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The nodal hypersurface

Antisymmetry of the wave function  

Nodal hypersurface 

Pauli hypersurface 
Free Fermions  

Test particle

d=2



Constrained path integrals

Formally we can solve the sign problem!! 

Self-consistency problem: 

Path restrictions depend on        ! 

Ceperley, J. Stat. 
Phys. (1991)



Reading the worldline picture

Fermi-energy: confinement energy imposed 
by local geometry

Average node to node spacing 

Fermi surface encoded globally:

Change in coordinate of one particle changes the 
nodes everywhere

Finite T:

 
λnl = vFτ inel = vF

EF

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

h

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρF = Det eiki rj( )= 0

ρF = (4πλβ)−dN / 2 Det exp −
(ri − rj 0)2

4λτ

Non-locality length:

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

  λ = h2 /(2M)
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Vacuum structure

ρF R,R(τ );τ → ∞( )= Ψ* R( )Ψ R(∞)( )

Long time, zero temperature:

IR fermionic information encoded in the ground state wavefunction.

Need a wave function ansatz!



Turning on the backflow
Nodal surface has to 
become fractal !!!  

Try backflow wave functions  

Collective (hydrodynamic) 
regime:  
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Extracting the fractal dimension

The correlation integral:

For fractals:

Inequality very tight, relative error below 1%

Grassberger & Procaccia, PRL (1983)
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Geometrical correlation length



MC calculation of n(k)

Divergence of effective mass as a→ac
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The fixed point Hamiltonian

It is the ground state of a Fermi-gas of backflow particles:
 
H = εk

k
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q1 ,...,qN

∫

turns singular at the QPT.

=>

Expressed in bare particles: H ∝ εk
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- At the critical point                 the fixed point Hamiltonian 
reveals a divergence in N where N refers to N-body interaction!

a → rs

- No symmetry change, criticality is entirely of ‘statistical’
nature (information in nodal surface)!
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Pair susceptibilities

χ"p Ω( )
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Huang’s equation at work
Δ Δ
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Huang’s equation versus high Tc
J.-H. She

E.g. 1+1D Ising:  

Critical case: 

ηpp =1/4, z =1

ωB

ωc

=
50 meV

500 meV

Fermi-liquid:

Δ 0 = 40meV

λ ≈1.1
λ ≈ 0.4 !!!

Davis, Balatsky

Typical phonon-, 
cut-off energy:

Typical gap:
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1+1D conformal finite temperature 
susceptibility

χ" Ω( ) χ" Ω( )
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Tc using 1+1D conformal fields

α
α

= /
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d/s wave and the gap to Tc ratio

χ" Ω( ) χ" Ω( )

Δ Δ
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SC domes and Hc2
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