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Flat Riemannian Geometry

A subgroup 7 < Iso(R") := O(n) x R" is Bieberbach if = acts freely and
properly discontinuously on R”, and Q := R"/r is compact. Q is then a
compact flat Riemannian manifold with 7 (Q) = =. There is an exact
sequence:

l-A—>7m7—H—1

where A := 7 NR" and H is the holonomy of =. Note that the n-torus T is a
Bieberbach manifold with trivial holonomy.

Bieberbach’s Theorems

© Ais alattice and H is finite. Equivalently: there is a finite normal covering
T — QO which is a local isometry.

® Isomorphisms between Bieberbach subgroups of Iso(R") are
conjugations of Aff(R"). Equivalently: two Bieberbach manifolds of the
same dimension and with isomorphic 7;’s are affinely isomorphic.

@® There are only finitely many isomorphism classes of Bieberbach

subgroups of Iso(R"). Equivalently: there are only finitely many affine
classes of Bieberbach manifolds of dimension n.




Platycosms

Bieberbach manifolds of dimension 3 are called platycosms.

Classification of Platycosms

There are only 10 affine equivalence classes of platycosms. Out of those, 4
are non-orientable. The orientable ones are:

© The torocosm G; = T with Hg, = {0}
® The dicosm G, with Hg, = 7Z,

@ The tricosm G; with Hg, = Z3

® The tetracosm G, with Hg, = Z4

@® The hexacosm Gs with Hg, = Zg

@ The didicosm, a.k.a. the Hantzsche-Wendt manifold G with
Hg(,:ZzXZz:ZK

1 0 0 ~1.0 0
Hg6<A 0 -1 0 |,B=| 0 1 0 >c50(3)
0 0 -1 0 0 -1




G,-manifolds

Let (M7, g) be an oriented Riemannian manifold. A G,-structure on M is an
element ¢ € Q3(M,R) such that Vx € M, ¢, is stabilized by G, c SO(7) acting
on A3T*M (we say that o is positive). Equivalently, a G,-structure is a
reduction of the structure group of the frame bundle FM — M down to G,.

Properties of G,
e G, is the compact real Lie group with Lie algebra g,.
e dimGL(7) — dim G, = 49 — 14 = 35 = dim A3T*M. The set of positive
3-forms is open in A3T*M.
e Connected Lie subgroups: U(1) C SU(2) C SU(3) C G,

A G,-structure is closed if dp = 0, and torsion-free if d x ¢ = 0.

Hol(M,g) C G, <= dp=d*9p=0 < V,p=0
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Basic model

Let N = C? x T3, g the flat product metric, (w;,w,,ws) the flat hyperkahler
structure of C2, and dx, dx,, dxs a basis of flat 1-forms on T3. Then:

3
p= deiAwi—&—dxl A dxy N dx;
i=1

is a closed, torsion-free G,-structure, so g is a flat G,-metric.

e Here is a slightly better model: let N = C? x Gs and choose local flat
sections dx; of T*Gs. Then u = dx; A dx, A dxs is a global flat 3-form, and if
one chooses (w;,w»,ws3) to transform by the inverse action of K on a flat
trivialization of T*Gg, then n = > dx; A w; is also globally defined. Thus
¢ =n+ pis a closed G;-structure. In fact, it is also torsion-free, and the
holonomy of the G,-metric is K.

e Now let T' < SU(2) and K act (compatibly) on C? and consider the flat

——

bundle M = C2/T xx Gs — Gs. There is an induced closed, torsion-free
G,-structure & on M whose holonomy is SU(2) x K C G, [Acharya 99].
In the last example we have allowed the w;’s to have non-trivial monodromy by
replacing C? by a flat rank 2 complex vector bundle over the platycosm Q
whose monodromy is the ADE group K.



ADE G,-orbifolds

Let (Q, §) be an oriented platycosm with 7;(Q) = «. Fix the following data:

ADE/G, data for (Q, ¢)

e p:V — Qarank 1 quaternionic vector bundle

I’ < Sp(1) a finite subgroup (and hence a fiberwise action on V)

H C TV aflat quaternionic connection on V compatible with the I"-action
p € Q3(Q) a flat volume form

n € 2(V/Q) ® T'(Q,H*) a I'-invariant “vertical hyperkahler element"

This can be chosen in most cases. We then call M = V/T" an ADE
G, -platyfold of type T'. The G,-structure on M can be written as ¢ = n + p.

e Let V = Ker(dp) be the vertical space. There is a decomposition
d = dy + du and, moreover:

dp=0 <= dyn=dyp=dun=dupu =0
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Donaldson’s theorem

A closed G,-structure on a coassociative fibration M — Q with orientation
compatible with those of M and Q is equivalent to the following data:

© AconnectonHC TMon M — Q

® A hypersymplectic element , € H* @ A?V*

® A “horizontal volume form” ;, € A’H*
satisfying the following equations:

dun=0  dap=0
dyn=0  dyp=—Fu(n)

where Fy is the curvature operator of H.

We call (H, n, 1) Donaldson data for M — Q.



Slodowy slices and the Kronheimer family

Fix (My — Q, po) an ADE G,-platyfold of type I, with Donaldson data
(Ho, 1m0, o). We have @ = o + puo.

We would like to define a deformation family f : 7 — B with central fiber M,
and such that ¢, extends to a section of Qi;*(]—‘/l’:’). That is, Vs € B,

M, :=f~1(s) has a closed G,-structure.

e The deformation space of C/I" can be embedded in g.: choose x € g,
nilpotent and subregular, complete it to a sk, (C)-triple (x, ,y) and
consider the Slodowy slice: S := x + ;.(y), where 3.(y) is the centralizer of
y. Then the adjoint quotient ad : g. — h./W restricts to:

U:S§—bh/W

a flat map with ¥=1(0) = C?/I'. This is the C*-miniversal deformation of
CT.



Slodowy slices and the Kronheimer family

e Fix w € h. The Kronheimer family KC,, — b, is a simultaneous resolution of
all fibers of ¥ over the projection . — h./W. All hyperk&hler ALE-spaces
are fibers of /IC,, for some w.

We enlarge the family slightly in order to include all w’s: let Z be the
adjoint representation of SU(2). Consider | |, (K., — {w} x b.). This
gives us a family of hyperk&hler ALE-spaces X — bz :=h® Z.

e The idea to construct f : F — B is to define a "fibration of Kronheimer
families" over Q. Then a section of the fibration will pick a hyperkahler
deformation of C?/I" changing with x € Q. The condition for Donaldson
data will be a condition on the section, and B will be the space of allowed
sections.

The existence of f will be a consequence of the following result:



Hyperkahler deformations over a platycosm

There is a rank 3 dim(h) flat vector bundle ¢ : £ — Q and a family u : U/ — &£ of
complex surfaces, equipped with Donaldson data:

e H: u*TE — TU a connection
e € QU/E)RuN(E)
o n€uE)
The family has the following properties:
@ Ulyo) = Mo
@ (1 -+ 1)lm, = 0
© Vxc Qwehave U1,y =K
where 0 : Q0 — £ denotes the zero-section.
Moreover, given a flat section s : Q — &, let M, := u=!(s(Q)). Then the

restrictions (n|u,, i¢|nm,, H|s,) satisfy Donaldson’s criteria, and hence define a
closed G,-structure ¢, := (1 + w)|p, ON M.




Sketch of proof:
g:USE RN 0

@ Construct the flat bundle t : £ — Q: Choose a flat trivialization of Q
common to V and T*Q. Glue h @ T*U; = bz using cocycle of T*Q.

® Construct the family of complex surfaces u : U — £: Pullback K — § by
local maps ; : U; x hz — bz. Glue using cocycle of V.
@ Construct Donaldson data (1, 1, H) onU:
e uc Q% U) is just a pullback from Q.
e 1 € Q*'(U) is constructed locally by wedging +; w, with local sections
pa € QN (U), a = 1,2,3. Gluing construction from the previous step
guarantees this is well-defined globally.
¢ H is the most delicate step. It is essentially determined from a connection H,
ongq:U — Q, which is in turn constructed from H, through the dilation action
of R® on bz.
@ Induce Donaldson data on M, := u~'(s(Q)), where s is a flat section of
(“flat spectral cover”)

@ B =Ty4(0Q, ) and the family f : 7 — B is the pullback of i/ by the
tautological map 7 : QO x I'yx(Q, &) — €. O
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The Hantzsche-Wendt G,-platyfold

Our main example will be the Hantzsche-Wendt G,-platyfold

M = (Cz/F XK Q6
especially when I' = Z,. Among the ADE G;-platyfolds, this is the only
possible A/ = 1 background. This is because Hol(M) = SU(2) x K cannot be
conjugated to a subgroup of SU(3), while all others fix a direction in R”.
e From the theorem, when I" = Z,, the deformation space is

B =T(Gs, T*Gs ® u(1)). The moduli space Mg, is determined from the
symmetries of the cover by (B/Z,)¥. Topologically, it is given by

Mg, =Y := the three positive axes in R?

This agrees with a computation by D. Joyce [Joyce 00].
e The M-theory moduli space M%z is obtained by adding the holonomies of
C-fields, which are elements of exp(iu(1)) = R/27Z. Thus Mg is the

complexification of Mg,, given by a trident consisting of three copies of C
touching at a point. We write this as:

C ~
MGzzY(C



M-theory/IlA duality

The string duality we will use relates geometric structures on a G,-space
(M, ¢) and a "dual" Calabi-Yau threefold X.

Suppose Q C M is an associative submanifold (i.e., p|p = dvoly) and U(1)
acts by isometries on M fixing Q. Then its /IA dual is

X :=M/U(1)

The Calabi-Yau structure on X is required to have a real structure such that,
under the projection map d : M — X, d(Q) = Q is a totally real special
Lagrangian submanifold. There is also a condition on the behavior of the
metric near Q C X.

e The case when M — Q is an ADE G,-orbifold of type I" corresponds to
the "large volume limit" on X: essentially, X = T*Q with a semi-flat
Calabi-Yau metric that blows-up along Q in a specified way.

e When I'' = Z, this signals there is a stack of n D6-branes “wrapping”
QCT*Q.
Thus we expect the moduli space M4 to parametrize special Lagrangian
deformations of Q and the (still undefined) data of n D6-branes on Q.
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Hermitian-Yang-Mills Equations

Here is a more precise description. The supersymmetry condition for type IIA
strings on T*Q with n D6-branes is given by the Hermitian-Yang-Mills (HYM)
equations:

AF =0 1)

Here F is the curvature of a SU(n)-connection A on a holomorphic vector
bundle £ over T*Q endowed with a hermitian metric, and A is the Lefschetz
operator of contraction by the K&hler form. Note that because A is hermitian,
the first equation implies 7%? = 7.0 = 0.

The further condition that the D6-branes "wrap" Q is obtained by dimensional
reduction of (1) down to Q. This yields:

{ F=0

Fr=0N0
DA =0 2)
DA*9:0

for a SU(n)-connection A on a complex vector bundle E — Q and a "Higgs
field" § € Q'(Q,Ad(E)). We call this the Pantev-Wijnholt (PW) system - see
also [Donaldson 87] and [Corlette 88].



The A moduli space parametrizes solutions of PW. Recall the following
result:

Donaldson-Corlette Theorem

Let G be a semisimple algebraic group and K a maximal compact subgroup.

Let (Q, g) be a compact Riemannian manifold with fundamental group =, and

let (é,g) be its universal cover. Fix a homomorphism p : 7 — G and let

h:Q— G/K be a p-equivariant map. Then the following are equivalent:
O é — G/K is a harmonic map of Riemannian manifolds

® The Zariski closure of p(r) is a reductive subgroup of G (i.e., p is
semisimple)

Moreover, if p is irreducible, the harmonic map is unique.

This result allows us to prove:

Proposition

Solutions to PW are the same as flat reductive bundles on Q. It follows that
M is the character variety:

Char(Q, G) := Hom(r,G)//G



The Hantzsche-Wendt Calabi-Yau

The IIA dual of M is the Hantzsche-Wendt Calabi-Yau X = T*Gs. We now
describe some of its properties:

e Character Variety: For I' = Z,:

Mua(X) = Char(Gs, SL(2,C)) = Yc
which matches Mg, (M). There are similar descriptions for higher n.
o SYZ fibration: Recall there is a finite Galois cover T — Gg. Since TT is a
trivial flat bundle, we can identify all fibers with R3. The map 7T — R?

induces (7TT)/K — R?/K, where K acts via the differential action. We
then prove that (TT)/K = T*Gs. Thus, we have:

g: X =Ry

where R3, := R?/K is called the Y-vertex. Geometrically, it is a cone over
a thrice-"punctured” two-sphere. The isotropy is Z, at the punctures and
K at the vertex.

e Itis known [Loftin, Yau, Zaslow 05] that R} admits affine Hessian metrics
solving the Monge-Ampére equation, and so 7*RR$ admits semi-flat CY
metrics.
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A G,-conifold transition?

Figure: Left: Borromean rings. Right: Three fully linked unknots.
IATEX code by Dan Drake, available at http://math.kaist.ac.kr/~drake



Flat Higgs bundles

We will now discuss special solutions of the PW system.

Definition

A flat GL(r, C)-Higgs bundle on a compact Riemannian manifold Q is a tuple
(E,h,A, 6) consisting of a complex rank r vector bundle E — Q with a
hermitian metric #, a unitary flat connection A € Q' (End(E)), and a C-linear
bundle map 6 : T'(E) — I'(E ® T*Q) satisfying 6 A 6 = 0, and such that the
following flatness conditions are satisfied:

o DAO:0
e Dy,x0=0

If furthermore (Q, 9) is flat, we require 6 to be compatible with §.

The condition 6 A 8 = 0 means that the three matrices 6, 6,, 65 are
simultaneously diagonalizable. So we can describe a flat Higgs bundle in
terms of flat spectral data.
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Flat spectral data

Let (E,h,A, 6) be a flat Higgs bundle over Q. The Spectral Cover associated to
0 is the subvariety Sy C T*Q defined via its characteristic polynomial:

So ={(g,A);det(A ® 1 — 0) = 0} (3)

Definition: Flat Spectral Data

Let (E,h,A,0) be a rank n flat Higgs bundle over a platycosm (Q, §). Assume 6
is regular. We define flat spectral data to be:

© A n-sheeted covering map = : Sy — Q.

® A line bundle £ — Sy determined by the eigenlines of 4

@® A hermitian metric 4 on £ determined by &

© A hermitian flat connection A on £ determined by A

@ A Lagrangian embedding ¢ : S¢ — T*Q satisfying Im(d¢) C Hj.



Flat Spectral Correspondence
There is an equivalence:

FlatHiggs «— FlatSpec

between flat Higgs bundles and flat spectral data.

Flat Higgs bundles admit a Hitchin map similar (although not as nice) to their
holomorphic cousins:

Definition
Let p;(9) be the coefficient of A~ in the expansion of det(A1 — #) € C[\]. The
Hitchin map is defined by:

% : FlatHiggs — @D H°(Q, (T*0)®)

i=1

(E,h,A,0) — (p1(0),...,pu(0))

An important property is that the spectral cover Sy depends only on $(0).




SYZ Mirror Symmetry

Recall the Hantzsche-Wendt Calabi-Yau has a SYZ fibration g : X — R3,
obtained as a K-quotient of the smooth sLag torus fibration d : T*T — R>.
We would like to describe the mirror SYZ fibration g¥ : XV — Ry,

e SYZ Mirror Symmetry tells us that, away from singular fibers, gV is given
by the dual torus fibration: if T, = g~'(b) is a smooth fiber, then
(g¥)~'(b) = Hom(m(T,),U(1)) =: T} parametrizes U(1)-local systems
on T,.
Our proposal: g should be obtained as an appropriate K-quotient of the
SYZ mirror of d, dV : (C*)* — R3.

e There is a natural induced action of K on TV by pullback of local systems.
This is not a free action. Our proposed mirror is then an orbifold:

g" : 1(C*)’/K] —» Ry
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Mirror symmetry maps IIA string theory on X to IIB string theory on XV. At the
level of branes, the mirror map sends a D6-brane on X to a D3-brane on XV.
Mathematically, it is given by a Fourier-Mukai functor

FM : Fuk(X) — D(XY)

and sends a U(1)-local system on a sLag fiber Q, C X to a skyscraper sheaf
over the associated point on QY. More generally, it send a SU(n)-local system
on Q, to a direct sum of skyscraper sheaves supported on Q). Thus, Mirror
Symmetry for branes predicts an identification:

Char(r, SL(n, C)) == Hilb(X")
—_——
M Mg

where Hilby (XV) is the punctual Hilbert scheme supported at the vertex fiber
overR3.
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The Spectral Mirror

To avoid working with Hilbert schemes of orbifolds, we will construct a crepant
resolution X" of XV that gives the correct moduli space. As a bonus, we will
get a new interpretation of SYZ.

The idea is to use mirror symmetry and the flat spectral construction to build
X" as the solution to a moduli problem on X. For this reason, we call X" the
spectral mirror.

 Recall that a smooth fiber T} of X parametrizes local systems (£, A,)
on the sLag T, — X = T*Gs. Recall also that Vb there is an unramified
K-cover p,, : T, = Gg. Thus (py, L5, Ap) can be thought as spectral data
over Gg.

e Assume Vb, (L;,A,) is a deformation of a local system (L, Ap) on Gs.
Then we are looking at the moduli space of K-spectral data over Gg. By
the flat spectral correspondence, this is equivalent to a certain moduli
space of flat Higgs bundles. If we unpack the Higgs data, we are led to
define the spectral mirror as:

A . K S0(4,C)
X" = Miggs C Myjgge

the moduli space of flat SO(4, C)-Higgs bundles over Gs whose spectral
covers have Galois group K.
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Proposition
The Hitchin map § : X" — B defines a smooth model for g¥ : XV — Ry,

The proof consists of showing that Im($)) = R3, and the smooth Hitchin fibers
are H'(b) 2 TY.

A topological model for X* is given by Char’(r, SO(4, C)). The same methods
used previously can be used here to describe it explicitly. Roughly speaking,
X" is obtained from X by replacing (¢g¥)~!(Y) by Sym*(Yc). For n = 2, the
Hilbert scheme is a length 2 thickening of the diagonal Y¢, so topologically:

Proposition

Hilb} (X") = Y¢ = Char(x, SL(2,C))

This confirms the mirror symmetry prediction. We expect that the same result
holds for higher n.

¢ This result suggests an approach to SYZ mirror symmetry, useful when a
singular fiber is covered by a smooth fiber: construct smooth models for
the mirrors as moduli spaces of flat Higgs bundles on the singular fiber.



Thank you!
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