Are Stripes the Key to the Puzzles of Thermal and Electrical Transport in Underdoped Cuprates?

Ivar Martin (LANL) Christos Panagopoulos (U of Crete, Greece & NTU, Singapore)

50/50 Talk/Discussion. KITP, Sep 8, 2009

European Excellence Grants

Puzzles

- Normal state transport
 - magnetoresistance and hysteresis in M(B) and R(B) (Panagopoulos et al.)
- Superconducting response above Tc
 - Nernst
 - Diamagnetism
 - ac conductivity

Strange normal behavior

LSCO 3% doped, MR and noise

I. Raic^{*}evic et al, PRL 101, 177004 (2008)

Also, manganites: Levy et al., PRL 89, 137001 (2002); YBCO: Ando et al., PRL 83, 2813 (1999)

Popović Paris - Glassy '09

• Noise – glassy dynamics as $T \rightarrow 0$

Popović Paris – Glassy '09

Interpretation – stripe *domain* fluctuations

Issues:

- 1) Nature of coupling to magnetic field?
- 2) Flipping large domains has large potential barrier
- 3) Canonical Stripes cannot have loose ends

Weak Ferromagnetism in LSCO

Gozar, et al, Frontiers in Magnetic Materials (Ed. A.V. Narlikar), Spinger-Verlag Berlin Heidelberg, pp. 755-789 (2005)

FIG. 1. Resistance and magnetic moment vs magnetic field in the 6 direction (except as noted).

Thio et al, PRB 1988

Sign of AF ⇔ sign of weak FM!

Coupling stripes to magnetic field

Fluctuator model

h - "bias", e.g. tetragonal distortion ξ – random potential (atomic and configuration)

For T < typical barrier height U, and no interaction between fluctuators (Preisach model)

$$M(B) = M_0 \int d\xi \mathcal{P}_{\xi}(\xi) \tanh \frac{\pm h - \xi - M_0 B}{k_B T}$$

 $\approx 4 \mathcal{P}_{\xi}(h) M_0^2 B$

C. Panagopoulos, PRL 96, 047002 (2006)

Consequences of fluctuator model

- Hysteretic behavior for $M_0 B > k_B T$ in magnetization and resistivity
- 1/f noise (Dutta-Horn)
- The strength interaction between fluctuators can be determined from deviations from Preisach model (loop congruency)

3% LSCO: Magnetoresistance loops are not congruent (-> interaction!), but magnetization ones are (almost, -> no interaction!)

Contributions of fluctuators are additive in M, but not in R!

Stripe-based resistivity model random resistor network

Strange fluctuating SC behavior

Nernst at T >Tc

Wang et al, Phys. Rev. B 64, 224519 (2001)

Finite frequency superfluid stiffness In in BSCCO

Fig. 2 The dynamic (frequency dependent) phase-stiffness temperature, $T_{\Theta}(\omega) \equiv \omega \sigma_2(\omega) / \sigma_Q$ as a function of temperature T. Data are shown for two samples, one with T_c =33 K (left side) and the other with T_c =71 K (right side). The dashed line corresponds to the KTB condition for 2D melting, i.e., phase stiffness and temperature related by $T_{\Theta} = (8/\pi)T$.

J. Orensein e al, Ann. Phys. (Leipzig), 15, No. 7 – 8, 596 – 605 (2006)

Also, P. Armitage (JHU), UNPUBLISHED on LSCO

Phase diagram for BSCCO

Fig. 10 Comparison of onset temperatures of superconductivity, fluctuation conductivity, and Nernst effect in the BSCCO system. Nernst onset T's (triangles) are from [14]. Shading illustrates the region in which the conductivity is essentially normal yet the Nernst signal is nonzero.

J. Orensein e al, Ann. Phys. (Leipzig) 15, No. 7 – 8, 596 – 605 (2006)

Similar trends in LSCO, P. Armitage (JHU), UNPUBLISHED

T slightly higher than Tc – Nernst

T significantly higher than Tc – No Nernst! (heat current can avoid SC regions)

If SC regions have large aspect ratio (stripes!) heat current cannot avoid them -> Phase slips

Evidence for 2D SC (pi-SC stirpes?)

FIG. 3: Stacking of stripe planes.

E. Berg et al, PRL 99, 127003 (2007)

FIG. 1: (color online) Experimental phase diagram for La_{1.875}Ba_{0.125}CuO₄. The transition lines for charge order and spin order are from [6]. The boundaries labeled T_c^{2D} and T_{BKT} are described in the text.

Q. Li et al, Phys. Rev. Lett. 99, 067001 (2007)

Stripe model for Nernst

Nernst coeff:

μ_H (T)

Relation between Nernst, diamagnetism and optics

- Diamagnetism:
 - Enough to have disconnected SC grains
- Nernst
 - Need extended superconducting regions to prevent heat (and vortices) flowing around SC regions, but not necessarily globally connected
- Optics ($\sigma(\omega)$, finite superfluid stiffness)
 - "Globally" connected SC regions? What is the relevant length scale?

Extension to higher doping

Nernst exists to higher dopings, at least up to optimal. What do stripes do there? Quantum fluctuate?

Model: "six vertex" model + *quantum fluctuations*

Fluctuating stripes – Fluctuating AF (spin liquid, "macro-RVB")

Seen already???

Ca2-xNaxCuO2Cl2 T. Hanaguri et al (2004)

'Well, the stripes are easy, but what about the horse part?' – on "Turing patterns" in morphogenesis

Alan Turing