Nematic Order in Sr₃Ru₂O₇

Srinivas Raghu (Stanford)

Steven Kivelson (Stanford) Arun Paramekanti (Toronto) Eun-Ah Kim (Cornell) Andrew Mackenzie (St. Andrews)

PRB 79 214402 (2009)

KITP, July 14 2009

I. Overview

1) All are "bad metals" at high temperatures i.e. $\rho(T) \sim T$ (Emery, 1994).

- 1) All are "bad metals" at high temperatures i.e. $\rho(T) \sim T$ (Emery, 1994).
- 2) Fermi liquid properties at low T (T < 50K).

- 1) All are "bad metals" at high temperatures i.e. $\rho(T) \sim T$ (Emery, 1994).
- 2) Fermi liquid properties at low T (T < 50K).
- 3) In addition to charge and spin degrees of freedom, orbital degeneracy plays an important role.

- 1) All are "bad metals" at high temperatures i.e. $\rho(T) \sim T$ (Emery, 1994).
- 2) Fermi liquid properties at low T (T < 50K).
- 3) In addition to charge and spin degrees of freedom, orbital degeneracy plays an important role.
- 4) Spin-orbit coupling plays an important role (*e.g.* affects Fermi-surface topology).

Ruthenates: Sr_{n+1}Ru_nO_{3n+1} n = 1: Sr₂RuO₄ unconventional superconductivity $T_c=1.5K$. Sr+2 Ru+4 O-2

In this talk: we concentrate on n=2: Sr₃Ru₂O₇

II. Experimental phase diagram of Sr₃Ru₂O₇

Analogous to Liquid-gas transition: presence of a critical end point

T<T*: 1st-order transition T>T*: crossover

PRL 86, 2661 (2001)

2x10⁻⁷

μ₀Η[]

Dependence on field orientation

"Metamagnetic quantum criticality"

This is a new type of quantum critical phenomena: associated with a critical end point, and no symmetry breaking. However...

Ultra-pure crystals: new low T phase

1st order boundaries

In the purest crystals, the "metamagnetic qcp" is enveloped by a thermodynamic phase at low T.

Properties of the low T phase near Hc

Very sensitive to disorder

Order 1 resistive anisotropy C4 symmetry reduced to C2 (no associated structural transition)

The phase has orientational order, but translational symmetry is preserved electronic analog of nematic phase.

Similar features observed in 2DEG at high B fields

M. M. Fogler, et al, PRL 76 ,499 (1996), PRB 54, 1853 (1996); E. Fradkin et al, PRB 59, 8065 (1999), PRL 84, 1982 (2000).

III. Microscopic model and theoretical phase diagram

Itinerant electron metamagnetism

First consider effective theory for itinerant electron metamagnetism

From 1, and 2, we can derive Landau coefficients.

Requirement for weakly first-order metamagnetic transition: D.O.S at the fermi level must have pronounced positive curvature.

Electronic nematic phases

effective theory of the nematic transition: L=2 Fermi-liquid instability. $V_{off} = \sum f_2 P_2(\hat{k} \cdot \hat{k}') \delta n_{k\sigma} \delta n_{k'\sigma'}$

$$V_{eff} = \sum_{\boldsymbol{k},\boldsymbol{k}'} f_2 P_2(\hat{k} \cdot \hat{k}') \delta n_{\boldsymbol{k}\sigma} \delta n_{\boldsymbol{k}'\sigma}$$

Formulating a microscopic theory

Problems with a microscopic formulation:

1) Both metamagnetism and nematic order arise as intermediate to strong-coupling effects: difficult to treat theoretically. Stoner mean-field theory: $N(E_f)U \sim 1$ not a well-controlled method.

2) Difficult to imagine why metamagnetism and nematicity should be tied together.

Critical insight into both of these issues: H.-Y. Kee *et al.* PRB (2005). Consider *effective* models close to van Hove singularities.

Proposal of H.-Y. Kee *et al.*

PRB 71, 184402 (2005)

$$H = \sum_{\boldsymbol{k}\sigma} \left(\epsilon_{\boldsymbol{k}} - \mu\right) c_{\boldsymbol{k}\sigma}^{\dagger} c_{\boldsymbol{k}\sigma}$$
$$+ \sum_{\boldsymbol{q},\sigma} F_{2}(\boldsymbol{q}) \operatorname{Tr}[\hat{Q}_{\sigma}(\boldsymbol{q})\hat{Q}_{\sigma}(-\boldsymbol{q})] + \mathrm{H.c.}$$
$$\boldsymbol{k}\sigma^{ij}(\boldsymbol{q}) \sim \sum_{\boldsymbol{k}} c_{\boldsymbol{k}+\boldsymbol{q}\alpha}^{\dagger} \left(\hat{k}^{i}\hat{k}^{j} - \frac{1}{2}\hat{k}^{2}\delta^{ij}\right) c_{\boldsymbol{k}\alpha}$$

effective model of single band near vHS

Attractive

Proposal of H.-Y. Kee *et al.*

PRB 71, 184402 (2005)

$$H = \sum_{\boldsymbol{k}\sigma} \left(\epsilon_{\boldsymbol{k}} - \mu\right) c_{\boldsymbol{k}\sigma}^{\dagger} c_{\boldsymbol{k}\sigma}$$
$$+ \sum_{\boldsymbol{q},\sigma} F_{2}(\boldsymbol{q}) \operatorname{Tr}[\hat{Q}_{\sigma}(\boldsymbol{q})\hat{Q}_{\sigma}(-\boldsymbol{q})] + \mathrm{H.c.}$$
$$\boldsymbol{k}\sigma^{ij}(\boldsymbol{q}) \sim \sum_{\boldsymbol{k}} c_{\boldsymbol{k}+\boldsymbol{q}\alpha}^{\dagger} \left(\hat{k}^{i}\hat{k}^{j} - \frac{1}{2}\hat{k}^{2}\delta^{ij}\right) c_{\boldsymbol{k}\alpha}$$

effective model of single band near vHS

Repulsive

Proposal of H.-Y. Kee et al.

$$H = \sum_{\boldsymbol{k}\sigma} \left(\epsilon_{\boldsymbol{k}} - \mu\right) c^{\dagger}_{\boldsymbol{k}\sigma} c_{\boldsymbol{k}\sigma} + \sum_{\boldsymbol{q},\sigma} F_2(q) \operatorname{Tr}[\hat{Q}_{\sigma}(\boldsymbol{q})\hat{Q}_{\sigma}(-\boldsymbol{q})] + \mathrm{H.c.} \\ \uparrow \boldsymbol{q}_{\alpha}, \sigma \end{cases} \\ \hat{Q}_{\alpha}^{ij}(\boldsymbol{q}) \sim \sum_{\boldsymbol{k}} c^{\dagger}_{\boldsymbol{k}+\boldsymbol{q}\alpha} \left(\hat{k}^i \hat{k}^j - \frac{1}{2} \hat{k}^2 \delta^{ij}\right) c_{\boldsymbol{k}\alpha}$$

effective model of single band near vHS

Although the phenomena can be "engineered",

Microscopic origins of this is still unclear.

Our proposal: metamagnetic and nematic transitions here are both driven by orbital-ordering tendency.

Repulsive

Monolayer vs. bilayer ruthenate compounds

 Sr_2RuO_4

 $Sr_3Ru_2O_7$

What are the microscopic origins of the low temperature physics of Sr₃Ru₂O₇ ?

i.e. why do Sr_2RuO_4 and $Sr_3Ru_2O_7$ have such different physical properties?

Monolayer vs. bilayer ruthenate compounds

In both of these materials, degeneracy of Ru t_{2g} (d_{xz} , d_{yz} , d_{xy}) orbitals plays a crucial role.

$$e_g$$

 t_{2g} \uparrow \uparrow \downarrow $Ru^{4+} 4d^4$

The strong bilayer splitting in Sr₃Ru₂O₇ is the primary difference between the two materials.

$$t_{\rm in \ plane} \approx t_{\rm bilayer}$$

Which of the t_{2g} orbitals are most affected by the bilayer splitting?

Electrons "hopping" between two adjacent Ru sites make use of intervening oxygen p-orbitals.

xz,yz: quasi-1D bands, *strongly* affected by bilayer splitting.

xy: quasi-2D band, weakly affected by bilayer splitting.

Primary difference between Sr₂RuO₄ (n=1) and Sr₃Ru₂O₇: bilayer-split quasi-1D bands in Sr₃Ru₂O₇.

Metamagnetism and nematicity in quasi-1D bands

Orbital-ordering among xz,yz: breaks C₄, producing nematic order. Proximity of Fermi level to a van Hove singularity of the quasi 1D dispersion enables a weak-coupling treatment of this problem.

Metamagnetism and orbital-ordering: weak-coupling

$$H = H_{kin} + U \sum_{i,\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow} + \frac{V}{2} \sum_{i\alpha\neq\alpha'} n_{i\alpha} n_{i\alpha'}$$

strongest hybridizations among t_{2g} orbitals

Intra-orbital repulsion

Inter-orbital repulsion

$$\sum_{i} \langle \vec{M}_{xz,i} + \vec{M}_{yz,i} + \vec{M}_{xy,i} \rangle$$

$$\sum_{i} \langle n_{xz,i} - n_{yz,i} \rangle$$

$$\sum_{i} \langle \vec{S}_{xz,i} - \vec{S}_{yz,i} \rangle$$

Total magnetic moment: breaks T.

Nematic: breaks orbital degeneracy, C₄.

Spin nematic: breaks orbital degeneracy, C₄. T, SU(2), but preserves (C₄ x T).

Physical regime: $U \approx V$

All phase boundaries here mark 1st order transitions.

I: Paramagnet

II: Nematic order

III: Ferromagnet degenerate with spin-nematic

IV: Ferromagnet, nematic and spinnematic

Landau theory contains trilinear coupling:

$$c(\rho)N_o\vec{M}\cdot\vec{N}_s$$

relative weight of this term determines if phase IV wins.

Physical regime: $U \approx V$

All phase boundaries here mark 1st order transitions.

I: Paramagnet

II: Nematic order

III: Ferromagnet degenerate with spin-nematic

IV: Ferromagnet, nematic and spinnematic

Landau theory contains trilinear coupling:

$$c(\rho)N_o\vec{M}\cdot\vec{N}_s$$

relative weight of this term determines if phase IV wins.

I: Small moment

II: Intermediate moment, Nematic

III: Large moment

Physical regime: $U \approx V$

All phase boundaries here mark 1st order transitions.

System crosses first metamagnetic boundary into nematic phase.

There is no distinction between nematic and spin-nematic in a finite field.

I: Small moment

II: Intermediate moment, Nematic

III: Large moment

Physical regime: $U \approx V$

All phase boundaries here mark 1st order transitions.

System crosses second metamagnetic boundary into large moment phase.

There is no distinction between nematic and spin-nematic in a finite field.

Physical regime: $U \approx V$

All phase boundaries here mark 1st order transitions.

I: Small moment

II: Intermediate moment, Nematic

III: Large moment

Effect of spin-orbit coupling

SOC changes Fermi surface topology, and therefore plays an important qualitative role.

Angle-dependent "metanematic" transitions.

Phase I: small nematic order, small moment.

Phase II: large nematic order, intermediate moment.

Phase III: small nematic order, large moment.

All phase boundaries mark 1st order transitions.

Spin-orbit coupling captures the O(1) anisotropy of critical fields as the field angle is varied.

Comparison to finite-q order

How does the nematic phase here compare with SDW, etc?

PRB 67, 012504 (2004)

Spin-orbit coupling destroys near-perfect nesting of Fermi surface.

one-loop spin susceptibility

$$\begin{split} \left[\chi^{ij}(\boldsymbol{q})\right]_{ba}^{st} &= \int_{0}^{\beta} d\tau \sum_{\boldsymbol{p}\boldsymbol{p}'} \sum_{\alpha\beta\gamma\delta} \sigma^{i}_{\alpha\beta} \sigma^{j}_{\gamma\delta} \times \\ &\quad \langle T_{\tau} d^{\dagger}_{s\boldsymbol{p}\alpha}(\tau) d_{t\boldsymbol{p}+\boldsymbol{q}\beta}(\tau) d^{\dagger}_{a\boldsymbol{p}'\gamma}(0) d_{b\boldsymbol{p}'-\boldsymbol{q}\delta}(0) \rangle \end{split}$$

Inelastic neutron scattering: incommensurate fluctuations for T < 20K. Wave-vectors are consistent with FS nesting. However, no static SDW order is present (for h=0).

RPA:
$$\frac{U_{c,sdw}}{2}$$
 Max (eig $[\chi]$) = 1

close to critical coupling for FM. SOC provides a natural explanation for why SDW order is not formed.

Summary

1) We have considered the microscopic origins of metamagnetism and nematicity, making use of interplay b/w orbital, spin ordering.

2) Relatively small interval over which nematic phase occurs:

3) Asymmetry present in the problem (and experimental data). Nematic order decreases monotonically from Hc1 to Hc2.

4) Moderate spin-orbit coupling consistent with bandstructure estimates produce an O(1) decrease in critical fields as field angle varies.

5) Quasi-1D bands contribute to spin-fluctuations and account for INS peaks. However, spin-orbit coupling efficiently spoils their nesting, plausibly explaining why SDW order does not occur at h=0.

6) Our model predicts that nematic order should occur for all field orientations (this has not yet been detected experimentally).

Current and future work

Nematic phase has a *higher* entropy than the surrounding isotropic phases.

Our model does not provide an answer for large resistive anisotropy (just a symmetry argument).

Plausible explanation: scattering off of nematic domains.

average resistivity decreases with angle as domains get aligned.

Science **315**, 214 (2007)

Nematic domains could also account for why the phase has higher entropy

Current and future work

Effects of quantum fluctuations

PRL 99, 057208 (2007)

STM experiments have revealed a "pseudogap" in LDOS which persists at zero field.

Can this feature be explained due to local nematic quantum fluctuations?

This feature could also occur due to incommensurate spin-fluctuations

Calcium doping studies suggest a metamagnetic QCP occurs with doping. Nematic fluctuations might also persist here and could be the basis of a fluctuational theory.

PRB 78, 180407(R) (2008)