Local (complete noncompact) G₂ holonomy spaces

Mark Haskins

University of Bath

joint with Lorenzo Foscolo and Johannes Nordström

Simons Collaboration Meeting, KITP April 2019

Local G₂-spaces from local Calabi–Yau 3-folds

Main Theorem: Foscolo-H-Nordström arXiv:1709.04904

Let $(B,g_0,\omega_0,\Omega_0)$ be an irreducible asymptotically conical Calabi–Yau 3–fold asymptotic to the Calabi–Yau cone $C(\Sigma)$ over a smooth Sasaki–Einstein 5–manifold Σ . Let $M^7\to B^6$ be a principal U(1)–bundle such that $c_1(M)\neq 0$ but $c_1(M)\cup [\omega_0]=0\in H^4(B)$.

Then there exists $\epsilon_0 > 0$ such that for every $\epsilon \in (0, \epsilon_0)$ the noncompact 7-manifold M carries an \mathbb{S}^1 -invariant torsion-free G_2 -structure φ_ϵ such that the Riemannian metric g_ϵ on M induced by φ_ϵ is complete with (restricted) holonomy equal to G_2 . Moreover g_ϵ collapses (with bounded curvature) as $\epsilon \to 0$ to (B, g_0) .

The asymptotic geometry of these metrics will be described in more detail later in the talk; it generalises the asymptotic of ALF hyperKähler spaces like (multi)-Taub-NUT and Atiyah–Hitchin metrics.

Physically our Theorem gives a very general existence result for M-theory lifts of Type IIA supergravity solutions with only Ramond–Ramond flux (but no D6-branes).

Why the Main Theorem is so powerful

- It works for any asymptotically conical (AC) Calabi-Yau 3-fold B (independent of the details of the method used to find it).
- It does not rely on understanding any *submanifold geometry* of *B*, e.g. *special Lagrangian submanifolds* of *B*. Currently we lack tools to construct special Lagrangian 3-folds in general AC Calabi–Yau 3-folds.
- A single (relatively simple) condition to verify to guarantee a solution.
 - □ In some cases (any small resolution) the condition is automatic;
 - otherwise it places nontrivial constraints on the permitted Kähler classes within the Kähler cone
 - □ In concrete cases we can work out those constraints explicitly, e.g. $B = K_{\mathbb{P}^1 \times \mathbb{P}^1}$ (see later slide).
- Complex Monge-Ampère methods are now able to construct many asymptotically conical Calabi-Yau 3-folds.
 - ☐ The most delicate part is in fact understanding *Calabi—Yau cone metrics*, or equivalently *Sasaki—Einstein metrics*; recently a suitable notion of *stability* has been proven necessary and sufficient.

Asymptotic geometry: from ALF to ALC

Key feature: the metric on an ALF space M^4 like Taub–NUT is asymptotically a circle bundle over an exterior domain in \mathbb{R}^3 (or in $\mathbb{R}^3/\mathbb{Z}_2$) where the circle fibre has asymptotically constant length.

In higher dimensional generalisations, often called ALC spaces (asymptotically locally conical), we:

- lacksquare replace the base \mathbb{R}^3 with a Riemannian cone $C=C(\Sigma)$
- we take the cone $C(\Sigma)$ to be Ricci-flat if we want to consider Ricci-flat ALC spaces
- lacksquare $C(\Sigma)$ should be a Calabi–Yau cone if we want to consider ALC G_2 spaces
- $C(\Sigma)$ is Calabi–Yau iff Σ is Sasaki–Einstein.
- Existence of Sasaki-Einstein metrics has close connections to existence of KE metrics with positive scalar curvature. Many Sasaki-Einstein metrics are now known to exist.

The G_2 -holonomy metrics produced by our Main Theorem are all ALC metrics in this sense.

Application I: cohomogeneity 1 G_2 -spaces $M_{m,n}$

We already find **infinitely many diffeomorphism types** of *cohomogeneity* one simply connected ALC G_2 -spaces using a single AC CY 3-fold $K_{\mathbb{P}^1 \times \mathbb{P}^1}$.

Theorem (FHN). For any pair of coprime integers m, n satisfying mn > 0, the simply connected noncompact 7—manifold $M_{m,n}$ which is the total space of the principal circle bundle over $K_{\mathbb{P}^1 \times \mathbb{P}^1}$ with first Chern class (m, -n) carries a 1-parameter family $g_{\epsilon,m,n}$ of ALC G_2 -metrics.

- Each metric admits a cohomogeneity one action of $SU(2) \times SU(2) \times U(1)$.
- As $\epsilon \to 0$ $g_{\epsilon,m,n}$ collapses to $K_{\mathbb{P}^1 \times \mathbb{P}^1}$ endowed with the unique AC Calabi–Yau metric $g_{0,m,n}$ with Kähler class $n\left[\omega_1\right] + m\left[\omega_2\right]$, where $\left[\omega_i\right]$ denote the classes of the Fubini–Study metrics on each factor of $\mathbb{P}^1 \times \mathbb{P}^1$. $g_{0,m,n}$ admits a cohomogeneity one action of SU(2) \times SU(2).
- $M_{m,n}$ is diffeomorphic to $H^{2(n+m)} \times S^3$, where $H^{2(n+m)}$ is the total space of the \mathbb{R}^2 -bundle on S^2 with Euler class 2(n+m). In particular the diffeomorphism type depends only on m+n.
- However, for different choices of (m, n) the metrics can never be isometric; in particular we obtain finitely many different families of G_2 -metrics on the same underlying smooth manifold.

AC CY 3-folds via crepant resolutions of cones

Theorem. Let $\pi: B \to C(\Sigma)$ be a crepant resolution of the CY cone $(C(\Sigma), \omega_C, \Omega_C)$ with complex volume form Ω_0 extending $\pi^*\Omega_C$. Then in every cohomology class on B containing Kähler metrics there exists a unique AC Kähler Ricci-flat metric ω_0 on B with $\frac{1}{6}\omega_0^3 = \frac{1}{4}\mathrm{Re}\Omega_0 \wedge \mathrm{Im}\Omega_0$. Moreover, (B, ω_0, Ω_0) is asymptotic to the Calabi–Yau cone $C(\Sigma)$ with rate -6 if the Kähler class $[\omega_0]$ is compactly supported and with rate -2 otherwise.

(A resolution of singularity is crepant if it has trivial canonical bundle).

Existence proof in various cases: Joyce (ALE), van Coevering, Goto. Optimal uniqueness by Conlon–Hein.

- Theorem reduces problem of constructing AC CY metrics to
 - construction of CY cones;
 - classification of their crepant resolutions.
- Toric setting:
 - □ Calabi–Yau cone metrics completely understood by Futaki–Ono–Wang
 - toric crepant resolutions correspond to nonsingular subdivisions of the fan of the singular toric variety
 - □ Leads to existence of infinitely many toric AC CY 3-folds.

Calabi-Yau cones & Sasaki-Einstein metrics

- Existence of Calabi–Yau cone metrics, or equivalently, Sasaki–Einstein manifolds, is a difficult problem. In the regular & quasi-regular cases, it is equivalent to the existence of Kähler–Einstein (orbifold) metrics with positive scalar curvature. Many examples known by work of Tian, Kollár, Boyer–Galicki and many others; mostly related to the α-invariant.
- Explicit irregular examples were first constructed by physicists, Gauntlett-Martelli-Sparks-Waldram.
- Recently Collins–Székelyhidi proved existence of a CY cone metric on $C(\Sigma)$ is implied by *K-stability*. In the conical setting, K-stability is an algebro-geometric notion for the affine variety $C(\Sigma) \subset \mathbb{C}^N$ with an isolated singularity at the origin together with a holomorphic $(\mathbb{C}^*)^m$ –action generated by a vector field ξ which acts with positive weights on the coordinate functions of \mathbb{C}^N .
- K-stability involves all possible degenerations of $(C(\Sigma), \xi)$; so difficult to check in practice. If a large automorphism group exists only *equivariant* degenerations need be considered; checking K-stability can then be reduced to combinatorial calculations. e.g. for *complexity one* actions.

Calabi-Yau cones with small resolutions

- $B \to C(\Sigma)$ is a *small* resolution, if the exceptional set contains no divisors (only curves). Then $H^4(B) = (0)$ and the condition from our Main Theorem $c_1(M) \cup [\omega_0] = 0 \in H^4(B)$ is automatic.
- $C(\Sigma)$ admits a small resolution \Rightarrow singularity is *terminal* and hence so-called compound Du Val (cDV):
 - a 3-fold hypersurface singularity $\{f(x,y,z)+tg(x,y,z,t)=0\}\subset\mathbb{C}^4$, where $\{f=0\}\subset\mathbb{C}^3$ defines a Du Val (ADE) singularity.
- Can use deformations of partial resolutions of DuVal singularities to construct small resolutions of cDV singularities (Brieskorn, Pinkham, Friedman, Katz, Morrison).
- For $p \geq 1$ consider the compound A_p singularity $X_p \subset \mathbb{C}^4$ defined by

$$x^2 + y^2 + z^{p+1} - w^{p+1} = 0.$$

 X_p admits Kähler small resolutions B_p . The exceptional set is a chain of p rational curves meeting transversely. $\pi_1(B_p)=0$ and its nonzero Betti numbers are $b_0(B_p)=1$, $b_2(B_p)=p$.

Local G₂-spaces via small resolutions

- As an application of their K-stability result for CY cones Collins–Székelyhidi proved: X_p admits a CY cone metric with Reeb vector field ξ acting on \mathbb{C}^4 with weights $\frac{3}{4}$ (p+1,p+1,2,2).
- Thus $X_p = C(\Sigma)$ is the Calabi–Yau cone over a quasi-regular Sasaki–Einstein structure on $\Sigma \simeq \#_p(S^2 \times S^3)$.
- In particular any small resolution B_p admits a p-parameter family of Calabi–Yau structures (ω_0, Ω_0) asymptotic to $X_p = C(\Sigma)$ with rate -2.

Hence our Main Theorem gives

Theorem Let $M^7 \to B_p$ be a principal circle bundle over a small resolution B_p . (By passing to a finite cover we can assume that $c_1(M)$ is a primitive element in the lattice $H^2(B;\mathbb{Z})$ so that M is simply connected.) Then M carries a p-dimensional family of complete ALC G_2 -metrics up to scale. Moreover, for $p, p' \geq 2$ with $p \neq p'$ the ALC G_2 -manifolds M and M' constructed in this way are not diffeomorphic.

In particular, there exist families of ALC G_2 -manifolds of arbitrarily high dimension.

The main theorem again

Main Theorem: Foscolo-H-Nordström arXiv:1709.04904

Let $(B,g_0,\omega_0,\Omega_0)$ be an irreducible asymptotically conical Calabi–Yau 3–fold asymptotic to the Calabi–Yau cone $C(\Sigma)$ over a smooth Sasaki–Einstein 5–manifold Σ . Let $M^7 \to B^6$ be a principal U(1)–bundle such that $c_1(M) \neq 0$ but $c_1(M) \cup [\omega_0] = 0 \in H^4(B)$.

Then there exists $\epsilon_0>0$ such that for every $\epsilon\in(0,\epsilon_0)$ the noncompact 7–manifold M carries an \mathbb{S}^1 –invariant torsion-free G_2 –structure φ_ϵ such that the Riemannian metric g_ϵ on M induced by φ_ϵ is complete with (restricted) holonomy equal to G_2 and has asymptotically locally conical (ALC) geometry at infinity . Moreover g_ϵ collapses (with bounded curvature) as $\epsilon\to 0$ to (B,g_0) .

We need to look in detail at the equations for *circle-invariant torsion-free* G_2 -structures on principal circle bundles $M \to B$ as first considered by Apostolov–Salamon (maths) and various physicists, e.g. Kaste–Minasian–Petrini–Tomasiello.

Circle-invariant torsion-free G₂-structures

Any circle-invariant G_2 -structure φ on $M^7 \to B^6$ a principal circle bundle can be written as

$$\begin{cases} \varphi = \theta \wedge \omega + h^{\frac{3}{4}} \mathrm{Re}\Omega, \\ *_{\varphi}\varphi = -h^{1/4}\theta \wedge \mathrm{Im}\Omega + \frac{1}{2}h\omega^{2}, \\ g_{\varphi} = \sqrt{h}g_{B} + h^{-1}\theta^{2} \end{cases}$$

where (ω,Ω) is an SU(3)–structure on B, g_B metric induced by (ω,Ω) , h is a positive function on B and θ is a connection 1-form on $M\to B$.

 φ is torsion-free, i.e $d\varphi = 0$, $d*\varphi = 0$, iff

$$\begin{cases} d\omega = 0, & d\left(h^{\frac{3}{4}} \mathrm{Re}\Omega\right) = -d\theta \wedge \omega, \\ d\left(h^{\frac{1}{4}} \mathrm{Im}\Omega\right) = 0, & \frac{1}{2} dh \wedge \omega^{2} = h^{\frac{1}{4}} d\theta \wedge \mathrm{Im}\Omega. \end{cases}$$
(AS)

- Some freedom in choice of conformal factor in front of g_B . Our choice is motivated by fact that $d\varphi = 0 \Rightarrow d\omega = 0$, so B is symplectic.
- Row 1 of (AS) \Rightarrow [$d\theta$] \cup [ω] = $c_1(M) \cup [\omega] = 0 \in H^4(B)$.

Intrinsic torsion of solutions to (AS) eqns

Instrinsic torsion of SU(3)–structures. For any an SU(3)–structure (ω, Ω) on B^6 there exist functions w_1, \hat{w}_1 , primitive (1, 1)–forms w_2, \hat{w}_2 , a 3-form $w_3 \in \Omega^3_{12}(B)$ and 1-forms w_4, w_5 on B such that

$$\begin{split} d\omega &= 3w_1 \mathrm{Re}\Omega + 3\hat{w}_1 \mathrm{Im}\Omega + w_3 + w_4 \wedge \omega, \\ d\mathrm{Re}\Omega &= 2\hat{w}_1\omega^2 + w_5 \wedge \mathrm{Re}\Omega + w_2 \wedge \omega, \\ d\mathrm{Im}\Omega &= -2w_1\omega^2 + w_5 \wedge \mathrm{Im}\Omega + \hat{w}_2 \wedge \omega. \end{split}$$

The only nonzero torsion components of a solution of (AS) are

$$w_5 = -\frac{1}{4}h^{-1}dh, \qquad w_2 = -h^{-\frac{3}{4}}\kappa_0,$$

where κ_0 is the projection of the curvature $d\theta$ of θ onto the space of primitive (1,1)-forms. Moreover, (h,θ) satisfies

$$d\left(\frac{4}{3}h^{\frac{3}{4}}\right) = *\left(d\theta \wedge \operatorname{Re}\Omega\right), \qquad d\theta \wedge \omega^2 = 0.$$

The associated almost complex structure is *non-integrable* whenever $w_2 \neq 0$.

The adiabatic limit: collapsing the circle fibres

Let φ_{ϵ} be a family of S¹-invariant torsion-free G₂-structures on $M \to B$ with *circle fibres shrinking to zero length* as $\epsilon \to 0$. By rescaling along the fibres we write

$$\varphi_{\epsilon} = \epsilon \, \theta_{\epsilon} \wedge \omega_{\epsilon} + (h_{\epsilon})^{\frac{3}{4}} \text{Re} \Omega_{\epsilon}, \qquad g_{\varphi_{\epsilon}} = \sqrt{h_{\epsilon}} \, g_{\epsilon} + \epsilon^{2} h_{\epsilon}^{-1} \theta_{\epsilon}^{2},$$

where g_{ϵ} is the metric on B induced by $(\omega_{\epsilon}, \Omega_{\epsilon})$. (AS) system \iff

$$d\omega_{\epsilon} = 0, \ d\text{Re}\Omega_{\epsilon} = -\frac{3}{4}h_{\epsilon}^{-1}dh_{\epsilon} \wedge \text{Re}\Omega_{\epsilon} - \epsilon(h_{\epsilon})^{-\frac{3}{4}}d\theta_{\epsilon} \wedge \omega_{\epsilon}, \ \epsilon d\theta_{\epsilon} \wedge \omega_{\epsilon}^{2} = 0,$$
$$d\text{Im}\Omega_{\epsilon} = -\frac{1}{4}h_{\epsilon}^{-1}dh_{\epsilon} \wedge \text{Im}\Omega_{\epsilon}, \quad \frac{1}{2}dh_{\epsilon} \wedge \omega_{\epsilon}^{2} = \epsilon(h_{\epsilon})^{\frac{1}{4}}d\theta_{\epsilon} \wedge \text{Im}\Omega_{\epsilon}.$$

■ In the formal limit $\epsilon \to 0$ final equation implies $h_0 = \lim h_\epsilon$ is constant and wlog $h_0 = 1$. Then (ω_0, Ω_0) is Calabi–Yau, i.e. $d\omega_0 = 0$, $d\Omega_0 = 0$. Now want to approximate $(h_\epsilon, \omega_\epsilon, \Omega_\epsilon, \theta_\epsilon)$ for $\epsilon > 0$ but small by linearising these equations on the limiting CY 3-fold (B, ω_0, Ω_0) . So we write

$$h_{\epsilon} = 1 + \epsilon h + O(\epsilon^2),$$
 $\epsilon \theta_{\epsilon} = \epsilon \theta + O(\epsilon^2),$ $\omega_{\epsilon} = \omega_0 + \epsilon \sigma + O(\epsilon^2),$ $\Omega_{\epsilon} = \Omega_0 + \epsilon (\rho + i\hat{\rho}) + O(\epsilon^2).$

The linearisation of Hitchin's duality map

The real part $\mathrm{Re}\Omega$ of the complex volume form Ω determines uniquely the imaginary part $\mathrm{Im}\Omega$ because in real dimension 6, $\mathrm{Re}\Omega_0$ is a *stable* form, i.e. its orbit in $\Lambda^3(\mathbb{R}^6)^*$ under $\mathrm{GL}(6,\mathbb{R})$ is open. There is an explicit formula for the linearisation of the map $\mathrm{Re}\Omega\mapsto\mathrm{Im}\Omega$ in terms of the Hodge star * and the decomposition of forms into types.

Lemma. Given an SU(3)–structure (ω,Ω) on B, let $\rho\in\Omega^3(B)$ be a form with small enough C^0 –norm so that $\mathrm{Re}\Omega+\rho$ is still a stable form.

Decomposing into types we write $\rho = \rho_6 + \rho_{1\oplus 1} + \rho_{12}$. Then the image $\hat{\rho}$ of ρ under the linearisation of Hitchin's duality map at $\mathrm{Re}\Omega$ is

$$\hat{\rho} = *(\rho_6 + \rho_{1 \oplus 1}) - *\rho_{12}.$$

Recall that $\Lambda^2\mathbb{R}^6=\Lambda_1^2\oplus\Lambda_6^2\oplus\Lambda_8^2$ and $\Lambda^3\mathbb{R}^6=\Lambda_6^3\oplus\Lambda_{1\oplus 1}^3\oplus\Lambda_{12}^3$ where $\Lambda_1^2=\mathbb{R}\,\omega,\ \Lambda_6^2=\{X\lrcorner\mathrm{Re}\Omega\,|\,X\in\mathbb{R}^6\}$ and Λ_8^2 are primitive forms of type (1,1) $\Lambda_6^3=\{X^\flat\wedge\omega\,|\,X\in\mathbb{R}^6\},\ \Lambda_{1\oplus 1}^3=\mathbb{R}\mathrm{Re}\Omega\oplus\mathbb{R}\mathrm{Im}\Omega$ and Λ_{12}^3 are primitive forms of type $(1,2)+(2,1),\ \Lambda_{12}^3=\{S_*\mathrm{Re}\Omega\,|\,S\in\mathit{Sym}^2(\mathbb{R}^6),\mathit{SJ}+\mathit{JS}=0\}.$

The linearised Apostolov–Salamon equations

Then $(\sigma, \rho + i\hat{\rho}, h, \theta)$ satisfies the following system of linear equations

$$\begin{cases} d\sigma = 0, \quad d\rho = -\frac{3}{4}dh \wedge \mathrm{Re}\Omega_0 - d\theta \wedge \omega_0, \quad d\theta \wedge \omega_0^2 = 0, \\ d\hat{\rho} = -\frac{1}{4}dh \wedge \mathrm{Im}\Omega_0, \qquad \frac{1}{2}dh \wedge \omega_0^2 = d\theta \wedge \mathrm{Im}\Omega_0, \\ \omega_0 \wedge (\rho + i\hat{\rho}) + \sigma \wedge \Omega_0 = 0, \ \mathrm{Re}\Omega_0 \wedge \hat{\rho} + \rho \wedge \mathrm{Im}\Omega_0 = 2\sigma \wedge \omega_0^2. \end{cases}$$
 (LAS)

- The last 2 equations are the linearisation of the nonlinear constraints for an SU(3)–structure, i.e. $\omega \wedge \Omega = 0$ and $\frac{1}{6}\omega^3 = \frac{1}{4}\mathrm{Re}\Omega \wedge \mathrm{Im}\Omega$.
- Assuming (B, ω_{ϵ}) is a *fixed* symplectic manifold simplifies (LAS) $(\sigma = 0)$.
- If (h, θ) solves (LAS) then it is an abelian Calabi–Yau monopole on B, i.e.

$$*dh = d\theta \wedge \operatorname{Re}\Omega_0, \qquad d\theta \wedge \omega_0^2 = 0.$$

- Since $d\text{Re}\,\Omega = 0$, h is harmonic.
 - \square In many cases, e.g. B complete and h bounded, h must be constant.
 - \Box Then θ is an abelian *Hermitian Yang-Mills connection*, i.e. $d\theta$ is a primitive (1, 1)-form.

Constructing an approximate solution

A Calabi–Yau monopole (h, θ) determines an *infinitesimal deformation* $\rho + i\hat{\rho}$ of the complex volume form Ω_0 by solving the linear inhomogeneous system

$$d\rho = -\frac{3}{4}dh \wedge \mathrm{Re}\Omega_0 - d\theta \wedge \omega_0, \quad d\hat{\rho} = -\frac{1}{4}dh \wedge \mathrm{Im}\Omega_0.$$

In the Hermitian Yang-Mills case (h = 1) the first equation \Rightarrow

- $\varphi_{\epsilon} = \operatorname{Re} \Omega_0 + \epsilon (\theta \wedge \omega_0 + \rho)$ are all *closed* G_2 -structures (ϵ suff small)
- $c_1(M) \cup [\omega_0] = [d\theta] \cup [\omega_0] = 0 \in H^4(B)$.

We consider instead the inhomogeneous linear elliptic system

$$d\rho = -d\theta \wedge \omega_0 = *d\theta, \qquad d^*\rho = 0.$$

Because no decaying harmonic functions or 1-forms on B exist, any such 3-form ρ will be type Ω^3_{12} , and so $\hat{\rho}=-*\rho$; hence get a solution to the previous system.Now use elliptic Fredholm analysis on AC spaces to analyse obstructions to solve

$$(d+d^*)\rho = *d\theta$$

and show these obstructions vanish by the Chern class assumption. (It turns out we can find a HYM connection θ with *no* Chern class assumption.)

Proof strategy to correct approx to true solution

- Understand how to solve the linearised Apostolov–Salamon equations on AC manifold B in weighted Holder spaces for appropriate choice of weights.
- Understand appropriate gauge-fixing conditions to apply.
- Construct successive higher–order approximations $\varphi_{\epsilon}^{(k)}$ to torsion-free structure with torsion of order $O(\epsilon^{k+1})$.
 - This requires a full understanding of the mapping properties of the linearisation of the Apostolov–Salamon equations.
- Construct a formal power series solution to the Apostolov–Salamon equations.
- lacktriangledown Prove convergence of this formal power series solution for ϵ sufficiently small.