Spin-Driven Spontaneous Currents and
Charge Redistribution in Mott Insulators

Daniel Khomskii, L.N. Bulaevskii, et al

KITP Higher Tc Program, July 9, 2009



Mott Insulators

H __Ztlj (Clo' jO' ia)+%2(ni _1)2;

ijo

eStandard paradigm: for U>>t and one electron per site
electrons are localized on sites. All charge degrees of freedom
are frozen out; only spin degrees of freedom remain in the
ground and lowest excited states

H, :‘l(s S, ~1/4).



Not the full truth!

For certain spin configurations there exist in the ground state
of strong Mott insulators spontaneous electric currents (and
corresponding orbital moments)!

*For some other spin textures there may exist a spontaneous
charge redistribution, so that <n;> is not 1! This, in particular,
can lead to the appearance of a spontaneous electric
polarization (a purely electronic mechanism of multiferroic
behaviour)

*These phenomena, in particular, appear in frustrated systems,
with scalar chirality playing important role



@ Spin systems: often complicated spin structures, especially
In frustrated systems — e.g. those containing triangles as
building blocks

f @ Isolated triangles (trinuclear clusters) - e.g.
In some magnetic molecules (V15, ...)

@ Solids with isolated triangles (La,Cu;Mo00O,,)

@® Triangular lattices
® Kagome

® Pyrochlore



Often complicated ground states; sometimes <§,> =0 =
———> Spin liquids

Some structures, besides <§> , are characterized by:

Vector chirality
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Scalar chirality
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Scalar chirality y 1s often invoked in different situations:
® Anyon superconductivity

® Berry-phase mechanism of anomalous Hall effect

® New universality classes of spin-liquids

® Chiral spin glasses

Chirality in frustrated systems: Kagome

a) Uniform chirality (g=0)  b) Staggered chirality (V3xV3)




But what is the scalar chirality physically?
What does it couple to?

How to measure it?

Breaks time-reversal-invariance T and inversion P - like currents!

——> %,,,#(0 means spontaneous circular electric current
Ji,370 and orbital moment L, #0
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Couples to magnetic field:
—LH ~ —H



Difference between Mott and band insulators

:_Ztu(cm io c}acia)+%2(ni—1)2, <ni>=1.
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Only inthe limit U — oo electrons are localized on sites.
At t/U =0 electrons can hop between sites.

AN

4t Orbital current
H, =—(s .S, —1/4).
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Spin current operator and scalar spin chirality

® Current operator for Hubbard Hamiltonian on bond ij:
Y Iet I
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e Projected current operator: odd # of spin operators, scalar in

spin space. For smallest loop, triangle, 2
o /AN
ls1,(3) == Gl [S; xS, 15, 1 A 3

® Current via bond 23 2 =t ,
IS,23 = IS,23(1)+ Is,23(4)- / \\ /

® On bipartite nn lattice | is absent. P 3




Orbital currents in the spin ordered ground state <§,> # 0

® Necessary condition for orbital currents is nonzero average
chirality

Z12,3 :[§1X§2][S>31 <le,k>¢0

® |t may be inherent to spin ordering or induced by magnetic field
' A Triangles with =  chirality

On tetrahedron chirality may
be nonzero but orbital

currents absent.




Chirality in the ground state without magnetic ordering

¢ <le,3> = <[§1 X §2]E§3> # 0, <§|> =0,

e Geometrically frustrated 2d system =—» Mermin-Wigner
theorem =—» <§i>: 0.

® State with maximum entropy may be with broken discrete
symmetry (z,,)#0.

® Example: J,-J, model on kagome lattice:

Hy =3, > S5, +J,Y S5,
(i) ({ii))

(group of C.Lhuillier)



Ordering in J, - J, model on kagome lattice at T=0

‘]1 Monte Carlo results by Domenge et al., 2007.
A

T#0— b)

=0 Neel
Cuboc Antiferro Q

Antiferro a) Phase diagram for classical
Ferro q=+3x+3

Neel Antiferro b)

For S=1/2 for low T cub'oc Is

chiral with orbital currents

and without spin ordering.



Boundary and persistent current
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Boundary current in
gaped 2d insulator
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eTetrahedra in exact solution:

Ground state - S=0, doubly-degenerate. In the ground state one
can chose the state with chirality + or - .

Nonzero chirality == magnetic state. But currents at each
edge = 0! == magnetic octupole states?

Very similar to the situation with doubly-degenerate e, orbitals:
|22> ------- T2=1/2

IX2-y2> --- T2=-1/2

(|z2>+i1 |x%-y2>) ---- TY =1/2, (|2%>-1 |x%-y?>) ---- TY =-1/2,
Eigenstates of TY — states with magnetic octupoles!

Real combinations alz?>+b |x2-y2> — states with electric
guadrupoles.

The same for spin tetrahedra ?






Spin-dependent electronic polarization

e Charge operator on site i: Q = eZ CioCir-

® Projected charge operator Ng; = Pesnie_SP,

8ttt
U 2

ns,1(213) == = [§1E(§2 T §3) — 2§2E§3]- 1

3

e Polarization on triangle F,; =¢€ Z Nl > ng, =3.
i=1,2,3 i

® Charge on site iis sum over triangles at site i.



Electronic polarization on triangle

(n)=1+6n =1- 8( j[s( S;)—2S,S, ]

|l
1

Purely electronic mechanism of multiferroic behavior!



Charges on kagome lattice

1/3 magnetization
plateau:

Charge ordering for spins
1/3 In magnetic field:
spin-driven CDW

*Typical situation at the magnetization plateaux!



@ Diamond chain (azurite Cu,(CO,),(0OH), )

spin singlet

-will develop S-CDW

@ Saw-tooth (or delta-) chain

MAAA Net polarization \

& M Net polarization ==
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Isolated triangle: accounting for DM interaction

® DM coupling: Hoy = > D;S; xS
j

e ForVi15 Hou = D,LS,.

e Splits lowest quartet into 2 doublets |+ T),[-{)
and |+V)|-T) separated by energy A=D,.

e Ac electric field induces transitions between y = 1.
e Ac magnetic field induces transitions between
S, =11/2.



@® ESR : magnetic field (-HM) causes transitions

‘1/2,;(> —)‘—1/2,;(>, or ‘—1/2,;{> —)‘1/2,;(>

Here: electric field (-Ed) has nondiagonal matrix elements in y:

<Z = ‘d‘ ¥ = —> + (0 ===p electric field will cause

dipole-active transitions ‘ S’ ,+> = ‘ S’ ,—>

-- ESR caused by electric field E !
-1/2,+)

E and H

+1/2,—)
~1/2,-)

+1/2,+)




l Qusispherical layered molecular structure of
KelMV15A8"'c0,,(H,0)]-8H,0 (V;5 —Cluster)

First observation of coherent states in which the fifteen cluster spins and

the photons are entangled:
L5-0X0 groups Metal network of {V,As} Spin-echo
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"Quanttum oscillations in a molecular magnet”

S. Bertaing, S. Gambarelli, T.Mtra, B. Tsukerblat, A. Muller, B. Barbara,
Nature, 2008.
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J(?t From a triangle to extended frustrated systems

Frustrated trimeric Frustrated nanoscopic
carboxilates systems

Crystal lattice

Ly (XX
000
XXy

The M centers Kagomé lattice in which
Triads of the (CO'OI\;Ied I\‘;’ph?\;esi ofthe  gquilateral triangles are
Kep{l(er;)t)eso(?\}/l ;C{/P\’,"Diem) arranged arOL_md regular
hexagons in a two
(Crs)’(FEB)’ Achim Miller & dimensional plane.
(FeCr,), (Fe,Cr) coworkers

metal ions






Low frequency dynamic properties: negative
refraction index

® Responsesto ac electric and ac magnetic field are
comparable for J ~ 100K

8 W0 (O] P [n)(n| P, |0
‘9ik(0)):‘905ik+7ﬂ; 0< a)zz_a)>2<+i58k >

n

® Spin-orbital coupling may lead to common poles In
& (@) and (@) =»

® Negative refraction index If dissipation is weak.



Chirality as a qubit?

Triangle: S=1/2, chirality (or pseudosin T) = %2

Can one use chirality instead of spin for qguantum computation etc,
as a qubit instead of spin?

We can control it by magnetic field (chirality = current = orbital moment )
and by electric field




Chirality as a qubit?

Triangle: S=1/2, chirality (or pseudosin T) = %2

Can one use chirality instead of spin for qguantum computation etc,
as a qubit instead of spin?

We can control it by magnetic field (chirality = current = orbital moment )
and by electric field

Georgeot, Mila, arXiv 26 February 2009




CONCLUSIONS

® Contrary to the common belief, there are real charge effects in
strong Mott insulators (with frustrated lattices):

spin-driven spontaneous electric currents and orbital moments,
and charge redistribution in the ground state

@ Spontaneous currents are ~ scalar spin chirality .3 =SJS2 ><83]

® Charge redistribution ( <n> is not 1!) may lead to electric
polarization ( purely electronic mechanism of multiferroicity)

@ Many consequences:

B In the ground state: lifting of degeneracy; formation of
spin-driven CDW, .......

B In dynamics: electric field-induced "ESR"; rotation of electric
polarization by spins; contribution of spins to low-frequency
dielectric function; possibility of negative refraction index; etc
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