Deformations of *G*₂-structures, String Dualities and Flat Higgs Bundles

Rodrigo Barbosa

Physics and Special Holonomy Conference, KITP - UC Santa Barbara

April 10, 2019

Flat Riemannian Geometry

A subgroup $\pi \leq \text{Iso}(\mathbb{R}^n) := O(n) \ltimes \mathbb{R}^n$ is *Bieberbach* if π acts freely and properly discontinuously on \mathbb{R}^n , and $Q := \mathbb{R}^n/\pi$ is compact. Q is then a compact flat Riemannian manifold with $\pi_1(Q) = \pi$. There is an exact sequence:

 $1 \to \Lambda \to \pi \to H \to 1$

where $\Lambda := \pi \cap \mathbb{R}^n$ and *H* is the *holonomy* of π . Note that the *n*-torus \mathbb{T} is a Bieberbach manifold with trivial holonomy.

Bieberbach's Theorems

- **1** Λ is a lattice and *H* is finite. Equivalently: there is a finite normal covering $\mathbb{T} \to Q$ which is a local isometry.
- Isomorphisms between Bieberbach subgroups of Iso(ℝⁿ) are conjugations of Aff(ℝⁿ). Equivalently: two Bieberbach manifolds of the same dimension and with isomorphic π₁'s are affinely isomorphic.
- 3 There are only finitely many isomorphism classes of Bieberbach subgroups of Iso(ℝⁿ). Equivalently: there are only finitely many affine classes of Bieberbach manifolds of dimension *n*.

Platycosms

Bieberbach manifolds of dimension 3 are called *platycosms*.

Classification of Platycosms

There are only 10 affine equivalence classes of platycosms. Out of those, 4 are non-orientable. The orientable ones are:

- **1** The torocosm $\mathcal{G}_1 = \mathbb{T}$ with $H_{\mathcal{G}_1} = \{0\}$
- **2** The dicosm \mathcal{G}_2 with $H_{\mathcal{G}_2} = \mathbb{Z}_2$
- **3** The tricosm \mathcal{G}_3 with $H_{\mathcal{G}_3} = \mathbb{Z}_3$
- **4** The tetracosm \mathcal{G}_4 with $H_{\mathcal{G}_4} = \mathbb{Z}_4$
- **5** The hexacosm \mathcal{G}_5 with $H_{\mathcal{G}_5} = \mathbb{Z}_6$
- 6 The didicosm, a.k.a. the *Hantzsche-Wendt manifold* \mathcal{G}_6 with $H_{\mathcal{G}_6} = \mathbb{Z}_2 \times \mathbb{Z}_2 =: \mathbb{K}$

$$H_{\mathcal{G}_6} = \left\langle A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \right\rangle \subset SO(3)$$

G₂-manifolds

Let (M^7, g) be an oriented Riemannian manifold. A G_2 -structure on M is an element $\varphi \in \Omega^3(M, \mathbb{R})$ such that $\forall x \in M$, φ_x is stabilized by $G_2 \subset SO(7)$ acting on $\Lambda^3 T^*M$ (we say that φ is *positive*). Equivalently, a G_2 -structure is a reduction of the structure group of the frame bundle $FM \to M$ down to G_2 .

Properties of G_2

- G_2 is the compact real Lie group with Lie algebra g_2 .
- dim GL(7) dim $G_2 = 49 14 = 35 = \dim \Lambda^3 T^* M$. The set of positive 3-forms is open in $\Lambda^3 T^* M$.
- Connected Lie subgroups: $U(1) \subset SU(2) \subset SU(3) \subset G_2$

A G_2 -structure is closed if $d\varphi = 0$, and torsion-free if $d \star \varphi = 0$.

Theorem

$$\mathsf{Hol}(M,g) \subseteq G_2 \iff d\varphi = d \star \varphi = 0 \iff \nabla_g \varphi = 0$$

Basic model

Let $N = \mathbb{C}^2 \times \mathbb{T}^3$, *g* the flat product metric, $(\omega_1, \omega_2, \omega_3)$ the flat hyperkähler structure of \mathbb{C}^2 , and dx_1, dx_2, dx_3 a basis of flat 1-forms on \mathbb{T}^3 . Then:

$$\varphi = \sum_{i=1}^{3} dx_i \wedge \omega_i + dx_1 \wedge dx_2 \wedge dx_3$$

is a closed, torsion-free G_2 -structure, so g is a flat G_2 -metric.

- Here is a slightly better model: let $N = \mathbb{C}^2 \times \mathcal{G}_6$ and choose local flat sections dx_i of $T^*\mathcal{G}_6$. Then $\mu = dx_1 \wedge dx_2 \wedge dx_3$ is a global flat 3-form, and if one chooses $(\omega_1, \omega_2, \omega_3)$ to transform by the inverse action of \mathbb{K} on a flat trivialization of $T^*\mathcal{G}_6$, then $\eta = \sum dx_i \wedge \omega_i$ is also globally defined. Thus $\varphi = \eta + \mu$ is a closed G_2 -structure. In fact, it is also torsion-free, and the holonomy of the G_2 -metric is \mathbb{K} .
- Now let Γ ≤ SU(2) and K act (compatibly) on C² and consider the flat bundle M̃ = C²/Γ ×_K G₆ → G₆. There is an induced closed, torsion-free G₂-structure φ̃ on M̃ whose holonomy is SU(2) × K ⊂ G₂ [Acharya 99]. In the last example we have allowed the ω_i's to have non-trivial monodromy by replacing C² by a flat rank 2 complex vector bundle over the platycosm Q whose monodromy is the ADE group K.

ADE G₂-orbifolds

Let (Q, δ) be an oriented platycosm with $\pi_1(Q) = \pi$. Fix the following data:

ADE/ G_2 data for (Q, δ)

- $p: \mathcal{V} \rightarrow Q$ a rank 1 quaternionic vector bundle
- $\Gamma \leq Sp(1)$ a finite subgroup (and hence a fiberwise action on \mathcal{V})
- $\mathbf{H} \subset \mathcal{TV}$ a flat quaternionic connection on $\mathcal V$ compatible with the $\Gamma\text{-action}$
- $\mu \in \Omega^3(Q)$ a flat volume form
- $\eta \in \Omega^2(\mathcal{V}/Q) \otimes \Gamma(Q, \mathbf{H}^*)$ a Γ -invariant "vertical hyperkähler element"

This can be chosen in most cases. We then call $M = \mathcal{V}/\Gamma$ an *ADE* G_2 -platyfold of type Γ . The G_2 -structure on M can be written as $\varphi = \eta + \mu$.

• Let V = Ker(dp) be the vertical space. There is a decomposition $d = d_V + d_H$ and, moreover:

$$d\varphi = 0 \iff d_V \eta = d_V \mu = d_H \eta = d_H \mu = 0$$

Donaldson's theorem

A closed G_2 -structure on a coassociative fibration $M \rightarrow Q$ with orientation compatible with those of M and Q is equivalent to the following data:

- **1** A connection $\mathbf{H} \subset TM$ on $M \to Q$
- **2** A hypersymplectic element $\eta \in \mathbf{H}^* \oplus \Lambda^2 V^*$
- **3** A "horizontal volume form" $\mu \in \Lambda^3 \mathbf{H}^*$

satisfying the following equations:

 $d_{\mathbf{H}}\eta = 0 \qquad d_{\mathbf{H}}\mu = 0$ $d_{V}\eta = 0 \qquad d_{V}\mu = -F_{\mathbf{H}}(\eta)$

where $F_{\mathbf{H}}$ is the curvature operator of \mathbf{H} .

We call (\mathbf{H}, η, μ) *Donaldson data* for $M \to Q$.

Fix $(M_0 \to Q, \varphi_0)$ an ADE G_2 -platyfold of type Γ , with Donaldson data $(\mathbf{H}_0, \eta_0, \mu_0)$. We have $\varphi_0 = \eta_0 + \mu_0$. We would like to define a deformation family $f : \mathcal{F} \to \mathcal{B}$ with central fiber M_0 and such that φ_0 extends to a section of $\Omega^{3,+}_{\mathsf{cl}}(\mathcal{F}/\mathcal{B})$. That is, $\forall s \in \mathcal{B}$, $M_s := f^{-1}(s)$ has a closed G_2 -structure.

The deformation space of C²/Γ can be embedded in g_c: choose x ∈ g_c nilpotent and subregular, complete it to a sl₂(C)-triple (x, h, y) and consider the *Slodowy slice*: S := x + 3_c(y), where 3_c(y) is the centralizer of y. Then the adjoint quotient ad : g_c → h_c/W restricts to:

$$\Psi:\mathcal{S}
ightarrow\mathfrak{h}_c/W$$

a flat map with $\Psi^{-1}(0) = \mathbb{C}^2/\Gamma$. This is the \mathbb{C}^* -miniversal deformation of \mathbb{C}^2/Γ .

• Fix $\omega \in \mathfrak{h}$. The *Kronheimer family* $\mathcal{K}_{\omega} \to \mathfrak{h}_{c}$ is a simultaneous resolution of all fibers of Ψ over the projection $\mathfrak{h}_{c} \to \mathfrak{h}_{c}/W$. All hyperkähler ALE-spaces are fibers of \mathcal{K}_{ω} for some ω .

We enlarge the family slightly in order to include all ω 's: let *Z* be the adjoint representation of SU(2). Consider $\bigsqcup_{\omega} (\mathcal{K}_{\omega} \to \{\omega\} \times \mathfrak{h}_{c})$. This gives us a family of hyperkähler ALE-spaces $\mathcal{K} \to \mathfrak{h}_{Z} := \mathfrak{h} \otimes Z$.

• The idea to construct $f : \mathcal{F} \to \mathcal{B}$ is to define a "fibration of Kronheimer families" over Q. Then a section of the fibration will pick a hyperkähler deformation of \mathbb{C}^2/Γ changing with $x \in Q$. The condition for Donaldson data will be a condition on the section, and \mathcal{B} will be the space of allowed sections.

The existence of f will be a consequence of the following result:

There is a rank $3 \dim(\mathfrak{h})$ flat vector bundle $t : \mathcal{E} \to Q$ and a family $u : \mathcal{U} \to \mathcal{E}$ of complex surfaces, equipped with Donaldson data:

- $\mathbf{H}: u^*T\mathcal{E} \to T\mathcal{U}$ a connection
- $\eta \in \Omega^2(\mathcal{U}/\mathcal{E}) \otimes u^*\Omega^1(\mathcal{E})$
- $\bullet \ \mu \in u^*\Omega^3(\mathcal{E})$

The family has the following properties:

$$\mathbf{1} \ \mathcal{U}|_{\underline{\mathbf{0}}(Q)} \cong M_0$$

2
$$(\eta + \mu)|_{M_0} = \varphi_0$$

3 $\forall x \in Q$ we have $\mathcal{U}|_{t^{-1}(x)} \cong \mathcal{K}$

where $\underline{\mathbf{0}}: Q \to \mathcal{E}$ denotes the zero-section. Moreover, given a flat section $s: Q \to \mathcal{E}$, let $M_s := u^{-1}(s(Q))$. Then the restrictions $(\eta|_{M_s}, \mu|_{M_s}, \mathbf{H}|_{M_s})$ satisfy Donaldson's criteria, and hence define a closed G_2 -structure $\varphi_s := (\eta + \mu)|_{M_s}$ on M_s . Sketch of proof:

$$q:\mathcal{U}\stackrel{u}{\to}\mathcal{E}\stackrel{t}{\to}Q$$

- Construct the flat bundle t : E → Q: Choose a flat trivialization of Q common to V and T*Q. Glue h ⊗ T*U_i ≅ h_Z using cocycle of T*Q.
- 2 Construct the family of complex surfaces u : U → E: Pullback K → h_Z by local maps ψ_i : U_i × h_Z → h_Z. Glue using cocycle of V.
- **3** Construct Donaldson data (η, μ, H) on \mathcal{U} :
 - $\mu \in \Omega^{0,3}(\mathcal{U})$ is just a pullback from Q.
 - $\eta \in \Omega^{2,1}(\mathcal{U})$ is constructed locally by wedging $\psi_i^* \omega_{unf}^a$ with local sections $\mu_a \in t^* \Omega^1(U_i)$, a = 1, 2, 3. Gluing construction from the previous step guarantees this is well-defined globally.
 - H is the most delicate step. It is essentially determined from a connection H_q on q : U → Q, which is in turn constructed from H₀ through the dilation action of ℝ³ on h_Z.
- Induce Donaldson data on M_s := u⁻¹(s(Q)), where s is a flat section of t ("flat spectral cover")
- **5** $\mathcal{B} = \Gamma_{\text{flat}}(Q, \mathcal{E})$ and the family $f : \mathcal{F} \to \mathcal{B}$ is the pullback of \mathcal{U} by the tautological map $\tau : Q \times \Gamma_{\text{flat}}(Q, \mathcal{E}) \to \mathcal{E}$. \Box

The Hantzsche-Wendt G₂-platyfold

Our main example will be the Hantzsche-Wendt G₂-platyfold

 $M:=\mathbb{C}^2/\Gamma\times_{\mathbb{K}}\mathcal{G}_6$

especially when $\Gamma = \mathbb{Z}_2$. Among the ADE G_2 -platyfolds, this is the only possible $\mathcal{N} = 1$ background. This is because $\operatorname{Hol}(\widetilde{M}) = SU(2) \rtimes \mathbb{K}$ cannot be conjugated to a subgroup of SU(3), while all others fix a direction in \mathbb{R}^7 .

 From the theorem, when Γ = Z₂, the deformation space is *B* = Γ(*G*₆, *T***G*₆ ⊗ u(1)). The moduli space *M*_{G₂} is determined from the symmetries of the cover by (*B*/Z₂)^K. Topologically, it is given by

 $\mathcal{M}_{G_2} = \mathbf{Y} :=$ the three positive axes in \mathbb{R}^3

This agrees with a computation by D. Joyce [Joyce 00].

• The M-theory moduli space $\mathcal{M}_{G_2}^{\mathbb{C}}$ is obtained by adding the holonomies of *C*-fields, which are elements of $\exp(i\mathfrak{u}(1)) = \mathbb{R}/2\pi\mathbb{Z}$. Thus $\mathcal{M}_{G_2}^{\mathbb{C}}$ is the complexification of \mathcal{M}_{G_2} , given by a trident consisting of three copies of \mathbb{C} touching at a point. We write this as:

$$\mathcal{M}_{G_2}^\mathbb{C}\cong \mathbf{Y}_\mathbb{C}$$

M-theory/IIA duality

The string duality we will use relates geometric structures on a G_2 -space (M, φ) and a "dual" Calabi-Yau threefold *X*.

Suppose $Q \subset M$ is an associative submanifold (i.e., $\varphi|_Q = d\text{vol}_Q$) and U(1) acts by isometries on M fixing Q. Then its *IIA dual* is

X := M/U(1)

The Calabi-Yau structure on *X* is required to have a real structure such that, under the projection map $d : M \to X$, $d(Q) \cong Q$ is a totally real special Lagrangian submanifold. There is also a condition on the behavior of the metric near $Q \subset X$.

- The case when M → Q is an ADE G₂-orbifold of type Γ corresponds to the "large volume limit" on X: essentially, X = T*Q with a semi-flat Calabi-Yau metric that blows-up along Q in a specified way.
- When $\Gamma = \mathbb{Z}_n$ this signals there is a stack of *n* D6-branes "wrapping" $Q \subset T^*Q$.

Thus we expect the moduli space M_{IIA} to parametrize special Lagrangian deformations of Q and the (still undefined) data of n D6-branes on Q.

Hermitian-Yang-Mills Equations

Here is a more precise description. The supersymmetry condition for type IIA strings on T^*Q with *n* D6-branes is given by the *Hermitian-Yang-Mills (HYM)* equations:

$$\begin{cases} \mathcal{F}^{2,0} = 0\\ \Lambda \mathcal{F} = 0 \end{cases}$$
(1)

Here \mathcal{F} is the curvature of a SU(n)-connection \mathcal{A} on a holomorphic vector bundle \mathcal{E} over T^*Q endowed with a hermitian metric, and Λ is the Lefschetz operator of contraction by the Kähler form. Note that because \mathcal{A} is hermitian, the first equation implies $\mathcal{F}^{0,2} = \overline{\mathcal{F}^{2,0}} = 0$.

The further condition that the *D*6-branes "wrap" Q is obtained by dimensional reduction of (1) down to Q. This yields:

$$\begin{cases} F_A = \theta \land \theta \\ D_A \theta = 0 \\ D_A \star \theta = 0 \end{cases}$$
(2)

for a SU(n)-connection A on a complex vector bundle $E \to Q$ and a "Higgs field" $\theta \in \Omega^1(Q, Ad(E))$. We call this the *Pantev-Wijnholt (PW) system* - see also [Donaldson 87] and [Corlette 88].

The IIA moduli space parametrizes solutions of PW. Recall the following result:

Donaldson-Corlette Theorem

Let *G* be a semisimple algebraic group and *K* a maximal compact subgroup. Let (Q, g) be a compact Riemannian manifold with fundamental group π , and let $(\widetilde{Q}, \widetilde{g})$ be its universal cover. Fix a homomorphism $\rho : \pi \to G$ and let $h : \widetilde{Q} \to G/K$ be a ρ -equivariant map. Then the following are equivalent:

- 1 $h: \widetilde{Q} \to G/K$ is a harmonic map of Riemannian manifolds
- **2** The Zariski closure of $\rho(\pi)$ is a reductive subgroup of *G* (i.e., ρ is semisimple)

Moreover, if ρ is irreducible, the harmonic map is unique.

This result allows us to prove:

Proposition

Solutions to PW are the same as flat reductive bundles on Q. It follows that \mathcal{M}_{IIA} is the *character variety:*

 $\operatorname{Char}(Q,G) := \operatorname{Hom}(\pi,G)//G$

The Hantzsche-Wendt Calabi-Yau

The IIA dual of *M* is the Hantzsche-Wendt Calabi-Yau $X = T^* \mathcal{G}_6$. We now describe some of its properties:

• Character Variety: For $\Gamma = \mathbb{Z}_2$:

 $\mathcal{M}_{IIA}(X) = \mathsf{Char}(\mathcal{G}_6, SL(2, \mathbb{C})) \cong \mathbf{Y}_{\mathbb{C}}$

which matches $\mathcal{M}_{G_2}^{\mathbb{C}}(M)$. There are similar descriptions for higher *n*.

• *SYZ fibration:* Recall there is a finite Galois cover $\mathbb{T} \to \mathcal{G}_6$. Since $T\mathbb{T}$ is a trivial flat bundle, we can identify all fibers with \mathbb{R}^3 . The map $T\mathbb{T} \to \mathbb{R}^3$ induces $(T\mathbb{T})/\mathbb{K} \to \mathbb{R}^3/\mathbb{K}$, where \mathbb{K} acts via the differential action. We then prove that $(T\mathbb{T})/\mathbb{K} \cong T^*\mathcal{G}_6$. Thus, we have:

$$g:X\to \mathbb{R}^3_{\mathbf{Y}}$$

where $\mathbb{R}^3_Y := \mathbb{R}^3 / \mathbb{K}$ is called the Y-*vertex*. Geometrically, it is a cone over a thrice-"punctured" two-sphere. The isotropy is \mathbb{Z}_2 at the punctures and \mathbb{K} at the vertex.

It is known [Loftin, Yau, Zaslow 05] that R³_Y admits affine Hessian metrics solving the Monge-Ampère equation, and so T^{*}R³_Y admits semi-flat CY metrics.

A G₂-conifold transition?

Figure: Left: Borromean rings. Right: Three fully linked unknots. Later Action Actio We will now discuss special solutions of the PW system.

Definition

A flat $GL(r, \mathbb{C})$ -Higgs bundle on a compact Riemannian manifold Q is a tuple (E, h, A, θ) consisting of a complex rank r vector bundle $E \to Q$ with a hermitian metric h, a unitary flat connection $A \in \Omega^1(End(E))$, and a C_Q^{∞} -linear bundle map $\theta : \Gamma(E) \to \Gamma(E \otimes T^*Q)$ satisfying $\theta \land \theta = 0$, and such that the following *flatness conditions* are satisfied:

•
$$D_A \theta = 0$$

•
$$D_A \star \theta = 0$$

If furthermore (Q, δ) is flat, we require θ to be compatible with δ . The condition $\theta \wedge \theta = 0$ means that the three matrices $\theta_1, \theta_2, \theta_3$ are simultaneously diagonalizable. So we can describe a flat Higgs bundle in terms of *flat spectral data*.

Definition

Let (E, h, A, θ) be a flat Higgs bundle over Q. The *Spectral Cover* associated to θ is the subvariety $S_{\theta} \subset T^*Q$ defined via its characteristic polynomial:

$$S_{\theta} = \{(q, \lambda); \det(\lambda \otimes \mathbf{1}_{E} - \theta) = 0\}$$
(3)

Definition: Flat Spectral Data

Let (E, h, A, θ) be a rank *n* flat Higgs bundle over a platycosm (Q, δ) . Assume θ is regular. We define *flat spectral data* to be:

- **1** A *n*-sheeted covering map $\pi : S_{\theta} \to Q$.
- **2** A line bundle $\mathcal{L} \to S_{\theta}$ determined by the eigenlines of θ
- **3** A hermitian metric \tilde{h} on \mathcal{L} determined by h
- **4** A hermitian flat connection \widetilde{A} on \mathcal{L} determined by A
- **6** A Lagrangian embedding $\ell : S_{\theta} \to T^*Q$ satisfying $Im(d\ell) \subset \mathbf{H}_{\delta}^*$.

Flat Spectral Correspondence

There is an equivalence:

$\textbf{FlatHiggs}\longleftrightarrow \textbf{FlatSpec}$

between flat Higgs bundles and flat spectral data.

Flat Higgs bundles admit a Hitchin map similar (although not as nice) to their holomorphic cousins:

Definition

Let $p_i(\theta)$ be the coefficient of λ^{n-i} in the expansion of $det(\lambda \mathbf{1} - \theta) \in \mathbb{C}[\lambda]$. The *Hitchin map* is defined by:

$$\mathfrak{H} : \mathsf{FlatHiggs} \to \bigoplus_{i=1}^{n} H^{0}(\mathcal{Q}, (T^{*}\mathcal{Q})^{\otimes i})$$
$$(E, h, A, \theta) \mapsto (p_{1}(\theta), \dots, p_{n}(\theta))$$

An important property is that the spectral cover S_{θ} depends only on $\mathfrak{H}(\theta)$.

Recall the Hantzsche-Wendt Calabi-Yau has a SYZ fibration $g: X \to \mathbb{R}^3_Y$, obtained as a \mathbb{K} -quotient of the smooth sLag torus fibration $d: T^*\mathbb{T} \to \mathbb{R}^3$. We would like to describe the mirror SYZ fibration $g^{\vee}: X^{\vee} \to \mathbb{R}^3_Y$.

• SYZ Mirror Symmetry tells us that, away from singular fibers, g^{\vee} is given by the dual torus fibration: if $\mathbb{T}_b = g^{-1}(b)$ is a smooth fiber, then $(g^{\vee})^{-1}(b) = \operatorname{Hom}(\pi_1(\mathbb{T}_b), U(1)) =: \mathbb{T}_b^{\vee}$ parametrizes U(1)-local systems on \mathbb{T}_b .

Our proposal: g^{\vee} should be obtained as an appropriate \mathbb{K} -quotient of the SYZ mirror of $d, d^{\vee} : (\mathbb{C}^*)^3 \to \mathbb{R}^3$.

 There is a natural induced action of K on T[∨] by pullback of local systems. This is *not* a free action. Our proposed mirror is then an orbifold:

 $g^{\vee}: [(\mathbb{C}^*)^3/\mathbb{K}] \to \mathbb{R}^3_{\mathbf{Y}}$

Mirror symmetry maps IIA string theory on *X* to IIB string theory on X^{\vee} . At the level of branes, the mirror map sends a *D*6-brane on *X* to a *D*3-brane on X^{\vee} . Mathematically, it is given by a Fourier-Mukai functor

 $\mathfrak{FM}: \mathsf{Fuk}(X) \to \mathcal{D}(X^{\vee})$

and sends a U(1)-local system on a sLag fiber $Q_b \subset X$ to a skyscraper sheaf over the associated point on Q_b^{\vee} . More generally, it send a SU(n)-local system on Q_b to a direct sum of skyscraper sheaves supported on Q_b^{\vee} . Thus, Mirror Symmetry for branes predicts an identification:

$$\underbrace{\mathsf{Char}(\pi, SL(n, \mathbb{C}))}_{\mathcal{M}_{IIA}} \cong \underbrace{\mathsf{Hilb}^n_{\mathbf{Y}}(X^{\vee})}_{\mathcal{M}_{IIB}}$$

where $\text{Hilb}_{\mathbf{Y}}^{n}(X^{\vee})$ is the punctual Hilbert scheme supported at the vertex fiber over $\mathbb{R}^{3}_{\mathbf{Y}}$.

The Spectral Mirror

To avoid working with Hilbert schemes of orbifolds, we will construct a crepant resolution X^{\wedge} of X^{\vee} that gives the correct moduli space. As a bonus, we will get a new interpretation of SYZ.

The idea is to use mirror symmetry and the flat spectral construction to build X^{\wedge} as the solution to a moduli problem on *X*. For this reason, we call X^{\wedge} the *spectral mirror*.

- Recall that a smooth fiber T[∨]_b of X[∨] parametrizes local systems (L_b, A_b) on the sLag T_b → X = T^{*}G₆. Recall also that ∀b there is an unramified K-cover p_b : T_b → G₆. Thus (p_b, L_b, A_b) can be thought as spectral data over G₆.
- Assume $\forall b, (\mathcal{L}_b, A_b)$ is a deformation of a local system (\mathcal{L}_0, A_0) on \mathcal{G}_6 . Then we are looking at the moduli space of \mathbb{K} -spectral data over \mathcal{G}_6 . By the flat spectral correspondence, this is equivalent to a certain moduli space of flat Higgs bundles. If we unpack the Higgs data, we are led to define the spectral mirror as:

$$X^{\wedge} := \mathcal{M}_{\mathsf{Higgs}}^{\mathbb{K}} \subset \mathcal{M}_{\mathsf{Higgs}}^{SO(4,\mathbb{C})}$$

the moduli space of flat $SO(4, \mathbb{C})$ -Higgs bundles over \mathcal{G}_6 whose spectral covers have Galois group \mathbb{K} .

Proposition

The Hitchin map $\mathfrak{H}: X^{\wedge} \to \mathcal{B}$ defines a smooth model for $g^{\vee}: X^{\vee} \to \mathbb{R}^3_Y$.

The proof consists of showing that $Im(\mathfrak{H}) \cong \mathbb{R}^3_Y$ and the smooth Hitchin fibers are $\mathfrak{H}^{-1}(b) \cong \mathbb{T}^{\vee}_b$.

A topological model for X^{\wedge} is given by $\operatorname{Char}^{0}(\pi, SO(4, \mathbb{C}))$. The same methods used previously can be used here to describe it explicitly. Roughly speaking, X^{\wedge} is obtained from X^{\vee} by replacing $(g^{\vee})^{-1}(\mathbf{Y})$ by $\operatorname{Sym}^{2}(\mathbf{Y}_{\mathbb{C}})$. For n = 2, the Hilbert scheme is a length 2 thickening of the diagonal $\mathbf{Y}_{\mathbb{C}}$, so topologically:

Proposition

$$\mathsf{Hilb}^2_{\mathbf{Y}}(X^{\wedge}) \cong \mathbf{Y}_{\mathbb{C}} = \mathsf{Char}(\pi, SL(2, \mathbb{C}))$$

This confirms the mirror symmetry prediction. We expect that the same result holds for higher n.

• This result suggests an approach to SYZ mirror symmetry, useful when a singular fiber is covered by a smooth fiber: construct smooth models for the mirrors as moduli spaces of flat Higgs bundles on the singular fiber.

Thank you!