
Local (complete noncompact) G2 holonomy spaces

Mark Haskins

University of Bath

joint with Lorenzo Foscolo and Johannes Nordström

Simons Collaboration Meeting, KITP April 2019

April 10, 2019



Local G2-spaces from local Calabi–Yau 3-folds

Main Theorem: Foscolo–H–Nordström arXiv:1709.04904

Let (B, g0, ω0,Ω0) be an irreducible asymptotically conical Calabi–Yau
3–fold asymptotic to the Calabi–Yau cone C(Σ) over a smooth
Sasaki–Einstein 5–manifold Σ. Let M7 → B6 be a principal U(1)–bundle
such that c1(M) 6= 0 but c1(M) ∪ [ω0] = 0 ∈ H4(B).

Then there exists ε0 > 0 such that for every ε ∈ (0, ε0) the noncompact
7–manifold M carries an S1–invariant torsion-free G2–structure ϕε such that
the Riemannian metric gε on M induced by ϕε is complete with (restricted)
holonomy equal to G2. Moreover gε collapses (with bounded curvature) as
ε→ 0 to (B, g0).

The asymptotic geometry of these metrics will be described in more detail
later in the talk; it generalises the asymptotic of ALF hyperKähler spaces
like (multi)-Taub-NUT and Atiyah–Hitchin metrics.

Physically our Theorem gives a very general existence result for M-theory
lifts of Type IIA supergravity solutions with only Ramond–Ramond flux (but
no D6-branes).



Why the Main Theorem is so powerful

� It works for any asymptotically conical (AC) Calabi–Yau 3-fold B
(independent of the details of the method used to find it).

� It does not rely on understanding any submanifold geometry of B, e.g.
special Lagrangian submanifolds of B. Currently we lack tools to
construct special Lagrangian 3-folds in general AC Calabi–Yau 3-folds.

� A single (relatively simple) condition to verify to guarantee a solution.
� In some cases (any small resolution) the condition is automatic;
� otherwise it places nontrivial constraints on the permitted Kähler classes

within the Kähler cone.
� In concrete cases we can work out those constraints explicitly, e.g.

B = KP1×P1 (see later slide).

� Complex Monge-Ampère methods are now able to construct many
asymptotically conical Calabi–Yau 3-folds.
� The most delicate part is in fact understanding Calabi–Yau cone metrics, or

equivalently Sasaki–Einstein metrics; recently a suitable notion of stability
has been proven necessary and sufficient.



Asymptotic geometry: from ALF to ALC

Key feature: the metric on an ALF space M4 like Taub–NUT is
asymptotically a circle bundle over an exterior domain in R3 (or in R3/Z2)
where the circle fibre has asymptotically constant length.

In higher dimensional generalisations, often called ALC spaces
(asymptotically locally conical), we:

� replace the base R3 with a Riemannian cone C = C (Σ)

� we take the cone C (Σ) to be Ricci-flat if we want to consider Ricci-flat
ALC spaces

� C (Σ) should be a Calabi–Yau cone if we want to consider ALC G2 spaces

� C (Σ) is Calabi–Yau iff Σ is Sasaki–Einstein.

� Existence of Sasaki–Einstein metrics has close connections to existence of
KE metrics with positive scalar curvature. Many Sasaki–Einstein metrics
are now known to exist.

The G2–holonomy metrics produced by our Main Theorem are all ALC
metrics in this sense.



Application I: cohomogeneity 1 G2–spaces Mm,n

We already find infinitely many diffeomorphism types of cohomogeneity
one simply connected ALC G2–spaces using a single AC CY 3-fold KP1×P1 .

Theorem (FHN). For any pair of coprime integers m, n satisfying mn > 0,
the simply connected noncompact 7−manifold Mm,n which is the total space
of the principal circle bundle over KP1×P1 with first Chern class (m,−n)
carries a 1-parameter family gε,m,n of ALC G2–metrics.
� Each metric admits a cohomogeneity one action of SU(2)×SU(2)×U(1).
� As ε→ 0 gε,m,n collapses to KP1×P1 endowed with the unique AC

Calabi–Yau metric g0,m,n with Kähler class n [ω1] + m [ω2], where [ωi ]
denote the classes of the Fubini–Study metrics on each factor of P1 × P1.
g0,m,n admits a cohomogeneity one action of SU(2)× SU(2).

� Mm,n is diffeomorphic to H2(n+m) × S3, where H2(n+m) is the total space
of the R2-bundle on S2 with Euler class 2(n + m). In particular the
diffeomorphism type depends only on m + n.

� However, for different choices of (m, n) the metrics can never be
isometric; in particular we obtain finitely many different families of
G2–metrics on the same underlying smooth manifold.



AC CY 3-folds via crepant resolutions of cones

Theorem. Let π : B → C(Σ) be a crepant resolution of the CY cone
(C(Σ), ωC,ΩC) with complex volume form Ω0 extending π∗ΩC. Then in
every cohomology class on B containing Kähler metrics there exists a unique
AC Kähler Ricci-flat metric ω0 on B with 1

6ω
3
0 = 1

4ReΩ0 ∧ ImΩ0. Moreover,
(B, ω0,Ω0) is asymptotic to the Calabi–Yau cone C(Σ) with rate −6 if the
Kähler class [ω0] is compactly supported and with rate −2 otherwise.

(A resolution of singularity is crepant if it has trivial canonical bundle).

Existence proof in various cases: Joyce (ALE), van Coevering, Goto.
Optimal uniqueness by Conlon–Hein.
� Theorem reduces problem of constructing AC CY metrics to

� construction of CY cones;
� classification of their crepant resolutions.

� Toric setting:
� Calabi–Yau cone metrics completely understood by Futaki–Ono–Wang
� toric crepant resolutions correspond to nonsingular subdivisions of the fan of

the singular toric variety
� Leads to existence of infinitely many toric AC CY 3-folds.



Calabi–Yau cones & Sasaki–Einstein metrics

� Existence of Calabi–Yau cone metrics, or equivalently, Sasaki–Einstein
manifolds, is a difficult problem. In the regular & quasi-regular cases, it is
equivalent to the existence of Kähler–Einstein (orbifold) metrics with
positive scalar curvature. Many examples known by work of Tian, Kollár,
Boyer–Galicki and many others; mostly related to the α-invariant.

� Explicit irregular examples were first constructed by physicists,
Gauntlett–Martelli–Sparks–Waldram.

� Recently Collins–Székelyhidi proved existence of a CY cone metric on
C(Σ) is implied by K-stability. In the conical setting, K-stability is an
algebro-geometric notion for the affine variety C(Σ) ⊂ CN with an
isolated singularity at the origin together with a holomorphic
(C∗)m–action generated by a vector field ξ which acts with positive
weights on the coordinate functions of CN .

� K-stability involves all possible degenerations of (C(Σ), ξ); so difficult to
check in practice. If a large automorphism group exists only equivariant
degenerations need be considered; checking K-stability can then be
reduced to combinatorial calculations. e.g. for complexity one actions.



Calabi–Yau cones with small resolutions

� B → C(Σ) is a small resolution, if the exceptional set contains no divisors
(only curves). Then H4(B) = (0) and the condition from our Main
Theorem c1(M) ∪ [ω0] = 0 ∈ H4(B) is automatic.

� C (Σ) admits a small resolution ⇒ singularity is terminal and hence
so-called compound Du Val (cDV):

a 3-fold hypersurface singularity {f (x , y , z) + tg(x , y , z , t) = 0} ⊂ C4,
where {f = 0} ⊂ C3 defines a Du Val (ADE) singularity.

� Can use deformations of partial resolutions of DuVal singularities to
construct small resolutions of cDV singularities (Brieskorn, Pinkham,
Friedman, Katz, Morrison).

� For p ≥ 1 consider the compound Ap singularity Xp ⊂ C4 defined by

x2 + y2 + zp+1 − wp+1 = 0.

Xp admits Kähler small resolutions Bp. The exceptional set is a chain of
p rational curves meeting transversely. π1(Bp) = 0 and its nonzero Betti
numbers are b0(Bp) = 1, b2(Bp) = p.



Local G2–spaces via small resolutions

� As an application of their K-stability result for CY cones
Collins–Székelyhidi proved: Xp admits a CY cone metric with Reeb vector
field ξ acting on C4 with weights 3

4 (p + 1, p + 1, 2, 2).
� Thus Xp = C(Σ) is the Calabi–Yau cone over a quasi-regular

Sasaki–Einstein structure on Σ ' #p

(
S2 × S3

)
.

� In particular any small resolution Bp admits a p-parameter family of
Calabi–Yau structures (ω0,Ω0) asymptotic to Xp = C(Σ) with rate −2.

Hence our Main Theorem gives

Theorem Let M7 → Bp be a principal circle bundle over a small resolution
Bp. (By passing to a finite cover we can assume that c1(M) is a primitive
element in the lattice H2(B;Z) so that M is simply connected.) Then M
carries a p-dimensional family of complete ALC G2–metrics up to scale.

Moreover, for p, p′ ≥ 2 with p 6= p′ the ALC G2–manifolds M and M ′

constructed in this way are not diffeomorphic.

In particular, there exist families of ALC G2–manifolds of arbitrarily high
dimension.



The main theorem again

Main Theorem: Foscolo–H–Nordström arXiv:1709.04904

Let (B, g0, ω0,Ω0) be an irreducible asymptotically conical Calabi–Yau
3–fold asymptotic to the Calabi–Yau cone C(Σ) over a smooth
Sasaki–Einstein 5–manifold Σ. Let M7 → B6 be a principal U(1)–bundle
such that c1(M) 6= 0 but c1(M) ∪ [ω0] = 0 ∈ H4(B).

Then there exists ε0 > 0 such that for every ε ∈ (0, ε0) the noncompact
7–manifold M carries an S1–invariant torsion-free G2–structure ϕε such that
the Riemannian metric gε on M induced by ϕε is complete with (restricted)
holonomy equal to G2 and has asymptotically locally conical (ALC)
geometry at infinity . Moreover gε collapses (with bounded curvature) as
ε→ 0 to (B, g0).

We need to look in detail at the equations for circle-invariant torsion-free
G2–structures on principal circle bundles M → B as first considered by
Apostolov–Salamon (maths) and various physicists, e.g.
Kaste–Minasian–Petrini–Tomasiello.



Circle-invariant torsion-free G2–structures
Any circle-invariant G2–structure ϕ on M7 → B6 a principal circle bundle
can be written as 

ϕ = θ ∧ ω + h
3
4ReΩ,

∗ϕϕ = −h1/4θ ∧ ImΩ +
1

2
hω2,

gϕ =
√
h gB + h−1θ2

where (ω,Ω) is an SU(3)–structure on B, gB metric induced by (ω,Ω), h is
a positive function on B and θ is a connection 1-form on M → B.

ϕ is torsion-free, i.e dϕ = 0, d ∗ ϕ = 0, iff{
dω = 0, d

(
h

3
4ReΩ

)
= −dθ ∧ ω,

d
(
h

1
4 ImΩ

)
= 0, 1

2dh ∧ ω
2 = h

1
4 dθ ∧ ImΩ.

(AS)

� Some freedom in choice of conformal factor in front of gB . Our choice is
motivated by fact that dϕ = 0⇒ dω = 0, so B is symplectic.

� Row 1 of (AS) ⇒ [dθ] ∪ [ω] = c1(M) ∪ [ω] = 0 ∈ H4(B).



Intrinsic torsion of solutions to (AS) eqns

Instrinsic torsion of SU(3)–structures. For any an SU(3)–structure (ω,Ω)
on B6 there exist functions w1, ŵ1, primitive (1, 1)–forms w2, ŵ2, a 3-form
w3 ∈ Ω3

12(B) and 1-forms w4,w5 on B such that

dω = 3w1ReΩ + 3ŵ1ImΩ + w3 + w4 ∧ ω,
dReΩ = 2ŵ1ω

2 + w5 ∧ ReΩ + w2 ∧ ω,
dImΩ = −2w1ω

2 + w5 ∧ ImΩ + ŵ2 ∧ ω.

The only nonzero torsion components of a solution of (AS) are

w5 = − 1
4h
−1dh, w2 = −h− 3

4κ0,

where κ0 is the projection of the curvature dθ of θ onto the space of
primitive (1, 1)–forms. Moreover,

(
h, θ
)

satisfies

d
(

4
3h

3
4

)
= ∗ (dθ ∧ ReΩ) , dθ ∧ ω2 = 0.

The associated almost complex structure is non-integrable whenever w2 6= 0.



The adiabatic limit: collapsing the circle fibres

Let ϕε be a family of S1–invariant torsion-free G2–structures on M → B
with circle fibres shrinking to zero length as ε→ 0. By rescaling along the
fibres we write

ϕε = ε θε ∧ ωε + (hε)
3
4ReΩε, gϕε

=
√
hε gε + ε2h−1ε θ2ε ,

where gε is the metric on B induced by (ωε,Ωε). (AS) system ⇐⇒

dωε = 0, dReΩε = − 3
4h
−1
ε dhε ∧ ReΩε − ε(hε)−

3
4 dθε ∧ ωε, εdθε ∧ ω2

ε = 0,

dImΩε = − 1
4h
−1
ε dhε ∧ ImΩε,

1
2dhε ∧ ω

2
ε = ε (hε)

1
4 dθε ∧ ImΩε.

� In the formal limit ε→ 0 final equation implies h0 = lim hε is constant
and wlog h0 = 1. Then (ω0,Ω0) is Calabi–Yau, i.e. dω0 = 0, dΩ0 = 0.

Now want to approximate (hε, ωε,Ωε, θε) for ε > 0 but small by linearising
these equations on the limiting CY 3-fold (B, ω0,Ω0). So we write

hε = 1 + ε h + O(ε2), ε θε = ε θ + O(ε2),

ωε = ω0 + ε σ + O(ε2), Ωε = Ω0 + ε (ρ+ i ρ̂) + O(ε2).



The linearisation of Hitchin’s duality map

The real part ReΩ of the complex volume form Ω determines uniquely the
imaginary part ImΩ because in real dimension 6, ReΩ0 is a stable form, i.e.
its orbit in Λ3(R6)∗ under GL(6,R) is open. There is an explicit formula for
the linearisation of the map ReΩ 7→ ImΩ in terms of the Hodge star ∗ and
the decomposition of forms into types.
Lemma. Given an SU(3)–structure (ω,Ω) on B, let ρ ∈ Ω3(B) be a form
with small enough C 0–norm so that ReΩ + ρ is still a stable form.
Decomposing into types we write ρ = ρ6 + ρ1⊕1 + ρ12. Then the image ρ̂ of
ρ under the linearisation of Hitchin’s duality map at ReΩ is

ρ̂ = ∗(ρ6 + ρ1⊕1)− ∗ρ12.

Recall that Λ2R6 = Λ2
1 ⊕ Λ2

6 ⊕ Λ2
8 and Λ3R6 = Λ3

6 ⊕ Λ3
1⊕1 ⊕ Λ3

12 where

Λ2
1 = Rω, Λ2

6 = {XyReΩ |X ∈ R6} and Λ2
8 are primitive forms of type (1, 1)

Λ3
6 = {X [ ∧ ω |X ∈ R6}, Λ3

1⊕1 = RReΩ⊕RImΩ and Λ3
12 are primitive forms

of type (1, 2) + (2, 1), Λ3
12 = {S∗ReΩ |S ∈ Sym2(R6),SJ + JS = 0}.



The linearised Apostolov–Salamon equations

Then (σ, ρ+ i ρ̂, h, θ) satisfies the following system of linear equations
dσ = 0, dρ = − 3

4dh ∧ ReΩ0 − dθ ∧ ω0, dθ ∧ ω2
0 = 0,

d ρ̂ = − 1
4dh ∧ ImΩ0,

1
2dh ∧ ω

2
0 = dθ ∧ ImΩ0,

ω0 ∧ (ρ+ i ρ̂) + σ ∧ Ω0 = 0, ReΩ0 ∧ ρ̂+ ρ ∧ ImΩ0 = 2σ ∧ ω2
0 .

(LAS)

� The last 2 equations are the linearisation of the nonlinear constraints for
an SU(3)–structure, i.e. ω ∧ Ω = 0 and 1

6ω
3 = 1

4ReΩ ∧ ImΩ.
� Assuming (B, ωε) is a fixed symplectic manifold simplifies (LAS) (σ = 0).
� If (h, θ) solves (LAS) then it is an abelian Calabi–Yau monopole on B, i.e.

∗dh = dθ ∧ ReΩ0, dθ ∧ ω2
0 = 0.

� Since dReΩ = 0, h is harmonic.
� In many cases, e.g. B complete and h bounded, h must be constant.
� Then θ is an abelian Hermitian Yang-Mills connection, i.e. dθ is a primitive

(1, 1)-form.



Constructing an approximate solution

A Calabi–Yau monopole (h, θ) determines an infinitesimal deformation ρ+ i ρ̂
of the complex volume form Ω0 by solving the linear inhomogeneous system

dρ = − 3
4dh ∧ ReΩ0 − dθ ∧ ω0, d ρ̂ = − 1

4dh ∧ ImΩ0.

In the Hermitian Yang-Mills case (h = 1) the first equation ⇒
� ϕε = ReΩ0 + ε(θ ∧ ω0 + ρ) are all closed G2–structures (ε suff small)
� c1(M) ∪ [ω0] = [dθ] ∪ [ω0] = 0 ∈ H4(B).

We consider instead the inhomogeneous linear elliptic system

dρ = −dθ ∧ ω0 = ∗dθ, d∗ρ = 0.

Because no decaying harmonic functions or 1-forms on B exist, any such
3-form ρ will be type Ω3

12, and so ρ̂ =−∗ρ; hence get a solution to the
previous system.Now use elliptic Fredholm analysis on AC spaces to analyse
obstructions to solve

(d + d∗)ρ = ∗dθ
and show these obstructions vanish by the Chern class assumption. (It turns
out we can find a HYM connection θ with no Chern class assumption.)



Proof strategy to correct approx to true solution

� Understand how to solve the linearised Apostolov–Salamon equations on
AC manifold B in weighted Holder spaces for appropriate choice of
weights.

� Understand appropriate gauge-fixing conditions to apply.

� Construct successive higher–order approximations ϕ
(k)
ε to torsion-free

structure with torsion of order O(εk+1).

This requires a full understanding of the mapping properties of the
linearisation of the Apostolov–Salamon equations.

� Construct a formal power series solution to the Apostolov–Salamon
equations.

� Prove convergence of this formal power series solution for ε sufficiently
small.


