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1. In the case of electron-electron interactions,
IS the concept of a pairing "'glue'’ even meaningful?

2. If your theory advocates an instantaneous interaction,
does this mean the pairs have no dynamics, or just that the theory
has not developed to the extent to address this question?

3. If your theory ignores phonons, can you really get away with
that? Do you think phonons are even relevant?

4. What is the spectroscopic signatures predicted for your theory?
Is a McMillan-Rowell inversion or related procedure possible for
your theory? Is this question meaningful?

5. What would your theory predict in regards to collective modes?
Is this even an important question?
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Is the pairing due to electron-electron interaction
mediated by collective spin fluctuations?

Can T line be understood in the context of a Fermi liquid,
as the result of a collective mode exchange?




1. In the case of electron-electron interactions,
IS the concept of a pairing ""glue'’ even meaningful?

Yes, but the exact prove is lacking

The goal is to re-write electron-electron interaction as the exchange

of collective degrees 01;3 freedom: spin, charge, or pairing fluctuations
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Advantage: the effective interaction is momentum dependent
and contributes to non-s-wave channels.
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Scalapino, Loh, Hirsh
Bickers, Scalapino, Scalettar...



Pnictides

A (0)=A, (cosk, +cosk,)

sign-changing , extended s-wave gap

Mazin et al, Graser et al,
Gorkov & Barzykin, Kuroki et al....
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Ingeneral, T1(Q)~1/E., henceU_, ~E.

No small parameter

Third order
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Obtained within RPA, but no proof beyond RPA (or 1 loop RG)



2. If your theory advocates an instantaneous interaction,
does this mean the pairs have no dynamics, or just that the theory
has not developed to the extent to address this question?

The bare interaction Is instantaneous
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The dynamics of y (the Landau damping) is generated
within the theory and in turn affects the dynamics of fermions
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Pairing in the Fermi liquid regime is essentially d-wave BCS

In analogy with McMillan formula for phonons
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Pairing in non-Fermi liquid regime is a new phenomenon

Pairing vertex ® becomes frequency dependent ®(Q)

Gap equation has non-BCS form
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This 1s NOT BCS pairing — summing up logarithms leads nowhere

There exists a threshold |4, )




This problem is quite generic (not only cuprates)
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y=1/2 Antiferromagnetic QCP Abanov, A.C., Finkelstein, hot spots

Haslinger et al, Millis et al, Bedel et al...
Q23 problem: gauge field, nematic ....

V= 1/4 2kF QCP Krotkov et al, electron-doped

y=1/3 Ferromagnetic QCP

y=2 Pairing by near-gapless phonons
T =0.1827 g Allen, Dynes, Carbotte, Marsiglio, Scalapino,
¢ : Combescot, Maksimov, Bulaevskii, Dolgov, .....
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3D QCP, Color superconductivity Son, Schmalian, A.C....

y=1 Z=1 pairing problem

y=+0 — =1 pairing in the presence of SDW  Moon, Sachdev

y~0.7 fermions with Dirac cone dispersion Metzner et al
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It turns out that for all y, the coupling (1 + v)/2
Is larger than the threshold
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Dome of a pairing instability above QCP




Problems:

1. Calculations are performed within Eliashberg approximation, |2(K, @) = ()

Valid when bosons are slow compared to fermions

Bosons (spin fluctuations) are Landau-damped |(, ~ \/5

Free fermions have

Dressed fermions have

First order in 1/N:

Qyp, ~ @ |, I.e are fast compared to bosons
Qiyp ~ 2(w) ~ Jo , 1.e. are comparable to bosons
Large N (actual N=2, N = infinity makes Eliashberg approximation exact)
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Then, the only change Is |y R

Apparently, Eliashberg approximation is OK



Problems:

2. The coupling g is assumed to be smaller than E¢ ~ v¢/a
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Hot spot story:
Pairing involves only

fermions near hot spots
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Strong coupling, u
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Strong coupling, u >1

The whole Eermi Gap variation along the Fermi surface

surface is involved
In the pairing
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Strong coupling, u >1

On one hand, the whole Fermi
surface is involved in the pairing

On the other, the fact that T* does not grow with u restricts
relevant fermionic states: ¢, =v. (k-k;.)~J<<v_/a
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d-wave pairing at strong coupling involves fermions
In the near vicinity of the Fermi surface




Intermediate u = O(1)
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Robustness of T*,_ .. @

Monthoux, Scalapino
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] . ) Eremin, Manske,
Identical to Eliashberg) Bennemann, Schmalian,

Dahm, Tewordt ....

T~ (0.01-0.015) ~£ = ~100-150K foru~0.25

Maier, Jarrell, ...

CDA, cluster DMFT Haule, Kotliar, Capone ...

Tremblay, Senechal, ....

T~001 F foru~ 0.25, T~0015 foru=0.75
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5. What would your theory predict in regards to collective modes?
Is this even an important question?

Spin resonance, B1g Raman resonance, ...

Most important is the spin resonance

Feedback from a d-wave superconductivity on the pairing boson
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The pairing boson becomes a mode (+ a gapped continuum)



By itself, the resonance is NOT a fingerprint of spin-mediated pairing,
nor it is a glue to a superconductivity —

What must be observable at strong coupling is how the
resonance peak affects the electronic behavior,
If the spin-fermion interaction is the dominant one
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Dispersion anomalies along the Fermi surface
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Another role of the resonance mode: at T=0 we
have a superconductor with a low-energy mode,

Q. ~0/1 <<A~(g
which is not a fluctuation of the sc order parameter

1 attractive at Q<€ <A

x(2) ~

2 )2 _
€ Lk, repulsive at Q>0

The pairinggap | |A(T=0)~T ~g (RQAQ0)/T ~4)

The superconducting stiffness Ps ~ Qe ~0/4
(estimates)

Abanov, AC
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3. If your theory ignores phonons, can you really get away with
that? Do you think phonons are even relevant?
4. What is the spectroscopic signatures predicted for your theory?
Is a McMillan-Rowell inversion or related procedure possible for
your theory? Is this question meaningful?
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Below Tc --mode surely affects optical conductivity
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Basov et al,
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Conclusions Effective interaction between low-energy fermions,

mediated by a collective degree of freedom

Some phenomenology is unavoidable (or RPA)

Once we set the model, to get £(w) and the pairing is a
legitimate theoretical issue (and not only for the cuprates)
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THANK YOU
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