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Flat Riemannian Geometry
A subgroup π ≤ Iso(Rn) := O(n) nRn is Bieberbach if π acts freely and
properly discontinuously on Rn, and Q := Rn/π is compact. Q is then a
compact flat Riemannian manifold with π1(Q) = π. There is an exact
sequence:

1→ Λ→ π → H → 1

where Λ := π ∩ Rn and H is the holonomy of π. Note that the n-torus T is a
Bieberbach manifold with trivial holonomy.

Bieberbach’s Theorems
1 Λ is a lattice and H is finite. Equivalently: there is a finite normal covering

T→ Q which is a local isometry.
2 Isomorphisms between Bieberbach subgroups of Iso(Rn) are

conjugations of Aff(Rn). Equivalently: two Bieberbach manifolds of the
same dimension and with isomorphic π1’s are affinely isomorphic.

3 There are only finitely many isomorphism classes of Bieberbach
subgroups of Iso(Rn). Equivalently: there are only finitely many affine
classes of Bieberbach manifolds of dimension n.
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Platycosms

Bieberbach manifolds of dimension 3 are called platycosms.

Classification of Platycosms
There are only 10 affine equivalence classes of platycosms. Out of those, 4
are non-orientable. The orientable ones are:

1 The torocosm G1 = T with HG1 = {0}
2 The dicosm G2 with HG2 = Z2

3 The tricosm G3 with HG3 = Z3

4 The tetracosm G4 with HG4 = Z4

5 The hexacosm G5 with HG5 = Z6

6 The didicosm, a.k.a. the Hantzsche-Wendt manifold G6 with
HG6 = Z2 × Z2 =: K

HG6 =

〈
A =

 1 0 0
0 −1 0
0 0 −1

 ,B =

 −1 0 0
0 1 0
0 0 −1

〉 ⊂ SO(3)
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G2-manifolds

Let (M7, g) be an oriented Riemannian manifold. A G2-structure on M is an
element ϕ ∈ Ω3(M,R) such that ∀x ∈ M, ϕx is stabilized by G2 ⊂ SO(7) acting
on Λ3T∗M (we say that ϕ is positive). Equivalently, a G2-structure is a
reduction of the structure group of the frame bundle FM → M down to G2.

Properties of G2

• G2 is the compact real Lie group with Lie algebra g2.
• dim GL(7)− dim G2 = 49− 14 = 35 = dim Λ3T∗M. The set of positive

3-forms is open in Λ3T∗M.
• Connected Lie subgroups: U(1) ⊂ SU(2) ⊂ SU(3) ⊂ G2

A G2-structure is closed if dϕ = 0, and torsion-free if d ? ϕ = 0.

Theorem
Hol(M, g) ⊆ G2 ⇐⇒ dϕ = d ? ϕ = 0 ⇐⇒ ∇gϕ = 0
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Basic model
Let N = C2 × T3, g the flat product metric, (ω1, ω2, ω3) the flat hyperkähler
structure of C2, and dx1, dx2, dx3 a basis of flat 1-forms on T3. Then:

ϕ =

3∑
i=1

dxi ∧ ωi + dx1 ∧ dx2 ∧ dx3

is a closed, torsion-free G2-structure, so g is a flat G2-metric.

• Here is a slightly better model: let N = C2 × G6 and choose local flat
sections dxi of T∗G6. Then µ = dx1 ∧ dx2 ∧ dx3 is a global flat 3-form, and if
one chooses (ω1, ω2, ω3) to transform by the inverse action of K on a flat
trivialization of T∗G6, then η =

∑
dxi ∧ ωi is also globally defined. Thus

ϕ = η + µ is a closed G2-structure. In fact, it is also torsion-free, and the
holonomy of the G2-metric is K.

• Now let Γ ≤ SU(2) and K act (compatibly) on C2 and consider the flat
bundle M̃ = C̃2/Γ×K G6 → G6. There is an induced closed, torsion-free
G2-structure ϕ̃ on M̃ whose holonomy is SU(2) oK ⊂ G2 [Acharya 99].

In the last example we have allowed the ωi’s to have non-trivial monodromy by
replacing C2 by a flat rank 2 complex vector bundle over the platycosm Q
whose monodromy is the ADE group K.
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ADE G2-orbifolds

Let (Q, δ) be an oriented platycosm with π1(Q) = π. Fix the following data:

ADE/G2 data for (Q, δ)
• p : V → Q a rank 1 quaternionic vector bundle
• Γ ≤ Sp(1) a finite subgroup (and hence a fiberwise action on V)
• H ⊂ TV a flat quaternionic connection on V compatible with the Γ-action
• µ ∈ Ω3(Q) a flat volume form
• η ∈ Ω2(V/Q)⊗ Γ(Q,H∗) a Γ-invariant “vertical hyperkähler element"

This can be chosen in most cases. We then call M = V/Γ an ADE
G2-platyfold of type Γ. The G2-structure on M can be written as ϕ = η + µ.

• Let V = Ker(dp) be the vertical space. There is a decomposition
d = dV + dH and, moreover:

dϕ = 0 ⇐⇒ dVη = dVµ = dHη = dHµ = 0
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Donaldson’s theorem
A closed G2-structure on a coassociative fibration M → Q with orientation
compatible with those of M and Q is equivalent to the following data:

1 A connection H ⊂ TM on M → Q

2 A hypersymplectic element η ∈ H∗ ⊕ Λ2V∗

3 A “horizontal volume form” µ ∈ Λ3H∗

satisfying the following equations:

dHη = 0 dHµ = 0
dVη = 0 dVµ = −FH(η)

where FH is the curvature operator of H.

We call (H, η, µ) Donaldson data for M → Q.
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Slodowy slices and the Kronheimer family

Fix (M0 → Q, ϕ0) an ADE G2-platyfold of type Γ, with Donaldson data
(H0, η0, µ0). We have ϕ0 = η0 + µ0.
We would like to define a deformation family f : F → B with central fiber M0
and such that ϕ0 extends to a section of Ω3,+

cl (F/B). That is, ∀s ∈ B,
Ms := f−1(s) has a closed G2-structure.

• The deformation space of C2/Γ can be embedded in gc: choose x ∈ gc

nilpotent and subregular, complete it to a sl2(C)-triple (x, h, y) and
consider the Slodowy slice: S := x + zc(y), where zc(y) is the centralizer of
y. Then the adjoint quotient ad : gc → hc/W restricts to:

Ψ : S → hc/W

a flat map with Ψ−1(0) = C2/Γ. This is the C∗-miniversal deformation of
C2/Γ.
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Slodowy slices and the Kronheimer family

• Fix ω ∈ h. The Kronheimer family Kω → hc is a simultaneous resolution of
all fibers of Ψ over the projection hc → hc/W. All hyperkähler ALE-spaces
are fibers of Kω for some ω.
We enlarge the family slightly in order to include all ω’s: let Z be the
adjoint representation of SU(2). Consider

⊔
ω

(
Kω → {ω} × hc

)
. This

gives us a family of hyperkähler ALE-spaces K → hZ := h⊗ Z.
• The idea to construct f : F → B is to define a "fibration of Kronheimer

families" over Q. Then a section of the fibration will pick a hyperkähler
deformation of C2/Γ changing with x ∈ Q. The condition for Donaldson
data will be a condition on the section, and B will be the space of allowed
sections.

The existence of f will be a consequence of the following result:
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Hyperkähler deformations over a platycosm

There is a rank 3 dim(h) flat vector bundle t : E → Q and a family u : U → E of
complex surfaces, equipped with Donaldson data:

• H : u∗TE → TU a connection
• η ∈ Ω2(U/E)⊗ u∗Ω1(E)

• µ ∈ u∗Ω3(E)

The family has the following properties:

1 U|0(Q)
∼= M0

2 (η + µ)|M0 = ϕ0

3 ∀x ∈ Q we have U|t−1(x)
∼= K

where 0 : Q→ E denotes the zero-section.
Moreover, given a flat section s : Q→ E , let Ms := u−1(s(Q)). Then the
restrictions (η|Ms , µ|Ms ,H|Ms) satisfy Donaldson’s criteria, and hence define a
closed G2-structure ϕs := (η + µ)|Ms on Ms.
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Sketch of proof:
q : U u→ E t→ Q

1 Construct the flat bundle t : E → Q: Choose a flat trivialization of Q
common to V and T∗Q. Glue h⊗ T∗Ui ∼= hZ using cocycle of T∗Q.

2 Construct the family of complex surfaces u : U → E : Pullback K → hZ by
local maps ψi : Ui × hZ → hZ . Glue using cocycle of V.

3 Construct Donaldson data (η, µ,H) on U :
• µ ∈ Ω0,3(U) is just a pullback from Q.
• η ∈ Ω2,1(U) is constructed locally by wedging ψ∗

i ω
a
unf with local sections

µa ∈ t∗Ω1(Ui), a = 1, 2, 3. Gluing construction from the previous step
guarantees this is well-defined globally.

• H is the most delicate step. It is essentially determined from a connection Hq

on q : U → Q, which is in turn constructed from H0 through the dilation action
of R3 on hZ .

4 Induce Donaldson data on Ms := u−1(s(Q)), where s is a flat section of t
(“flat spectral cover”)

5 B = Γflat(Q, E) and the family f : F → B is the pullback of U by the
tautological map τ : Q× Γflat(Q, E)→ E . �
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The Hantzsche-Wendt G2-platyfold
Our main example will be the Hantzsche-Wendt G2-platyfold

M := C2/Γ×K G6

especially when Γ = Z2. Among the ADE G2-platyfolds, this is the only
possible N = 1 background. This is because Hol(M̃) = SU(2) oK cannot be
conjugated to a subgroup of SU(3), while all others fix a direction in R7.
• From the theorem, when Γ = Z2, the deformation space is
B = Γ(G6,T∗G6 ⊗ u(1)). The moduli spaceMG2 is determined from the
symmetries of the cover by (B/Z2)K. Topologically, it is given by

MG2 = Y := the three positive axes in R3

This agrees with a computation by D. Joyce [Joyce 00].
• The M-theory moduli spaceMC

G2
is obtained by adding the holonomies of

C-fields, which are elements of exp(iu(1)) = R/2πZ. ThusMC
G2

is the
complexification ofMG2 , given by a trident consisting of three copies of C
touching at a point. We write this as:

MC
G2
∼= YC
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M-theory/IIA duality

The string duality we will use relates geometric structures on a G2-space
(M, ϕ) and a "dual" Calabi-Yau threefold X.
Suppose Q ⊂ M is an associative submanifold (i.e., ϕ|Q = dvolQ) and U(1)
acts by isometries on M fixing Q. Then its IIA dual is

X := M/U(1)

The Calabi-Yau structure on X is required to have a real structure such that,
under the projection map d : M → X, d(Q) ∼= Q is a totally real special
Lagrangian submanifold. There is also a condition on the behavior of the
metric near Q ⊂ X.

• The case when M → Q is an ADE G2-orbifold of type Γ corresponds to
the "large volume limit" on X: essentially, X = T∗Q with a semi-flat
Calabi-Yau metric that blows-up along Q in a specified way.

• When Γ = Zn this signals there is a stack of n D6-branes “wrapping”
Q ⊂ T∗Q.
Thus we expect the moduli spaceMIIA to parametrize special Lagrangian
deformations of Q and the (still undefined) data of n D6-branes on Q.
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Hermitian-Yang-Mills Equations
Here is a more precise description. The supersymmetry condition for type IIA
strings on T∗Q with n D6-branes is given by the Hermitian-Yang-Mills (HYM)
equations: {

F2,0 = 0
ΛF = 0 (1)

Here F is the curvature of a SU(n)-connection A on a holomorphic vector
bundle E over T∗Q endowed with a hermitian metric, and Λ is the Lefschetz
operator of contraction by the Kähler form. Note that because A is hermitian,
the first equation implies F0,2 = F2,0 = 0.
The further condition that the D6-branes "wrap" Q is obtained by dimensional
reduction of (1) down to Q. This yields: FA = θ ∧ θ

DAθ = 0
DA ? θ = 0

(2)

for a SU(n)-connection A on a complex vector bundle E → Q and a "Higgs
field" θ ∈ Ω1(Q,Ad(E)). We call this the Pantev-Wijnholt (PW) system - see
also [Donaldson 87] and [Corlette 88].
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The IIA moduli space parametrizes solutions of PW. Recall the following
result:

Donaldson-Corlette Theorem
Let G be a semisimple algebraic group and K a maximal compact subgroup.
Let (Q, g) be a compact Riemannian manifold with fundamental group π, and
let (Q̃, g̃) be its universal cover. Fix a homomorphism ρ : π → G and let
h : Q̃→ G/K be a ρ-equivariant map. Then the following are equivalent:

1 h : Q̃→ G/K is a harmonic map of Riemannian manifolds
2 The Zariski closure of ρ(π) is a reductive subgroup of G (i.e., ρ is

semisimple)

Moreover, if ρ is irreducible, the harmonic map is unique.

This result allows us to prove:

Proposition
Solutions to PW are the same as flat reductive bundles on Q. It follows that
MIIA is the character variety:

Char(Q,G) := Hom(π,G)//G
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The Hantzsche-Wendt Calabi-Yau
The IIA dual of M is the Hantzsche-Wendt Calabi-Yau X = T∗G6. We now
describe some of its properties:
• Character Variety: For Γ = Z2:

MIIA(X) = Char(G6, SL(2,C)) ∼= YC

which matchesMC
G2

(M). There are similar descriptions for higher n.
• SYZ fibration: Recall there is a finite Galois cover T→ G6. Since TT is a

trivial flat bundle, we can identify all fibers with R3. The map TT→ R3

induces (TT)/K→ R3/K, where K acts via the differential action. We
then prove that (TT)/K ∼= T∗G6. Thus, we have:

g : X → R3
Y

where R3
Y := R3/K is called the Y-vertex. Geometrically, it is a cone over

a thrice-"punctured" two-sphere. The isotropy is Z2 at the punctures and
K at the vertex.

• It is known [Loftin, Yau, Zaslow 05] that R3
Y admits affine Hessian metrics

solving the Monge-Ampère equation, and so T∗R3
Y admits semi-flat CY

metrics.
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A G2-conifold transition?

Figure: Left: Borromean rings. Right: Three fully linked unknots.
LATEX code by Dan Drake, available at http://math.kaist.ac.kr/∼drake
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Flat Higgs bundles

We will now discuss special solutions of the PW system.

Definition

A flat GL(r,C)-Higgs bundle on a compact Riemannian manifold Q is a tuple
(E, h,A, θ) consisting of a complex rank r vector bundle E → Q with a
hermitian metric h, a unitary flat connection A ∈ Ω1(End(E)), and a C∞Q -linear
bundle map θ : Γ(E)→ Γ(E ⊗ T∗Q) satisfying θ ∧ θ = 0, and such that the
following flatness conditions are satisfied:

• DAθ = 0
• DA ? θ = 0

If furthermore (Q, δ) is flat, we require θ to be compatible with δ.
The condition θ ∧ θ = 0 means that the three matrices θ1, θ2, θ3 are
simultaneously diagonalizable. So we can describe a flat Higgs bundle in
terms of flat spectral data.
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Flat spectral data

Definition
Let (E, h,A, θ) be a flat Higgs bundle over Q. The Spectral Cover associated to
θ is the subvariety Sθ ⊂ T∗Q defined via its characteristic polynomial:

Sθ = {(q, λ); det(λ⊗ 1E − θ) = 0} (3)

Definition: Flat Spectral Data
Let (E, h,A, θ) be a rank n flat Higgs bundle over a platycosm (Q, δ). Assume θ
is regular. We define flat spectral data to be:

1 A n-sheeted covering map π : Sθ → Q.
2 A line bundle L → Sθ determined by the eigenlines of θ
3 A hermitian metric h̃ on L determined by h

4 A hermitian flat connection Ã on L determined by A

5 A Lagrangian embedding ` : Sθ → T∗Q satisfying Im(d`) ⊂ H∗δ .
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Flat Spectral Correspondence
There is an equivalence:

FlatHiggs←→ FlatSpec

between flat Higgs bundles and flat spectral data.

Flat Higgs bundles admit a Hitchin map similar (although not as nice) to their
holomorphic cousins:

Definition
Let pi(θ) be the coefficient of λn−i in the expansion of det(λ1− θ) ∈ C[λ]. The
Hitchin map is defined by:

H : FlatHiggs→
n⊕

i=1

H0(Q, (T∗Q)⊗i)

(E, h,A, θ) 7→ (p1(θ), . . . , pn(θ))

An important property is that the spectral cover Sθ depends only on H(θ).

20 / 25



SYZ Mirror Symmetry

Recall the Hantzsche-Wendt Calabi-Yau has a SYZ fibration g : X → R3
Y,

obtained as a K-quotient of the smooth sLag torus fibration d : T∗T→ R3.
We would like to describe the mirror SYZ fibration g∨ : X∨ → R3

Y.

• SYZ Mirror Symmetry tells us that, away from singular fibers, g∨ is given
by the dual torus fibration: if Tb = g−1(b) is a smooth fiber, then
(g∨)−1(b) = Hom(π1(Tb),U(1)) =: T∨b parametrizes U(1)-local systems
on Tb.
Our proposal: g∨ should be obtained as an appropriate K-quotient of the
SYZ mirror of d, d∨ : (C∗)3 → R3.

• There is a natural induced action of K on T∨ by pullback of local systems.
This is not a free action. Our proposed mirror is then an orbifold:

g∨ : [(C∗)3/K]→ R3
Y
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Mirror symmetry maps IIA string theory on X to IIB string theory on X∨. At the
level of branes, the mirror map sends a D6-brane on X to a D3-brane on X∨.
Mathematically, it is given by a Fourier-Mukai functor

FM : Fuk(X)→ D(X∨)

and sends a U(1)-local system on a sLag fiber Qb ⊂ X to a skyscraper sheaf
over the associated point on Q∨b . More generally, it send a SU(n)-local system
on Qb to a direct sum of skyscraper sheaves supported on Q∨b . Thus, Mirror
Symmetry for branes predicts an identification:

Char(π, SL(n,C))︸ ︷︷ ︸
MIIA

∼= Hilbn
Y(X∨)︸ ︷︷ ︸
MIIB

where Hilbn
Y(X∨) is the punctual Hilbert scheme supported at the vertex fiber

over R3
Y.
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The Spectral Mirror
To avoid working with Hilbert schemes of orbifolds, we will construct a crepant
resolution X∧ of X∨ that gives the correct moduli space. As a bonus, we will
get a new interpretation of SYZ.
The idea is to use mirror symmetry and the flat spectral construction to build
X∧ as the solution to a moduli problem on X. For this reason, we call X∧ the
spectral mirror.
• Recall that a smooth fiber T∨b of X∨ parametrizes local systems (Lb,Ab)

on the sLag Tb ↪→ X = T∗G6. Recall also that ∀b there is an unramified
K-cover pb : Tb → G6. Thus (pb,Lb,Ab) can be thought as spectral data
over G6.

• Assume ∀b, (Lb,Ab) is a deformation of a local system (L0,A0) on G6.
Then we are looking at the moduli space of K-spectral data over G6. By
the flat spectral correspondence, this is equivalent to a certain moduli
space of flat Higgs bundles. If we unpack the Higgs data, we are led to
define the spectral mirror as:

X∧ :=MK
Higgs ⊂M

SO(4,C)
Higgs

the moduli space of flat SO(4,C)-Higgs bundles over G6 whose spectral
covers have Galois group K.
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Proposition
The Hitchin map H : X∧ → B defines a smooth model for g∨ : X∨ → R3

Y.

The proof consists of showing that Im(H) ∼= R3
Y and the smooth Hitchin fibers

are H−1(b) ∼= T∨b .
A topological model for X∧ is given by Char0(π, SO(4,C)). The same methods
used previously can be used here to describe it explicitly. Roughly speaking,
X∧ is obtained from X∨ by replacing (g∨)−1(Y) by Sym2(YC). For n = 2, the
Hilbert scheme is a length 2 thickening of the diagonal YC, so topologically:

Proposition

Hilb2
Y(X∧) ∼= YC = Char(π, SL(2,C))

This confirms the mirror symmetry prediction. We expect that the same result
holds for higher n.

• This result suggests an approach to SYZ mirror symmetry, useful when a
singular fiber is covered by a smooth fiber: construct smooth models for
the mirrors as moduli spaces of flat Higgs bundles on the singular fiber.
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Thank you!
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