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Γ

Fermi surfaces in electron- and hole-doped cuprates
Hole 
states 

occupied

Electron 
states 

occupied

Γ
Effective Hamiltonian for quasiparticles:

H0 = −
∑

i<j

tijc
†
iαciα ≡

∑

k

εkc†kαckα

with tij non-zero for first, second and third neighbor, leads to satisfactory agree-
ment with experiments. The area of the occupied electron states, Ae, from
Luttinger’s theory is

Ae =
{

2π2(1− p) for hole-doping p
2π2(1 + x) for electron-doping x

The area of the occupied hole states, Ah, which form a closed Fermi surface and
so appear in quantum oscillation experiments is Ah = 4π2 −Ae.
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Spin density wave theory

In the presence of spin density wave order, !ϕ at wavevector K =
(π, π), we have an additional term which mixes electron states with
momentum separated by K

Hsdw = −!ϕ ·
∑

k,α,β

c†k,α!σαβck+K,β

where !σ are the Pauli matrices. The electron dispersions obtained
by diagonalizing H0 + Hsdw for !ϕ = (0, 0, ϕ) are

Ek± =
εk + εk+K

2
±

√(
εk − εk+K

2

)
+ ϕ2

This leads to the Fermi surfaces shown in the following slides for
hole doping.
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Increasing SDW order

Spin density wave theory in hole-doped cuprates

Γ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Thursday, July 16, 2009



Increasing SDW order

Spin density wave theory in hole-doped cuprates

ΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
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Increasing SDW order

Spin density wave theory in hole-doped cuprates

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Electron 
pockets

Hole 
pockets

SDW order parameter is a vector, !ϕ,
whose amplitude vanishes at the transition

to the Fermi liquid.
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Spin density wave theory in hole-doped cuprates

A. J. Millis and M. R. Norman, Physical Review B 76, 220503 (2007).     
N. Harrison, Physical Review Letters 102, 206405 (2009).

Incommensurate order in YBa2Cu3O6+x

ΓΓ
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       between superconductivity and SDW order
        Survey of recent experiments

2.  Superconductivity in the overdoped regime
         BCS pairing by spin fluctuation exchange
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4.  A unified theory
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Phenomenological quantum theory of competition between 
superconductivity (SC) and spin-density wave (SDW) order

Write down a Landau-Ginzburg action for the quantum fluctua-
tions of the SDW order (!ϕ) and superconductivity (ψ):

S =
∫

d2rdτ

[
1
2
(∂τ !ϕ)2 +

c2

2
(∇x!ϕ)2 +

r

2
!ϕ2 +

u

4
(
!ϕ2

)2

+ κ !ϕ2 |ψ|2
]

+
∫

d2r

[
|(∇x − i(2e/!c)A)ψ|2 − |ψ|2 +

|ψ|4

2

]

where κ > 0 is the repulsion between the two order parameters,
and ∇×A = H is the applied magnetic field.

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).
See also E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004),
S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys. Rev. B 66, 144516
(2002).Thursday, July 16, 2009
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Phenomenological quantum theory of competition between 
superconductivity (SC) and spin-density wave (SDW) order

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).
See also E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004),
S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys. Rev. B 66, 144516
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E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

• SDW order is more stable in the metal
than in the superconductor: xm > xs.

Phenomenological quantum theory of competition between 
superconductivity (SC) and spin-density wave (SDW) order
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E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

• For doping with xs < x < xm, SDW order appears
at a quantum phase transition at H = Hsdw > 0.

Phenomenological quantum theory of competition between 
superconductivity (SC) and spin-density wave (SDW) order
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E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

Neutron scattering on La1.855Sr0.145CuO4

J. Chang et al., Phys. Rev. Lett. 102, 177006 (2009).

Phenomenological quantum theory of competition between 
superconductivity (SC) and spin-density wave (SDW) order
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J. Chang, N. B. Christensen,      
Ch. Niedermayer, K. Lefmann,      

H. M. Roennow, D. F. McMorrow,    
A. Schneidewind, P. Link, A. Hiess, 

M. Boehm, R. Mottl, S. Pailhes,   
N. Momono, M. Oda, M. Ido, and 

J. Mesot, Phys. Rev. Lett. 102, 
177006 (2009).

J. Chang, Ch. Niedermayer, R. Gilardi, N.B. 
Christensen, H.M. Ronnow, D.F. McMorrow, 
M. Ay, J. Stahn, O. Sobolev, A. Hiess, S. Pailhes, 
C. Baines, N. Momono, M. Oda, M. Ido, and     

J. Mesot, Physical Review B 78, 104525 (2008).
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E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

Neutron scattering on YBa2Cu3O6.45

D. Haug et al., Phys. Rev. Lett. 103, 017001 (2009).

Phenomenological quantum theory of competition between 
superconductivity (SC) and spin-density wave (SDW) order
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Thursday, July 16, 2009



H

SC

M

SC+
SDW

SDW
(Small Fermi

pockets)

"Normal"
(Large Fermi

surface)

Hc2

Hsdw

N. Doiron-Leyraud, C. Proust,             
D. LeBoeuf, J. Levallois,                       
J.-B. Bonnemaison,   R. Liang,            
D. A. Bonn, W. N. Hardy, and               
L. Taillefer,  Nature 447, 565 (2007)

Quantum 
oscillations without 
Zeeman splitting

Phenomenological quantum theory of competition between 
superconductivity (SC) and spin-density wave (SDW) order
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Nature 450, 533 (2007)

Quantum oscillations
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Nd2−xCexCuO4

T. Helm, M. V. Kartsovni, 
M. Bartkowiak, N. Bittner, 

M. Lambacher, A. Erb, J. Wosnitza, 
R. Gross, arXiv:0906.1431

Increasing SDW orderIncreasing SDW order
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Neutron scattering at H=0 in same material 
identifies xs = 0.14 < xm
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Increasing SDW order

ΓΓΓ Γ

Spin-fluctuation exchange theory of d-wave 
superconductivity in the cuprates

!ϕ

D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986) 

Fermions at the large Fermi surface exchange
fluctuations of the SDW order parameter !ϕ.

Thursday, July 16, 2009



Pairing by SDW fluctuation exchange

We now allow the SDW field !ϕ to be dynamical, coupling to elec-
trons as

Hsdw = −
∑

k,q,α,β

!ϕq · c†k,α!σαβck+K+q,β .

Exchange of a !ϕ quantum leads to the effective interaction

Hee = −1
2

∑

q

∑

p,γ,δ

∑

k,α,β

Vαβ,γδ(q)c†k,αck+q,βc†p,γcp−q,δ,

where the pairing interaction is

Vαβ,γδ(q) = !σαβ · !σγδ
χ0

ξ−2 + (q−K)2
,

with χ0ξ2 the SDW susceptibility and ξ the SDW correlation length.

D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986) 
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Increasing SDW order

++
_

_

Γ

d-wave pairing of the large Fermi surface

〈ck↑c−k↓〉 ∝ ∆k = ∆0(cos(kx)− cos(ky))

!ϕ

K

D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986) 
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Ar. Abanov, A. V. Chubukov and J. Schmalian, Advances in Physics 52, 119 (2003).

Approaching the onset of antiferromagnetism
 in the spin-fluctuation theory
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Ar. Abanov, A. V. Chubukov and J. Schmalian, Advances in Physics 52, 119 (2003).

Approaching the onset of antiferromagnetism
 in the spin-fluctuation theory

:

• Tc increases upon approaching the SDW transition.
SDW and SC orders do not compete, but attract each other.

• No simple mechanism for nodal-anti-nodal dichotomy.
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Begin with SDW ordered state, and rotate to a frame
polarized along the local orientation of the SDW order !̂ϕ

(
c↑
c↓

)
= R

(
ψ+

ψ−

)
; R† !̂ϕ · !σR = σz ; R†R = 1

Theory of underdoped cuprates

Increasing SDW order

ΓΓΓ Γ
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With R =
(

z↑ −z∗↓
z↓ z∗↑

)

the theory is invariant under the
U(1) gauge transformation

zα → eiθzα ; ψ+ → e−iθψ+ ; ψ− → eiθψ−

and the SDW order is given by

"̂ϕ = z∗α"σαβzβ

Theory of underdoped cuprates
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Theory of underdoped cuprates

Starting from the “SDW-fermion” model
with Lagrangian

L =
∑

k

c†kα

(
∂

∂τ
− εk

)
ckα

−Esdw

∑

i

c†iα $̂ϕi · $σαβciβeiK·ri

+
1
2t

(
∂µ $̂ϕ

)2
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we obtain a U(1) gauge theory of

• fermions ψp with U(1) charge p = ±1 and pocket Fermi
surfaces,

• relativistic complex scalars zα with charge 1, represent-
ing the orientational fluctuations of the SDW order

L =
∑

k,p=±

[
ψ†kp

(
∂

∂τ
− iAτ + εk−pA

)
ψkp

− Esdwψ†kppψk+K,p

]

+
1
t

[
|(∂τ − iAτ )zα|2 + v2|∇− iA)zα|2 + iλ(|zα|2 − 1)

]

Theory of underdoped cuprates
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Theory of underdoped cuprates
we obtain a U(1) gauge theory of

• fermions ψp with U(1) charge p = ±1 and pocket Fermi
surfaces,

• relativistic complex scalars zα with charge 1, represent-
ing the orientational fluctuations of the SDW order

• Monopoles carrying Berry phases; onset of superconduc-
tivity leads to confinement via condensation of monopoles,
which induces charge order.
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Increasing SDW order

++
_

_

Γ

Strong pairing of the g± electron pockets

     g±

〈g+g−〉 = ∆
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Weak pairing of the f± hole pockets

〈f+1(k)f−1(−k)〉 ∼ (kx − ky)J〈g+g−〉;
〈f+2(k)f−2(−k)〉 ∼ (kx + ky)J〈g+g−〉;
〈f+1(k)f−2(−k)〉 = 0,

Increasing SDW order

    f±v ++
_

_

Γ
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     g±

f±v ++
_

_

Increasing SDW order

d-wave pairing of the electrons is associated with

• Strong s-wave pairing of g±

• Weak p-wave pairing of f±v.

Γ
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Reason for shift in onset of SDW
from xm to xs:

• Gauge fluctuations are screened
by Fermi surface in metal

• Onset of pairing suppresses
screening, and enhances gauge
fluctuations

• SDW order is suppressed in
the superconductor
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1.  Phenomenological quantum theory of competition
       between superconductivity and SDW order
        Survey of recent experiments

2.  Superconductivity in the overdoped regime
         BCS pairing by spin fluctuation exchange

3.  Superconductivity in the underdoped regime
U(1) gauge theory of fluctuating SDW order

4.  A unified theory
SU(2) gauge theory of transition from Fermi pockets 
to a large Fermi surface
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Unified theory

The parameterization
(

c↑
c↓

)
= R

(
ψ+

ψ−

)

is actually invariant under a SU(2) gauge transformation
(

ψ+

ψ−

)
→ U

(
ψ+

ψ−

)
; R→ RU†

Increasing SDW order

ΓΓΓ Γ
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Unified theory

The theory has SU(2)gauge⊗SU(2)spin⊗U(1)em charge

⊗(lattice space group) invariance,
and matter content

• fermion ψ transforming as (2,1, 1), and with disper-
sion εk from the band structure,

• relativistic complex scalar z transforming
as (2̄,2, 0), representing orientational fluctuations of
SDW order,

• relativistic real scalar N transforming as (3,1, 0),
measuring the local SDW amplitude,

• a Yukawa coupling between N and ψ, which ∼ eiK·r

because of space group transformations.
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Unified theory

The theory has SU(2)gauge⊗SU(2)spin⊗U(1)em charge

⊗(lattice space group) invariance,
and matter content

• fermion ψ transforming as (2,1, 1), and with disper-
sion εk from the band structure,

• relativistic complex scalar z transforming
as (2̄,2, 0), representing orientational fluctuations of
SDW order,

• relativistic real scalar N transforming as (3,1, 0),
measuring the local SDW amplitude,

• a Yukawa coupling between N and ψ, which ∼ eiK·r

because of space group transformations.
Thursday, July 16, 2009



Unified theory

The theory has SU(2)gauge⊗SU(2)spin⊗U(1)em charge

⊗(lattice space group) invariance,
and matter content

• fermion ψ transforming as (2,1, 1), and with disper-
sion εk from the band structure,

• relativistic complex scalar z transforming
as (2̄,2, 0), representing orientational fluctuations of
SDW order,

• relativistic real scalar N transforming as (3,1, 0),
measuring the local SDW amplitude,

• a Yukawa coupling between N and ψ, which ∼ eiK·r

because of space group transformations.
Thursday, July 16, 2009



Unified theory

The theory has SU(2)gauge⊗SU(2)spin⊗U(1)em charge

⊗(lattice space group) invariance,
and matter content

• fermion ψ transforming as (2,1, 1), and with disper-
sion εk from the band structure,

• relativistic complex scalar z transforming
as (2̄,2, 0), representing orientational fluctuations of
SDW order,

• relativistic real scalar N transforming as (3,1, 0),
measuring the local SDW amplitude,

• a Yukawa coupling between N and ψ, which ∼ eiK·r

because of space group transformations.
Thursday, July 16, 2009



Unified theory

The theory has SU(2)gauge⊗SU(2)spin⊗U(1)em charge

⊗(lattice space group) invariance,
and matter content

• fermion ψ transforming as (2,1, 1), and with disper-
sion εk from the band structure,

• relativistic complex scalar z transforming
as (2̄,2, 0), representing orientational fluctuations of
SDW order,

• relativistic real scalar N transforming as (3,1, 0),
measuring the local SDW amplitude,

• a Yukawa coupling between N and ψ, which ∼ eiK·r

because of space group transformations.
Thursday, July 16, 2009



Unified theory

M

A

B

D

〈z〉 #= 0 ; 〈N〉 #= 0
SDW order

small Fermi pockets
〈z〉 #= 0 ; 〈N〉 = 0

Fermi liquid
large Fermi surface

〈z〉 = 0 ; 〈N〉 #= 0
small critical Fermi pockets

gapless U(1) photon

〈z〉 = 0 ; 〈N〉 = 0
large critical Fermi surface

gapless SU(2) photons

Conjectured phase diagram (assuming a phase with gapless SU
(2) photons is possible)

C

Thursday, July 16, 2009



Unified theory

M

A

B

D

〈z〉 #= 0 ; 〈N〉 #= 0
SDW order

small Fermi pockets
〈z〉 #= 0 ; 〈N〉 = 0

Fermi liquid
large Fermi surface

〈z〉 = 0 ; 〈N〉 #= 0
small critical Fermi pockets

gapless U(1) photon

〈z〉 = 0 ; 〈N〉 = 0
large critical Fermi surface

gapless SU(2) photons

Conventional  
Fermi liquid 

phases
discussed earlier

Conjectured phase diagram (assuming a phase with gapless SU
(2) photons is possible)

C

Thursday, July 16, 2009



Unified theory

M

A

B

D

〈z〉 #= 0 ; 〈N〉 #= 0
SDW order

small Fermi pockets
〈z〉 #= 0 ; 〈N〉 = 0

Fermi liquid
large Fermi surface

〈z〉 = 0 ; 〈N〉 #= 0
small critical Fermi pockets

gapless U(1) photon

〈z〉 = 0 ; 〈N〉 = 0
large critical Fermi surface

gapless SU(2) photons

Phases with 
critical Fermi 
surfaces and 
gapless gauge 

modes

Conventional  
Fermi liquid 

phases
discussed earlier

Conjectured phase diagram (assuming a phase with gapless SU
(2) photons is possible)

C

Thursday, July 16, 2009



Unified theory

M

A

C

B

D

〈z〉 #= 0 ; 〈N〉 #= 0
SDW order

small Fermi pockets
〈z〉 #= 0 ; 〈N〉 = 0

Fermi liquid
large Fermi surface

〈z〉 = 0 ; 〈N〉 #= 0
small critical Fermi pockets

gapless U(1) photon

〈z〉 = 0 ; 〈N〉 = 0
large critical Fermi surface

gapless SU(2) photons

Conventional  
Fermi liquid 

phases
discussed earlier

Conjectured phase diagram (assuming a phase with gapless SU
(2) photons is possible)

Phases with 
critical Fermi 
surfaces and 
gapless gauge 

modes: 
AdS 

description ?

Thursday, July 16, 2009



Small Fermi
pockets with 

pairing fluctuations
Large
Fermi

surface

Strange
Metal

Magnetic
quantum
criticality

Spin gap
Thermally
fluctuating

SDW

d-wave
SC

T

H

SC

M
"Normal"

(Large Fermi
surface)

SDW
(Small Fermi

pockets)

SC+
SDW

Thursday, July 16, 2009



Small
Fermi

pockets
Large
Fermi

surface

Strange
Metal

Spin density wave (SDW)

Increasing SDW order

ΓΓΓ Γ

Thursday, July 16, 2009



Small Fermi
pockets with 

pairing fluctuations
Large
Fermi

surface

Strange
Metal

Magnetic
quantum
criticality

Spin gap
Thermally
fluctuating

SDW

d-wave
SC

T

H

SC

M
"Normal"

(Large Fermi
surface)

SDW
(Small Fermi

pockets)

SC+
SDW

U(1) theory 
reproduces 
all features 

of the phase 
diagram in

the 
underdoped 

regime

Thursday, July 16, 2009



Elusive optimal doping 
quantum critical point has 
been “hiding in plain sight”.

It is shifted to lower doping 
by the onset of 

superconductivity
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