Black holes, fuzzballs and foam

Thomas S. Levi

University of Pennsylvania

tslevi@sas.upenn.edu

P. Berglund, E.G. Gimon and TSL, hep-th/0505167 V. Balasubramanian, E.G. Gimon and TSL, in progress

Motivation

• The fuzzball conjecture offers a promising approach to the black hole information paradox

Motivation

- The fuzzball conjecture offers a promising approach to the black hole information paradox
- So far, only geometries for two-charge microstates have been found. These geometries have classically vanishing horizon area.
- Want to find geometries that could be microstates for three-charge black holes and the new black ring solutions, which have classically finite horizons.
- Want to find geometries that could be microstates for four-dimensional black holes
- Connect the old picture of D-brane state counting with the new fuzzball picture
- Offer fresh insights into ideas surrounding quantum foam and geometric transitions
- Find new smooth, stable SUGRA backgrounds

Outline

- 1. The fuzzball hypothesis
- 2. The Bena-Warner ansatz
- 3. Solving the equations for a three-charge system and global constraints
- 4. Reduction to IIA
- 5. Reduction to 4D and special geometry
- 6. Scaling and quivers
- 7. Discussion and conclusions

The fuzzball hypothesis

 In the usual black hole picture we have a horizon, empty space and all interesting physics concentrated at the singularity

The fuzzball hypothesis

 In the usual black hole picture we have a horizon, empty space and all interesting physics concentrated at the singularity

- In the fuzzball, the region between the "horizon" and the singularity is not empty. Instead there is interesting geometry and physics in this region
- The singular black hole geometry with a horizon is an emergent phenomenon that results from coarse graining. Each microstate is smooth and horizon free.

More on fuzzballs

- Each microstate looks the same asymptotically. Closer in we see differences
- Our three-charge solutions will replace a core region of singular brane sources with a geometric transition to a bubbling foam of two-cycles threaded by flux
- The intricate geometry of these cycles will distinguish individual microstates
- Along the way we will find rules for arranging the cycles
- We will reduce to 4D and show how to connect the picture of D-brane state counting with microstates via a smooth running of g_s

The Bena-Warner ansatz

- We utilize an ansatz due to Bena-Warner for 3-charge, 1/8 BPS solutions in 5D
- The setup is M-theory on a T⁶ with 3 stacks of M2-branes wrapped on each 2-cycle. These will induce M5-brane dipole charge
- The 5D space is time fibred over a hyperkahler base space, HK

$$ds_{11}^{2} = -(Z_{1}Z_{2}Z_{3})^{-2/3}(dt+k)^{2} + (Z_{1}Z_{2}Z_{3})^{1/3}ds_{HK}^{2} + ds_{T}^{2}6,$$

$$ds_{T}^{2} = (Z_{1}Z_{2}Z_{3})^{1/3} \left(Z_{1}^{-1}(dz_{1}^{2} + dz_{2}^{2}) + Z_{2}^{-1}(dz_{3}^{2} + dz_{4}^{2}) + Z_{3}^{-1}(dz_{5}^{2} + dz_{6}^{2}) \right)$$

$$ds_{HK}^{2} = H^{-1}\sigma^{2} + H(dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}),$$

$$\sigma = d\tau + f_{a}dx^{a}, \star_{3}d\sigma = dH, \ \tau \sim \tau + 4\pi$$

• The C-field is given by

$$egin{aligned} C_{(3)} &= & -(dt+k)\left(Z_1^{-1}\,dz_1\wedge dz_2+Z_2^{-1}\,dz_3\wedge dz_4+Z_3^{-1}\,dz_5\wedge dz_6
ight)\ &+2\,a^1\wedge dz_1\wedge dz_2+2\,a^2\wedge dz_3\wedge dz_4+2\,a^3\wedge dz_5\wedge dz_6. \end{aligned}$$

Bena-Warner ansatz continued

Define $G^i = da^i$. The BW ansatz solves the EOM if

$$G^{i} = \star G^{i},$$

$$d \star dZ_{i} = 2s_{ijk}G^{j} \wedge G^{k},$$

$$dk + \star dk = 2G^{i}Z_{i}.$$

Where $s^{ijk} = |\epsilon^{ijk}|$ is the symmetric tensor and the Hodge dual is only on HK.

Solving the EOM

• We can solve the EOM using 8 harmonic functions ($r_p = |\vec{x} - \vec{x_p}|$, $i = 1 \dots 3$)

$$H = \sum_{p=1}^{N} \frac{n_p}{r_p}, \qquad M_i = 1 + \sum_{p=1}^{N} \frac{Q_i^p}{4r_p}, \qquad K = l_0 + \sum_{p=1}^{N} \frac{l_p}{r_p}, \qquad h^i = \sum_{p=1}^{N} \frac{d_p^i}{4r_p}$$

 Notice that the poles of each harmonic function overlap, this is necessary for the solution to be smooth

Solving the EOM

• We can solve the EOM using 8 harmonic functions ($r_p = |\vec{x} - \vec{x_p}|$, $i = 1 \dots 3$)

$$H = \sum_{p=1}^{N} \frac{n_p}{r_p}, \qquad M_i = 1 + \sum_{p=1}^{N} \frac{Q_i^p}{4r_p}, \qquad K = l_0 + \sum_{p=1}^{N} \frac{l_p}{r_p}, \qquad h^i = \sum_{p=1}^{N} \frac{d_p^i}{4r_p}$$

- Notice that the poles of each harmonic function overlap, this is necessary for the solution to be smooth
- With these harmonic functions we can solve for all quantities relevant for the SUGRA solution

$$egin{array}{rll} Z_i &=& M_i + 2 s_{ijk} h^j h^k / H, \ a^i &=& (h^i / H) \sigma + a^i_a dx^a, \ d(a^i_a dx^a) = - \star_3 dh^i, \ k &=& k_0 \, \sigma + k_a \, dx^a, \qquad k_0 = K + 8 H^{-2} \, h^1 \, h^2 \, h^3 + H^{-1} \, M_i \, h^i \ d(k_a dx^a) &=& H \star_3 dK - K \, \star_3 dH + h^i \, \star_3 dM_i - M_i \, \star_3 dh^i \end{array}$$

Constraints

- For our solutions to be smooth, the various charges in the harmonic functions cannot all be independent
- To ensure smoothness we must have

$$Q_i^p = -s_{ijk} rac{d_p^j d_p^k}{2n_p}, \quad l_p = rac{d_p^1 d_p^2 d_p^3}{16n_p^2}, \quad l_0 = -\sum_i rac{s^i}{4}, \quad s^i = \sum_p d_p^i$$

• We must also insure that $d^2(k_a dx^a) = 0$. To display this condition, its easiest to use the new variables

$$ilde{\lambda}^i_p = (d^i_p/n_p - s^i), \qquad \Gamma_{pq} = rac{\prod_i (n_p d^i_q - n_q d^i_p)}{n_p^2 n_q^2}$$

• This condition can then be written (we call this the "bubble equation")

$$4\sum_{i} n_{p}\tilde{\lambda}_{p}^{i} + \sum_{q=1}^{N} \frac{\Gamma_{pq}}{r_{pq}} = 0, \qquad p = 1...(N-1)$$

Zeros of the Z_i

 To avoid singularities we need the determinant of the metric and its inverse to be well defined and non-vanishing

$$\sqrt{-g_{11}} = (Z_1 Z_2 Z_3)^{1/3} H \sqrt{g_{\mathbf{R}^3}}$$

• We see that to avoid singularities we need $Z_i \neq 0$. Our simple tactic for enforcing this is to everywhere demand

 $Z_i H > 0 \qquad \forall i \in 1, 2, 3$

CTCs

- To exclude CTCs in our 5D reduced space we require our spacetime to be *stably* causal
- For a spacetime to be stably causal it must admit a globally defined, smooth function whose gradient is everywhere timelike. We call this a *time function*
- Our candidate function is simply the coordinate t, which is a time function if

$$-g^{\mu
u}\partial_{\mu}t\partial_{
u}t=-g^{tt}=(Z_{1}Z_{2}Z_{3})^{-1/3}\,H^{-1}\left((Z_{1}Z_{2}Z_{3})H-H^{2}\,k_{0}^{2}-g^{ab}_{\mathbf{R}^{3}}k_{a}k_{b}
ight)>0$$

- In general, this is a complicated function and we have not analyzed this in detail. It
 is possible that this will place further constraints on the relative pole positions
- This condition implies $Z_i H > 0$ and also guarantees there are no horizons
- Avoiding Dirac strings will lead to quantization of the d_p^i

Asymptotic charges

• By looking at the asymptotic behavior of the metric and C-field we can read off the expressions for the total membrane charge and $SU(2)_L \times SU(2)_R$ angular momenta

$$Q_i = -\frac{1}{2} \sum_{p=1}^N n_p s_{ijk} \lambda_p^j \lambda_p^k, \qquad J_R = \sum_{p=1}^N n_p \lambda_p^1 \lambda_p^2 \lambda_p^3$$
$$J_L = 4 \left| \sum_{p=1}^N \sum_i n_p \lambda_p^i \vec{x}_p \right| = \frac{1}{2} \left| \sum_{pq} \Gamma_{pq} \frac{\vec{x}_p - \vec{x}_q}{|\vec{x}_p - \vec{x}_q|} \right|$$

Note that while J_L depends on the position of the poles, J_R does not. This is due to the U(1)_R isometry generated by ∂_τ. Later on, we'll use this isometry to reduce our solutions to 4D

General features

- The geometry is characterized by a set of regular 2-cycles S_{pq} coming from the fiber σ over each interval from \vec{x}_p to \vec{x}_q . The bubble equation tells us how these bubbles can be arranged based on the flux through them.
- All brane sources have vanished and been replaced by flux on cycles ⇒ geometric transition
- A generic microstate will have a large number of poles. The geometry will be a foam of 2-cycles with an overall expected size of the representative black hole horizon (this needs to be worked out!)
- We have solved the EOM and insured smoothness

Summary of conditions

- Our solution is completely parameterized by a set of poles on \mathbb{R}^3 with quantized residues n_p and quantized fluxes d_p^i
- These and the quantities that depend on them must satisfy the following conditions for us to have a smooth (up to orbifold points) and regular solution free of CTCs and horizons to 11D SUGRA with three membrane charges and 4 supersymmetries:

$$\begin{aligned} 1) \quad & 4\sum_{i} \, n_{p} \tilde{\lambda}_{p}^{i} + \sum_{q=1}^{N} \frac{\Gamma_{pq}}{r_{pq}} = 0, \\ 2) \quad & (Z_{1} Z_{2} Z_{3}) H - H^{2} \, k_{0}^{2} - g_{\mathbf{R}^{3}}^{ab} k_{a} k_{b} > 1 \end{aligned}$$

Reduction to IIA

 We can reduce to 4D along the τ direction by placing the geometry in Taub-Nut (this insures we have a finite circle at infinity). We do this by adding a constant to *H*

$$H \rightarrow H + \delta H, \quad \delta H = 4/L^2, \quad L = g_s l_s$$

- We can also add constants to the 7 other harmonic functions $(\delta M_i, \delta h^i, \delta K)$, not all of which will be independent since we must make sure that the metric and C-field have the right asymptotic behavior
- We can now reduce along τ to a 10D IIA solution in 4 non-compact directions

The reduction

Defining dimesionless harmonic functions and new radial coordinate ho=2r/L

$$M_0 = -HL^2/4, \qquad K^0 = 4K/L, \qquad K^i = Lh^i$$

the reduction gives (ds_3^2 is now in the conventional form)

$$ds_{IIA}^{2} = -J_{4}^{\frac{-1}{2}} (dt + k_{a} dx^{a})^{2} + J_{4}^{1/2} \left(ds_{3}^{2} + (-Z_{i}M_{0})^{-1} ds_{T_{i}}^{2} \right)$$

$$e^{2\Phi} = (J_{4})^{3/2} (-ZM_{0})^{-3}, \qquad B_{2} = -\left(\frac{K^{i}}{M_{0}} + \frac{2k_{0}}{LZ_{i}}\right) dV_{i}$$

$$C_{1} = \frac{L}{2} f_{a} dx^{a} - \frac{2M_{0}^{2}k_{0}}{LJ_{4}} (dt + k_{a} dx^{a})$$

$$C_{3} = \left[-Z_{i}^{-1} (dt + k_{a} dx^{a}) + 2\vec{a}^{i} - \left(\frac{K^{i}}{M_{0}} + \frac{2k_{0}}{LZ_{i}}\right) \frac{L}{2} f_{a} dx^{a} \right] \wedge dV_{i}$$

The reduction cont.

• J_4 is the quartic invariant of $E_{7(7)}$

$$J_4 = M_0 K^0 (M_i K^i) + M_1 K^1 (M_2 K^2 + M_3 K^3) + M_2 K^2 M_3 K^3$$

- $\frac{1}{4} (M_\alpha K^\alpha)^2 - M_0 M_1 M_2 M_3 - K^0 K^1 K^2 K^3, \quad \alpha \in 0 \dots 3$

The reduction cont.

• J_4 is the quartic invariant of $E_{7(7)}$

$$J_4 = M_0 K^0 (M_i K^i) + M_1 K^1 (M_2 K^2 + M_3 K^3) + M_2 K^2 M_3 K^3$$

- $\frac{1}{4} (M_\alpha K^\alpha)^2 - M_0 M_1 M_2 M_3 - K^0 K^1 K^2 K^3, \quad \alpha \in 0 \dots 3$

• The reduction alters the bubble equation. It becomes

$$\psi_p + rac{2}{L}\sum_q rac{\Gamma_{pq}}{
ho_{pq}} = 0, \quad \psi_p = \sum_i n_p \lambda_p^i - rac{1}{L^2 n_p^2} \prod_i n_p \lambda_p^i, \quad \lambda_p^i = rac{d_p^i}{n_p} - L^2 \,\delta h^i$$

Asymptotic charges

We now have a solution of IIA in 4 non-compact directions with 0, 2, 4, 6-brane charges. We can read off the angular momentum and quantized charges

$$J = \frac{1}{2} \left| \sum_{p,q} \Gamma_{pq} \hat{r}_{pq} \right|,$$

$$Q_0^{D6} = \frac{L}{2} \sum_p (-n_p) = \frac{g_s l_s}{2} N_6, \quad Q_i^{D2} = -\frac{1}{2L} \sum_p s_{ijk} \frac{d_p^j d_p^k}{2n_p} = -\frac{4G_4 V_i}{4\pi^2 g_s l_s^3} N_{iD2},$$

$$Q_{D0}^0 = \frac{1}{2L^2} \sum_p \frac{d_p^1 d_p^2 d_p^3}{n_p^2} = \frac{4G_4}{g_s l_s} N_0, \quad Q_{D4}^i = \frac{1}{2} \sum_p d_p^i = 2\pi^2 \frac{g_s l_s^3}{V_i} N_4^i$$

At each point p we can interpret the charges as arising from a D6-brane with fluxes on it. Each of these is 1/2-BPS, the aggregate is 1/8-BPS.

Reduction to 4D and special geometry

- We can further reduce to 4D and obtain solutions to $\mathcal{N}=8$ SUGRA
- This theory has an E₇₍₇₎ duality group. The three D2-brane charges and the D6-brane charge transform in an electric 28 of the maximal compact subgroup SU(8)/Z₂. The three D4-brane charges and the D0-brane transform in the magnetic 28. Together they transform in the 56 of E₇₍₇₎
- We can write a charge vector

$$\Gamma_p = (Q_0^p, Q_i^p; Q_p^0, Q_p^i), \quad \Gamma = \sum_p \Gamma_p = (Q_0, Q_i; Q^0, Q^i)$$

and define the E_7 symplectic product

$$<\Gamma_{p},\Gamma_{q}> = Q_{p}^{0}Q_{0}^{q} - Q_{q}^{0}Q_{0}^{p} + Q_{p}^{i}Q_{i}^{q} - Q_{i}^{q}Q_{i}^{p} = rac{\Gamma_{pq}}{4L}$$

 We can also think of our 8 harmonic functions as part of a single one valued in the 56. We can rewrite all our EOM and constraints in this language.

Which black holes?

 These solutions are candidate microstates for 4D black holes. The area of the associated black hole is

$$A = 2\pi \sqrt{J_4(\Gamma)}$$

• Writing this in terms of the charges

$$J_4(\Gamma) = \frac{1}{4} (Q^i Q_i + Q^0 Q_0)^2 - (Q^0 \prod_i Q^i + Q_0 \prod_i Q_i) - \frac{1}{2} (\sum_i (Q^i Q_i)^2 + (Q^0 Q_0)^2)$$

- To get a finite area, we need to turn on at least 4 charges, which we can easily do. An example is the D2-D2-D6 black hole with area $A = 2\pi \sqrt{-Q_0 \prod_i Q_i}$
- In general we can find microstates for finite area 4D black holes

More on BPSness

For the black hole solution J₄(H) falls off like ρ⁻⁴ at a pole since the metric goes like

$$J_4^{1/2} d\rho^2, \quad J_4 = M_0 Z_1 Z_2 Z_3$$

 $Z_i = 1 + \frac{Q_i}{\rho}, \quad M_0 = 1 + \frac{Q_0}{\rho}$

• This is typical of 1/8-BPS solutions with finite area. As we turn off charges the solution goes first to a 1/8-BPS solution of vanishing area with falloff ρ^{-3} , and then to 1/4-BPS (ρ^{-2}) and 1/2-BPS (ρ^{-1})

More on BPSness

 For the black hole solution J₄(H) falls off like ρ⁻⁴ at a pole since the metric goes like

$$J_4^{1/2} d\rho^2, \quad J_4 = M_0 Z_1 Z_2 Z_3$$

 $Z_i = 1 + \frac{Q_i}{\rho}, \quad M_0 = 1 + \frac{Q_0}{\rho}$

- This is typical of 1/8-BPS solutions with finite area. As we turn off charges the solution goes first to a 1/8-BPS solution of vanishing area with falloff ρ^{-3} , and then to 1/4-BPS (ρ^{-2}) and 1/2-BPS (ρ^{-1})
- For our microstates though, they *always* fall off like ρ⁻¹ at a pole even though they are 1/8-BPS
- This occurs because our solution is multicentered. Each "atom" (charge center) is 1/2-BPS, but the "molecule" is 1/8-BPS

The new bubble equation and a scaling relation

The reduction alters the bubble equation. It becomes

$$\psi_p+rac{2}{L}\sum_qrac{\Gamma_{pq}}{
ho_{pq}}=0, \hspace{1em} \psi_p=\sum_i \hspace{1em} n_p\lambda_p^i-rac{1}{L^2n_p^2}\prod_i \hspace{1em} n_p\lambda_p^i, \hspace{1em} \lambda_p^i=rac{d_p^i}{n_p}-L^2\,\delta h^{i}$$

• This equation has a novel scaling behavior. If we scale all coordinates by $(t, \rho, z^i) \rightarrow \alpha(t, \rho, z^i)$ the bubble equation remains invariant. This corresponds to scaling $l_P^{11} \rightarrow \alpha^{1/3} l_P^{11}$

The new bubble equation and a scaling relation

The reduction alters the bubble equation. It becomes

$$\psi_p + rac{2}{L}\sum_q rac{\Gamma_{pq}}{
ho_{pq}} = 0, \quad \psi_p = \sum_i \, n_p \lambda_p^i - rac{1}{L^2 n_p^2} \prod_i \, n_p \lambda_p^i, \quad \lambda_p^i = rac{d_p^i}{n_p} - L^2 \, \delta h^{i}$$

- This equation has a novel scaling behavior. If we scale all coordinates by $(t, \rho, z^i) \rightarrow \alpha(t, \rho, z^i)$ the bubble equation remains invariant. This corresponds to scaling $l_P^{11} \rightarrow \alpha^{1/3} l_P^{11}$
- We can interpret this scaling as taking $g_s \rightarrow \alpha g_s$, while holding the torus volume and l_s fixed in string units
- Since the pole locations are D6-branes wrapping the torus, we see that as we vary g_s we alter the distance between the branes

The open string picture and quivers (in progress!)

- We see that as we reduce g_s, the branes will get closer together.
 When they are within a string length the open string picture becomes the more valid description. The open string picture is given by a quiver theory.
- The quiver is given as follows. Each individual charge vector Γ_p (atom) gives a U(1) factor. If $\Gamma_p = N_p \hat{\Gamma_p}$ is still appropriately quantized we have a $U(N_p)$ factor.
- The number of bifundamentals between gauge groups p and q is given by the intersection number Γ_{pq}

Quiver transitions

- When the open string picture is first valid, the system is described by a quiver gauge theory in the Coulomb phase. The chiral multiplet scalars are massive with masses proportional to the brane separation
- As we further lower g_s the scalars would become tachyonic. This moves our quiver theory onto the Higgs branch
- Taking g_s → 0 collapses all the branes on top of each other. This is the picture of a D-brane ground state, and is the starting point for the Strominger-Vafa counting

The picture and quantum mechanics

- Flipping the picture around we find that going from zero to strong coupling takes us on the path: D-brane vacuum state → quiver theory in Higgs phase → quiver theory in Coulomb phase → 10D BPS particles (wrapped branes) → 11D spacetime foam
- Quantum mechanically, we will have a wave function that is peaked in different phases depending on g_s , the transitions should be smooth
- We anticipate this to be the connection between the older picture of microstate counting and the fuzzball geometries

Summing up

- We have demonstrated a solution generating technique for general U(1) invariant, BPS, three-charge microstates and shown how to reduce them to 4D
- These solutions replaced a singular core region with an intricate geometry of two-cycles threaded by electric and magnetic flux
- After reduction the solutions are interpreted as D-branes in IIA
- These solutions are candidate microstates for 4D, finite area black holes
- We demonstrated a novel scaling behavior and conjectured a relation to D-brane ground states
- This scaling transitions us from a spacetime foam in 5D through a quiver gauge theory in 4D and down to D-brane ground states

Open questions

- Can all microstates be written in terms of 1/2-BPS atoms?
- How do we invert our conditions so that we can find and count all microstates for given conserved charges?
- What are the dual CFT states? How can the CFT encode our microscopic variables?
- What are the relations to the OSV conjecture on the black hole partition function and topological strings?
- The solutions organize themselves nicely with the $E_{7(7)}$ (and also E_8) U-duality groups. Can we use this to generate more general solutions? Can we then lift back up?
- Quivers with closed loops generate superpotentials. How does this affect our story?