\sum_{p=1}^{N} \frac{d_{p}^{i}}{4 r_{p}}$
- Notice that the poles of each harmonic function overlap, this is necessary for the solution to be smooth

Solving the EOM

- We can solve the EOM using 8 harmonic functions ($r_{p}=\left|\vec{x}-\overrightarrow{x_{p}}\right|, i=1 \ldots 3$)

$$
H=\sum_{p=1}^{N} \frac{n_{p}}{r_{p}}, \quad M_{i}=1+\sum_{p=1}^{N} \frac{Q_{i}^{p}}{4 r_{p}}, \quad K=l_{0}+\sum_{p=1}^{N} \frac{l_{p}}{r_{p}}, \quad h^{i}=\sum_{p=1}^{N} \frac{d_{p}^{i}}{4 r_{p}}
$$

- Notice that the poles of each harmonic function overlap, this is necessary for the solution to be smooth
- With these harmonic functions we can solve for all quantities relevant for the SUGRA solution

$$
\begin{aligned}
Z_{i} & =M_{i}+2 s_{i j k} h^{j} h^{k} / H, \\
a^{i} & =\left(h^{i} / H\right) \sigma+a_{a}^{i} d x^{a}, d\left(a_{a}^{i} d x^{a}\right)=-\star_{3} d h^{i}, \\
k & =k_{0} \sigma+k_{a} d x^{a}, \quad k_{0}=K+8 H^{-2} h^{1} h^{2} h^{3}+H^{-1} M_{i} h^{i} \\
d\left(k_{a} d x^{a}\right) & =H \star_{3} d K-K \star_{3} d H+h^{i} \star_{3} d M_{i}-M_{i} \star_{3} d h^{i}
\end{aligned}
$$

Constraints

- For our solutions to be smooth, the various charges in the harmonic functions cannot all be independent
- To ensure smoothness we must have

$$
Q_{i}^{p}=-s_{i j k} \frac{d_{p}^{j} d_{p}^{k}}{2 n_{p}}, \quad l_{p}=\frac{d_{p}^{1} d_{p}^{2} d_{p}^{3}}{16 n_{p}^{2}}, \quad l_{0}=-\sum_{i} \frac{s^{i}}{4}, \quad s^{i}=\sum_{p} d_{p}^{i}
$$

- We must also insure that $d^{2}\left(k_{a} d x^{a}\right)=0$. To display this condition, its easiest to use the new variables

$$
\tilde{\lambda}_{p}^{i}=\left(d_{p}^{i} / n_{p}-s^{i}\right), \quad \Gamma_{p q}=\frac{\prod_{i}\left(n_{p} d_{q}^{i}-n_{q} d_{p}^{i}\right)}{n_{p}^{2} n_{q}^{2}}
$$

- This condition can then be written (we call this the "bubble equation")

$$
4 \sum_{i} n_{p} \tilde{\lambda}_{p}^{i}+\sum_{q=1}^{N} \frac{\Gamma_{p q}}{r_{p q}}=0, \quad p=1 \ldots(N-1)
$$

Zeros of the Z_{i}

- To avoid singularities we need the determinant of the metric and its inverse to be well defined and non-vanishing

$$
\sqrt{-g_{11}}=\left(Z_{1} Z_{2} Z_{3}\right)^{1 / 3} H \sqrt{g_{\mathbf{R}^{3}}}
$$

- We see that to avoid singularities we need $Z_{i} \neq 0$. Our simple tactic for enforcing this is to everywhere demand

$$
Z_{i} H>0 \quad \forall i \in 1,2,3
$$

CTCs

- To exclude CTCs in our 5D reduced space we require our spacetime to be stably causal
- For a spacetime to be stably causal it must admit a globally defined, smooth function whose gradient is everywhere timelike. We call this a time function
- Our candidate function is simply the coordinate t, which is a time function if

$$
-g^{\mu \nu} \partial_{\mu} t \partial_{\nu} t=-g^{t t}=\left(Z_{1} Z_{2} Z_{3}\right)^{-1 / 3} H^{-1}\left(\left(Z_{1} Z_{2} Z_{3}\right) H-H^{2} k_{0}^{2}-g_{\mathbf{R}^{3}}^{a b} k_{a} k_{b}\right)>0
$$

- In general, this is a complicated function and we have not analyzed this in detail. It is possible that this will place further constraints on the relative pole positions
- This condition implies $Z_{i} H>0$ and also guarantees there are no horizons
- Avoiding Dirac strings will lead to quantization of the d_{p}^{i}

Asymptotic charges

- By looking at the asymptotic behavior of the metric and C-field we can read off the expressions for the total membrane charge and $S U(2)_{L} \times S U(2)_{R}$ angular momenta

$$
\begin{aligned}
Q_{i} & =-\frac{1}{2} \sum_{p=1}^{N} n_{p} s_{i j k} \lambda_{p}^{j} \lambda_{p}^{k}, \quad J_{R}=\sum_{p=1}^{N} n_{p} \lambda_{p}^{1} \lambda_{p}^{2} \lambda_{p}^{3}, \\
J_{L} & =4\left|\sum_{p=1}^{N} \sum_{i} n_{p} \lambda_{p}^{i} \vec{x}_{p}\right|=\frac{1}{2}\left|\sum_{p q} \Gamma_{p q} \frac{\vec{x}_{p}-\vec{x}_{q}}{\left|\vec{x}_{p}-\vec{x}_{q}\right|}\right|
\end{aligned}
$$

- Note that while J_{L} depends on the position of the poles, J_{R} does not. This is due to the $U(1)_{R}$ isometry generated by ∂_{τ}. Later on, we'll use this isometry to reduce our solutions to 4D

General features

- The geometry is characterized by a set of regular 2-cycles $S_{p q}$ coming from the fiber σ over each interval from \vec{x}_{p} to \vec{x}_{q}. The bubble equation tells us how these bubbles can be arranged based on the flux through them.
- All brane sources have vanished and been replaced by flux on cycles \Rightarrow geometric transition
- A generic microstate will have a large number of poles. The geometry will be a foam of 2-cycles with an overall expected size of the representative black hole horizon (this needs to be worked out!)
- We have solved the EOM and insured smoothness

Summary of conditions

- Our solution is completely parameterized by a set of poles on \mathbf{R}^{3} with quantized residues n_{p} and quantized fluxes d_{p}^{i}
- These and the quantities that depend on them must satisfy the following conditions for us to have a smooth (up to orbifold points) and regular solution free of CTCs and horizons to 11D SUGRA with three membrane charges and 4 supersymmetries:

1) $4 \sum_{i} n_{p} \tilde{\lambda}_{p}^{i}+\sum_{q=1}^{N} \frac{\Gamma_{p q}}{r_{p q}}=0$,
2) $\left(Z_{1} Z_{2} Z_{3}\right) H-H^{2} k_{0}^{2}-g_{\mathbf{R}^{3}}^{a b} k_{a} k_{b}>0$

Reduction to IIA

- We can reduce to 4D along the τ direction by placing the geometry in Taub-Nut (this insures we have a finite circle at infinity). We do this by adding a constant to H

$$
H \rightarrow H+\delta H, \quad \delta H=4 / L^{2}, \quad L=g_{s} l_{s}
$$

- We can also add constants to the 7 other harmonic functions ($\delta M_{i}, \delta h^{i}, \delta K$), not all of which will be independent since we must make sure that the metric and C-field have the right asymptotic behavior
- We can now reduce along τ to a 10D IIA solution in 4 non-compact directions

The reduction

Defining dimesionless harmonic functions and new radial coordinate $\rho=2 r / L$

$$
M_{0}=-H L^{2} / 4, \quad K^{0}=4 K / L, \quad K^{i}=L h^{i}
$$

the reduction gives ($d s_{3}^{2}$ is now in the conventional form)

$$
\begin{aligned}
& d s_{I I A}^{2}=-J_{4}^{\frac{-1}{2}}\left(d t+k_{a} d x^{a}\right)^{2}+J_{4}^{1 / 2}\left(d s_{3}^{2}+\left(-Z_{i} M_{0}\right)^{-1} d s_{T_{i}}^{2}\right) \\
& e^{2 \Phi}=\left(J_{4}\right)^{3 / 2}\left(-Z M_{0}\right)^{-3}, \quad B_{2}=-\left(\frac{K^{i}}{M_{0}}+\frac{2 k_{0}}{L Z_{i}}\right) d V_{i} \\
& C_{1}=\frac{L}{2} f_{a} d x^{a}-\frac{2 M_{0}^{2} k_{0}}{L J_{4}}\left(d t+k_{a} d x^{a}\right) \\
& C_{3}=\left[-Z_{i}^{-1}\left(d t+k_{a} d x^{a}\right)+2 \vec{a}^{i}-\left(\frac{K^{i}}{M_{0}}+\frac{2 k_{0}}{L Z_{i}}\right) \frac{L}{2} f_{a} d x^{a}\right] \wedge d V_{i}
\end{aligned}
$$

The reduction cont.

- J_{4} is the quartic invariant of $E_{7(7)}$

$$
\begin{aligned}
J_{4} & =M_{0} K^{0}\left(M_{i} K^{i}\right)+M_{1} K^{1}\left(M_{2} K^{2}+M_{3} K^{3}\right)+M_{2} K^{2} M_{3} K^{3} \\
& -\frac{1}{4}\left(M_{\alpha} K^{\alpha}\right)^{2}-M_{0} M_{1} M_{2} M_{3}-K^{0} K^{1} K^{2} K^{3}, \quad \alpha \in 0 \ldots 3
\end{aligned}
$$

The reduction cont.

- J_{4} is the quartic invariant of $E_{7(7)}$

$$
\begin{aligned}
J_{4} & =M_{0} K^{0}\left(M_{i} K^{i}\right)+M_{1} K^{1}\left(M_{2} K^{2}+M_{3} K^{3}\right)+M_{2} K^{2} M_{3} K^{3} \\
& -\frac{1}{4}\left(M_{\alpha} K^{\alpha}\right)^{2}-M_{0} M_{1} M_{2} M_{3}-K^{0} K^{1} K^{2} K^{3}, \quad \alpha \in 0 \ldots 3
\end{aligned}
$$

- The reduction alters the bubble equation. It becomes

$$
\psi_{p}+\frac{2}{L} \sum_{q} \frac{\Gamma_{p q}}{\rho_{p q}}=0, \quad \psi_{p}=\sum_{i} n_{p} \lambda_{p}^{i}-\frac{1}{L^{2} n_{p}^{2}} \prod_{i} n_{p} \lambda_{p}^{i}, \quad \lambda_{p}^{i}=\frac{d_{p}^{i}}{n_{p}}-L^{2} \delta h^{i}
$$

Asymptotic charges

We now have a solution of IIA in 4 non-compact directions with 0, 2, 4, 6-brane charges. We can read off the angular momentum and quantized charges

$$
\begin{aligned}
J & =\frac{1}{2}\left|\sum_{p, q} \Gamma_{p q} \hat{r}_{p q}\right|, \\
Q_{0}^{D 6} & =\frac{L}{2} \sum_{p}\left(-n_{p}\right)=\frac{g_{s} l_{s}}{2} N_{6}, \quad Q_{i}^{D 2}=-\frac{1}{2 L} \sum_{p} s_{i j k} \frac{d_{p}^{j} d_{p}^{k}}{2 n_{p}}=-\frac{4 G_{4} V_{i}}{4 \pi^{2} g_{s} l_{s}^{3}} N_{i D 2}, \\
Q_{D 0}^{0} & =\frac{1}{2 L^{2}} \sum_{p} \frac{d_{p}^{1} d_{p}^{2} d_{p}^{3}}{n_{p}^{2}}=\frac{4 G_{4}}{g_{s} l_{s}} N_{0}, \quad Q_{D 4}^{i}=\frac{1}{2} \sum_{p} d_{p}^{i}=2 \pi^{2} \frac{g_{s} l_{s}^{3}}{V_{i}} N_{4}^{i}
\end{aligned}
$$

At each point p we can interpret the charges as arising from a D6-brane with fluxes on it. Each of these is $1 / 2$-BPS, the aggregate is $1 / 8$-BPS.

Reduction to 4D and special geometry

- We can further reduce to 4D and obtain solutions to $\mathcal{N}=8$ SUGRA
- This theory has an $E_{7(7)}$ duality group. The three D2-brane charges and the D6-brane charge transform in an electric 28 of the maximal compact subgroup $S U(8) / \mathrm{Z}_{2}$. The three D4-brane charges and the D0-brane transform in the magnetic 28. Together they transform in the 56 of $E_{7(7)}$
- We can write a charge vector

$$
\Gamma_{p}=\left(Q_{0}^{p}, Q_{i}^{p} ; Q_{p}^{0}, Q_{p}^{i}\right), \quad \Gamma=\sum_{p} \Gamma_{p}=\left(Q_{0}, Q_{i} ; Q^{0}, Q^{i}\right)
$$

and define the E_{7} symplectic product

$$
<\Gamma_{p}, \Gamma_{q}>=Q_{p}^{0} Q_{0}^{q}-Q_{q}^{0} Q_{0}^{p}+Q_{p}^{i} Q_{i}^{q}-Q_{i}^{q} Q_{i}^{p}=\frac{\Gamma_{p q}}{4 L}
$$

- We can also think of our 8 harmonic functions as part of a single one valued in the 56. We can rewrite all our EOM and constraints in this language.

Which black holes?

- These solutions are candidate microstates for 4D black holes. The area of the associated black hole is

$$
A=2 \pi \sqrt{J_{4}(\Gamma)}
$$

- Writing this in terms of the charges

$$
J_{4}(\Gamma)=\frac{1}{4}\left(Q^{i} Q_{i}+Q^{0} Q_{0}\right)^{2}-\left(Q^{0} \prod_{i} Q^{i}+Q_{0} \prod_{i} Q_{i}\right)-\frac{1}{2}\left(\sum_{i}\left(Q^{i} Q_{i}\right)^{2}+\left(Q^{0} Q_{0}\right)^{2}\right)
$$

- To get a finite area, we need to turn on at least 4 charges, which we can easily do. An example is the D2-D2-D2-D6 black hole with area $A=2 \pi \sqrt{-Q_{0} \prod_{i} Q_{i}}$
- In general we can find microstates for finite area 4D black holes

More on BPSness

- For the black hole solution $J_{4}(\mathcal{H})$ falls off like ρ^{-4} at a pole since the metric goes like

$$
\begin{aligned}
& J_{4}^{1 / 2} d \rho^{2}, \quad J_{4}=M_{0} Z_{1} Z_{2} Z_{3} \\
& Z_{i}=1+\frac{Q_{i}}{\rho}, \quad M_{0}=1+\frac{Q_{0}}{\rho}
\end{aligned}
$$

- This is typical of $1 / 8$-BPS solutions with finite area. As we turn off charges the solution goes first to a 1/8-BPS solution of vanishing area with falloff ρ^{-3}, and then to $1 / 4-\operatorname{BPS}\left(\rho^{-2}\right)$ and $1 / 2-\operatorname{BPS}\left(\rho^{-1}\right)$

More on BPSness

- For the black hole solution $J_{4}(\mathcal{H})$ falls off like ρ^{-4} at a pole since the metric goes like

$$
\begin{aligned}
& J_{4}^{1 / 2} d \rho^{2}, \quad J_{4}=M_{0} Z_{1} Z_{2} Z_{3} \\
& Z_{i}=1+\frac{Q_{i}}{\rho}, \quad M_{0}=1+\frac{Q_{0}}{\rho}
\end{aligned}
$$

- This is typical of $1 / 8$-BPS solutions with finite area. As we turn off charges the solution goes first to a 1/8-BPS solution of vanishing area with falloff ρ^{-3}, and then to $1 / 4-\operatorname{BPS}\left(\rho^{-2}\right)$ and $1 / 2-\operatorname{BPS}\left(\rho^{-1}\right)$
- For our microstates though, they always fall off like ρ^{-1} at a pole even though they are $1 / 8$-BPS
- This occurs because our solution is multicentered. Each "atom" (charge center) is $1 / 2-\mathrm{BPS}$, but the "molecule" is $1 / 8-\mathrm{BPS}$

The new bubble equation and a scaling relation

- The reduction alters the bubble equation. It becomes
$\psi_{p}+\frac{2}{L} \sum_{q} \frac{\Gamma_{p q}}{\rho_{p q}}=0, \quad \psi_{p}=\sum_{i} n_{p} \lambda_{p}^{i}-\frac{1}{L^{2} n_{p}^{2}} \prod_{i} n_{p} \lambda_{p}^{i}, \quad \lambda_{p}^{i}=\frac{d_{p}^{i}}{n_{p}}-L^{2} \delta h^{i}$
- This equation has a novel scaling behavior. If we scale all coordinates by $\left(t, \rho, z^{i}\right) \rightarrow \alpha\left(t, \rho, z^{i}\right)$ the bubble equation remains invariant. This corresponds to scaling $l_{P}^{11} \rightarrow \alpha^{1 / 3} l_{P}^{11}$

The new bubble equation and a scaling relation

- The reduction alters the bubble equation. It becomes

$$
\psi_{p}+\frac{2}{L} \sum_{q} \frac{\Gamma_{p q}}{\rho_{p q}}=0, \quad \psi_{p}=\sum_{i} n_{p} \lambda_{p}^{i}-\frac{1}{L^{2} n_{p}^{2}} \prod_{i} n_{p} \lambda_{p}^{i}, \quad \lambda_{p}^{i}=\frac{d_{p}^{i}}{n_{p}}-L^{2} \delta h^{i}
$$

- This equation has a novel scaling behavior. If we scale all coordinates by $\left(t, \rho, z^{i}\right) \rightarrow \alpha\left(t, \rho, z^{i}\right)$ the bubble equation remains invariant. This corresponds to scaling $l_{P}^{11} \rightarrow \alpha^{1 / 3} l_{P}^{11}$
- We can interpret this scaling as taking $g_{s} \rightarrow \alpha g_{s}$, while holding the torus volume and l_{s} fixed in string units
- Since the pole locations are $D 6$-branes wrapping the torus, we see that as we vary g_{s} we alter the distance between the branes

The open string picture and quivers (in progress!)

- We see that as we reduce g_{s}, the branes will get closer together. When they are within a string length the open string picture becomes the more valid description. The open string picture is given by a quiver theory.
- The quiver is given as follows. Each individual charge vector Γ_{p} (atom) gives a $U(1)$ factor. If $\Gamma_{p}=N_{p} \hat{\Gamma_{p}}$ is still appropriately quantized we have a $U\left(N_{p}\right)$ factor.
- The number of bifundamentals between gauge groups p and q is given by the intersection number $\Gamma_{p q}$

Quiver transitions

- When the open string picture is first valid, the system is described by a quiver gauge theory in the Coulomb phase. The chiral multiplet scalars are massive with masses proportional to the brane separation
- As we further lower g_{s} the scalars would become tachyonic. This moves our quiver theory onto the Higgs branch
- Taking $g_{s} \rightarrow 0$ collapses all the branes on top of each other. This is the picture of a D-brane ground state, and is the starting point for the Strominger-Vafa counting

The picture and quantum mechanics

- Flipping the picture around we find that going from zero to strong coupling takes us on the path: D-brane vacuum state \rightarrow quiver theory in Higgs phase \rightarrow quiver theory in Coulomb phase $\rightarrow 10 \mathrm{D}$ BPS particles (wrapped branes) \rightarrow 11D spacetime foam
- Quantum mechanically, we will have a wave function that is peaked in different phases depending on g_{s}, the transitions should be smooth
- We anticipate this to be the connection between the older picture of microstate counting and the fuzzball geometries

Summing up

- We have demonstrated a solution generating technique for general $U(1)$ invariant, BPS, three-charge microstates and shown how to reduce them to 4D
- These solutions replaced a singular core region with an intricate geometry of two-cycles threaded by electric and magnetic flux
- After reduction the solutions are interpreted as D-branes in IIA
- These solutions are candidate microstates for 4D, finite area black holes
- We demonstrated a novel scaling behavior and conjectured a relation to D-brane ground states
- This scaling transitions us from a spacetime foam in 5D through a quiver gauge theory in 4D and down to D-brane ground states

Open questions

- Can all microstates be written in terms of $1 / 2-B P S$ atoms?
- How do we invert our conditions so that we can find and count all microstates for given conserved charges?
- What are the dual CFT states? How can the CFT encode our microscopic variables?
- What are the relations to the OSV conjecture on the black hole partition function and topological strings?
- The solutions organize themselves nicely with the $E_{7(7)}$ (and also E_{8}) U-duality groups. Can we use this to generate more general solutions? Can we then lift back up?
- Quivers with closed loops generate superpotentials. How does this affect our story?

