

 $U+t \Rrightarrow J \Rrightarrow \varDelta ?$

Efficient Perturbation Theory for Correlated Higher T_c Materials

A. Lichtenstein University of Hamburg

In collaborations with: H. Hafermann, M. Kecker, F. Lechermann, S. Brener (Hamburg) A. Rubtsov (Moscow) M. Katsnelson, I. Di Marco (Nijmegen)

Outline

- Correlated systems: non-perturbative DMFT
- Beyond DMFT: Dual Fermion approach
- Antiferromagnetic pseudogap
- d-wave: BSE
- Conclusions

From Atom to Solid: DMFT

Atomic physics Bands effects (LDA) N(E) N(E) dⁿ⁺¹E E_F E_F dⁿ∣ S> Е N(E) QP LHB UHB E_{F} Е LDA+DMFT

DMFT: Self-Consistent Set of Equations

W. Metzner and D. Vollhardt (1987)

Real Materials: LDA+DMFT

V. Anisimov, et al. J. Phys. CM **9**, 7359 (1997) A. L. and M. Katsnelson PRB, **57**, 6884 (1998)

LDA+U Static mean-field approximation Energy-independent potential

$$\hat{\mathbf{V}} = \sum_{\mathbf{m}\mathbf{m'}\sigma} |\operatorname{inlm} \sigma > \mathbf{V}_{\mathbf{m}\mathbf{m'}}^{\sigma} < \operatorname{inl} \mathbf{m'}\sigma |$$

Applications: Insulators with long-range spin-,orbital- and charge order LDA+DMFT Dynamic mean-field approximation Energy-dependent self-energy operator

$$\hat{\Sigma}(\varepsilon) = \sum_{mm'\sigma} | \mathbf{inlm\sigma} > \Sigma(\varepsilon)_{mm'}^{\sigma} < \mathbf{inlm'\sigma} |$$

Applications: Paramagnetic, paraorbital strongly correlated metals

short range spin and orbital order

Cluster LDA+DMFT approximation

A. Poteryaev, A. L., and G. Kotliar, PRL 93, 086401 (2004)

Spectral Function Fe: ARPES vs. DMFT

Vertical Pol.
 Horizontal Pol.

SP-ARPES: J. Sánchez-Barriga, et al, BESSY

5

3

2

0

General Projection formalism for LDA+DMFT

$$|L\rangle = |ilm\sigma\rangle \qquad \langle L_i|L_j\rangle = \delta_{ij}$$
$$|G\rangle = |n\vec{k}\sigma\rangle \qquad P_c = \langle L|G\rangle$$

$$egin{aligned} G^{c}_{mm'}(i\omega) &= \sum\limits_{\overrightarrow{k}\,nn'} \left\langle L_{m}|G_{n}
ight
angle \left[(i\omega+\mu)\,\widehat{1}-\widehat{H}_{KS}(\overrightarrow{k}\,)-\Delta\Sigma(i\omega)
ight]_{nn'}^{-1} \left\langle G_{n'}|L_{m'}
ight
angle \ \Delta\Sigma_{nn'}(i\omega) &= \sum\limits_{mm'} \left\langle G_{n}|L_{m}
ight
angle \Delta\Sigma_{mm'}(i\omega) \left\langle L_{m'}|G_{n'}
ight
angle \end{aligned}$$

$$\Sigma_{mm'}(i\omega) = (G_0^{-1} - G^{-1})_{mm'}$$

$$\Delta \Sigma_{mm'}(i\omega) = \Sigma_{mm'}(i\omega) - \Sigma_{dc}$$

G. Trimarchi *et al*. JPCM **20**,135227 (2008) B. Amadon *et al*. PRB **77**, 205112 (2008)

HTSC: from LDA to 1-band model

O.K. Andersen, *at al J. Phys. Chem. Solids* **56**, 1573 (1995)

From LDA "Chemistry" to Low-energy TB-model t'/t=r (-0.3 for YBCO) $t_{\perp} \sim (cosk_x-cosk_y)^2$

NMTO-orbitals O.K. Andersen, *et al* Phys. Rev. B 62, R16219 (2000) \mathcal{E}_d

SCF-LDA+DMFT

F. Lechermann, et al, PRB (2007)

Continuous Time QMC formalism

Partition function and action for fermionic system with pair interactions

$$Z = \mathrm{Tr}(Te^{-S})$$

$$S = \int \int t_r^{r'} c_{r'}^+ c^r dr dr' + \int \int \int W_{r_1 r_2}^{r'_1 r'_2} c_{r'_1}^+ c^{r_1} c_{r'_2}^+ c^{r_2} dr_1 dr'_1 dr_2 dr'_2$$

$$r = \{\tau, i, s\} \qquad \int dr = \int_0^\beta d\tau \sum_i \sum_s$$
Splitting of the action into
Gaussian part and interaction
$$S = S_0 + W$$

$$S_{0} = \int \int \left(t_{r}^{r'} + \int \int \alpha_{r_{2}}^{r_{2}} \left(w_{r_{1}r_{2}}^{r'_{1}r'_{2}} + w_{r_{2}r_{1}}^{r'_{2}r'_{1}} \right) dr_{2} dr'_{2} \right) c_{r'}^{+} c^{r} dr dr'$$
$$W = \int \int \int \int w_{r_{1}r_{2}}^{r'_{1}r'_{2}} \left(c_{r'_{1}}^{+} c^{r_{1}} - \alpha_{r'_{1}}^{r_{1}} \right) \left(c_{r'_{2}}^{+} c^{r_{2}} - \alpha_{r'_{2}}^{r_{2}} \right) dr_{1} dr'_{1} dr_{2} dr'_{2}$$

 $\alpha_{r'}^{r}$ -- additional parameters, which are necessary to minimize the sign problem A. Rubtsov "Quantum Monte Carlo determinantal algorithm without Hubbard-Stratonovich transformation: a general consideration " <u>arXiv: 0302228</u>

Continuous Time QMC formalism

Formal perturbation-series:

$$Z = \sum_{k=0}^{\infty} \int dr_1 \int dr'_1 \dots \int dr_{2k} \int dr'_{2k} \Omega_k(r_1, r'_1, \dots, r_{2k}, r'_{2k}) dr'_{2k} \Omega_{r_1 \dots r'_{2k}} \Omega_{r_1 \dots r'_{2k}} dr'_{2k} dr'$$

A. Rubtsov and A.L., JETP Lett. 80, 61 (2004)

Random walks in the k space

Wannier - GW and effective $U(\omega)$

$$|\varphi_{n\mathbf{R}}\rangle = \frac{V}{(2\pi)^3} \int e^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{n\mathbf{k}}^{(\mathrm{w})}\rangle d^3k$$

T. Miyake and F. Aryasetiawan Phys. Rev. B 77, 085122 (2008)

Co on Cu: 5d-orbitals QMC calculation

DOS for Co atom in Cu

U=4, b = 10 (T ~ 1/40 W)

E. Gorelov et al, arXiv:0905.3581

Beyond single-site DMFT

- 1/d expansion: A. Schiller and K. Ingersent PRL'95;
- A. Georges and G. Kotliar, et. al. RMP'96
- 2-site Bethe lattice: G. Moeller, PhD'94, et. al., PRB'99
- DCA k-space: M. Jarrell: H. Hettler et. al., PRB'98
- Cluster DMFT: A. L. and M. Katsnelson, PRB'00
- CDMFT: G. Kotliar et al. PRL'01
- Chain-DMFT: A. Georges, PRB'00, S. Biermann et al, PRL'01

Cluster DMFT

M. Hettler et al, PRB 58, 7475 (1998)
A. L. and M. Katsnelson, PRB 62, R9283 (2000)
G. Kotliar, et al, PRL 87, 186401 (2001)

AFM and d-wave in HTSC

A.L. and M.Katsnelson, PRB 62, R9283 (2000)

AFM and d-wave in CDMFT (2x2)

$$G(\mathbf{k},i\omega) = [i\omega + \mu - h(\mathbf{k},i\omega)]^{-1}$$

$$h(\mathbf{k},i\omega) = \begin{pmatrix} \Sigma_0 & t_x K_x^+ & 0 & t_y K_y^+ \\ t_x^* K_x^- & \Sigma_0 & t_y K_y^+ & 0 \\ 0 & t_y^* K_x^- & \Sigma_0 & t_x^* K_x^- \\ t_y^* K_y^- & 0 & t_x K_x^+ & \Sigma_0 \end{pmatrix}$$

$$K^{\pm} = 1 \pm \exp(\pm ik \cos \theta) \quad t_x = t \pm \sum m t_y = t \pm \sum m t_y = t \pm \sum m t_y$$

 $\kappa_{x(y)}^{-} = 1 + \exp\left(\pm i k_{x(y)} a\right) \quad t_{x} = t + \sum_{x}, \ t_{y} = t + \sum_{y}$

In superconducting state:

$$G(i\omega) = \begin{pmatrix} G_{\uparrow}(i\omega) & F(i\omega) \\ F(i\omega) & G_{\downarrow}^{*}(-i\omega) \end{pmatrix}$$
$$\mathcal{G}^{-1}(i\omega) - \mathcal{G}^{-1}(i\omega) = \begin{pmatrix} \Sigma_{\uparrow}(i\omega) & S(i\omega) \\ S(i\omega) & \Sigma_{\downarrow}^{*}(-i\omega) \end{pmatrix},$$

Coexistence of AFM and d-wave

A.L. and M.Katsnelson, PRB (2000)

CDMFT and **DCA**: phase diagram

S. Kancharla et al, PRB (2008)

CDMFT

M. Jarrell et al, EPL (2001) DCA

Cluster DMFT and beyond

How to include exact k-dependence for correlated systems?

- Dynamical Vertex Approximation (K. Held, M. Jarrell)
- Dual Fermion Approximation (A. Rubtsov)

Beyond DMFT: Dual Fermion scheme
General Lattice Action
$$H = h + U$$

 $S[c^*, c] = \sum_{\omega kmm'\sigma} [h_k^{mm'} - (i\omega + \mu)1] c^*_{\omega km\sigma} c_{\omega km'\sigma} + \frac{1}{4} \sum_{i\{m,\sigma\}} \int_0^\beta U_{1234} c^*_1 c^*_2 c_3 c_4 d\tau$
Optimal Local Action with hybridization Δ_{ω}
 $S_{loc} = \sum_{\omega mm'\sigma} [\Delta^{mm'}_{\omega} - (i\omega + \mu)1] c^*_{\omega m\sigma} c_{\omega m'\sigma} + \frac{1}{4} \sum_{i\{m,\sigma\}} \int_0^\beta U_{1234} c^*_1 c^*_2 c_3 c_4 d\tau$
Lattice-Impurity connection:
 $S[c^*, c] = \sum_i S_{loc}[c^*_i, c_i] + \sum_{\omega kmm'\sigma} (h^{mm'}_k - \Delta^{mm'}_{\omega}) c^*_{\omega km\sigma} c_{\omega km'\sigma}.$

A. Rubtsov, et al, PRB 77, 033101 (2008)

Dual Fermions

G

aussian path-integral

$$\overrightarrow{f}^*, \overrightarrow{f}] \exp(-\overrightarrow{f}^* \widehat{A} \overrightarrow{f} + \overrightarrow{f}^* \widehat{B} \overrightarrow{c} + \overrightarrow{c}^* \widehat{B} \overrightarrow{f}) = \det(\widehat{A}) \exp(\overrightarrow{c}^* \widehat{B} \widehat{A}^{-1} \widehat{B} \overrightarrow{c})$$

With $\begin{array}{c} A = g_{\omega}^{-1} (\Delta_{\omega} - h_k) g_{\omega}^{-1} \\ B = g_{\omega}^{-1} \end{array}$

new Action:

D[

$$S_d[f^*, f] = -\sum_{k\omega} \mathcal{G}_{k\omega}^{-1} f_{k\omega}^* f_{k\omega} + \frac{1}{4} \sum_{1234} \gamma_{1234}^{(4)} f_1^* f_2^* f_4 f_3 + \dots$$

Diagrammatic:

Basic diagrams for dual self-energy

Lines denote the renormalized Green's function.

Condition for Δ and relation with DMFT

To determine \triangle , we require that Hartree correction in dual variables vanishes. If no higher diagrams are taken into account, one obtains DMFT:

$$G^{d}=G^{DMFT}-g$$

$$\sum_{k} \mathcal{G}_{k\omega}^{d} = 0 \longrightarrow \sum_{k} \left[g_{\omega} - (h_{k} - \Delta_{\omega})^{-1} \right]^{-1} = 0$$

Higher-order diagrams give corrections to the DMFT self-energy, and already the leading-order correction is nonlocal.

Convergence of Dual Fermions: 2d

H. Hafermann, et al. PRL102, 206401 (2009)

2d: Im $\Sigma(k, \omega=0)$

Hubbard model with $8t = 2, \beta = 20$ at half-filling. Data for Im Σ_k at $\omega = 0$. A. Rubtsov, et al, PRB **79**, 045133 (2009)

Dynamical AF correlations: shadow bands

DMFT

U=8t=W, T=0.2t, n=1

H. Hafermann, PhD (2009)

M

X

Pseudogap in HTSC: Ladder-DF

H. Hafermann, et al. PRL102, 206401 (2009)

Arcs in HTSC: Dual Fermions

A. Rubtsov, et al, PRB 79, 045133 (2009)

2d: U=W=2

Bethe-Salpeter Equation

Electron-hole channel

Exact transformation to original fermions

$$\Gamma_{1234} = L_{11'}L_{33'}\Gamma^{d}_{1'2'3'4'}R_{2'2}R_{4'4}$$
$$L_{12} = -[\mathbb{1} + \Sigma^{d}g]_{12}^{-1} \qquad R_{12} = -[\mathbb{1} + g\Sigma^{d}]_{12}^{-1}$$

Magnetic susceptibility

Susceptibility: 2d – Hubbard model

Bethe-Salpeter equation: pp-channel

$$\frac{1}{2\beta N^d} \sum_{\omega' \mathbf{k}'} \gamma_{p\omega\omega'\Omega=0}^{\mathsf{irr},s/t} (\mathbf{k},\mathbf{k}',\mathbf{q}=0) G_{-\omega'}^{\mathsf{d}}(-\mathbf{k}') G_{\omega'}^{\mathsf{d}}(\mathbf{k}') \phi_{\omega'}(\mathbf{k}') = \lambda \phi_{\omega}(\mathbf{k})$$

Weak-coupling perturbation: FLEX

U/W=0.5 t'=0 N. Bickers, D. Scalapino and S. White, PRL (1988)

LDFA – strong coupling analog of FLEX

d-wave symmetry of the eigenfunction: DF

H. Hafermann, et al, J. Supercond. Nov. Magn. 22, 45 (2008) U/W=1 t'=0

LDFA can reduce Tc due to formation of pseudogap (in progress)

Conclusions

- Dual Fermion expansion around DMFT can efficiently interpolate between weak and strong coupling
- Antiferromagnetic pseudo-gap and Fermi-arcs describe well in ladder DF-scheme
- d-wave pairing for overdoped regime can be analysed in simple DF, while for underdoped limit the cluster-DF or ladder-DF is needed
- Realistic multiorbital LDA+DF for correlated higher-T_c materials (Fe-As) is a next challenge: work in progress.