Higgs Bundles for M-theory on *G*₂-Manifolds

Sakura Schäfer-Nameki

KITP, UCSB, Simons Collaboration Meeting, April 2019

With Andreas Braun, Sebastjan Cizel, Max Hübner 1812.06072, to appear in JHEP

Motivation

M-theory on G_2 -manifolds is in theory a perfect place to construct 4d $\mathcal{N} = 1$ SYM coupled to matter, with interactions, and coupling to (super-)gravity:

$$SO(7) \rightarrow G_2$$

8 \rightarrow **7** \oplus **1**

- Interesting 4d gauge theories: non-compact G₂s with codimension 4 and 7 singularities [Acharya, Witten, Atiyah, Maldacena, Vafa...] ⇒ Main challenge: compact G₂s with codim 4 and 7 conical singularities
- Compact *G*₂-manifolds:
 - Joyce orbifolds T^7/Γ
 - $CY_3 \times S^1/\Omega$
 - Twisted Connected Sums: Kovalev; Corti, Haskins, Nordstrom,
 Pascini, ⇒ codim 4 & 6 singularities but not codim 7

A useful way to guide the search: Higgs bundles Proposed first by [Pantev, Wijnholt, 2009]

Some Lessons from F-theory

The framework of choice in recent years for geometric engineering, e.g. $4d \mathcal{N} = 1$, is F-theory (i.e. Type IIB with varying axio-dilaton τ) on elliptic Calabi-Yau four-folds (CY4). Lessons we learned there:

 Start with 'local' models, i.e. Higgs bundles, encoding gauge sector of 7-branes on M₄ inside CY4:

7-branes on $M_4 \times \mathbb{R}^{1,3} \equiv \{(\phi, A) : \omega \wedge F_A + i[\phi, \bar{\phi}] = 0, \bar{\partial}\phi = 0, F^{(0,2)} = 0\}$

VEV for adjoint valued Higgs field $\langle \phi \rangle \neq 0$ breaks $\widetilde{G} \to G \times G_{\perp}$.

- Spectral cover description for [φ, φ̄] = 0: The local ALE-fibration over M₄ is encoded in the eigenvalues of φ ~ diag(λ₁, · · · , λ_n).
- Most importantly: these spectral cover models opened up the systematic study of global F-theory compactifications. ⇒ Precise connection between elliptic fibrations (+ flux) and Higgs bundles

Higgs bundles/Hitchin systems ubiquitous in the description of the gauge sectors in string theory.

D*p*-branes on calibrated cycles M_d in reduced holonomy manifolds *X*: partial topological twist of the p + 1 dimensional supersymmetric Yang-Mills theory on M_d always yields an equation on M_d of the type

$$F + [\phi, \phi] = 0, \qquad D\phi = D^{\dagger}\phi = 0$$

The specific details of this depend on the characteristics of *X* and M_d .

For the gauge sector of M-theory compactifications a similar argument holds, as we shall see, using the Super-Yang-Mills (SYM) arising from twisted dimensional reduction

M-theory on ALE-space $\mathbb{C}^2/\Gamma_{ADE} \Rightarrow 7d$ SYM with gauge group GFurther reduction from 7d to 4d \Rightarrow Higgs bundle on M_3 , which reconstructs ALE-fibration over M_3

Plan

- 1. Gauge sector of G_2 -compactifications: Local Higgs bundles for G_2 s
- 2. Twisted Connected Sum (TCS) G_2
- 3. From TCS to chiral models.

4d $\mathcal{N} = 1$ Gauge Theories from G_2 Holonomy

Gauge Sector of M-theory on G₂ Manifolds

• M-theory on $\mathbb{C}^2/\Gamma_{ADE}$ gives 7d SYM with *G*=ADE: gauge connection *A*, adjoint scalars ϕ_i , $i = 1, \dots, 3$, and fermions λ

$$\begin{split} S = & \frac{1}{g_7^2} \int d^7 x \left[-\frac{1}{4} \text{Tr} F_{MN} F^{MN} - \frac{1}{2} \text{Tr} \left(D_M \phi_i D^M \phi^i \right) + \frac{1}{4} \text{Tr} \left([\phi_i, \phi_j] [\phi^i, \phi^j] \right) \right] \\ & + \frac{1}{g_7^2} \int d^7 x \left[+\frac{i}{2} \text{Tr} \left(\bar{\lambda}^{\alpha \hat{\alpha}} (\hat{\gamma}^M)_{\alpha}^{\ \beta} D_M \lambda_{\beta \hat{\alpha}} \right) - \frac{i}{2} \text{Tr} \left(\bar{\lambda}^{\alpha \hat{\alpha}} (\sigma^i)_{\hat{\alpha}}^{\ \beta} [\phi_i, \lambda_{\alpha \hat{\beta}}] \right) \right] \,, \end{split}$$

• ADE-singularity fibered over a three-manifold:

$$\mathbb{C}^2/\Gamma_{ADE} \to M_3$$

This can be given a local G_2 -structure.

• Adiabatic picture: 7d SYM on *M*₃

 $SO(1,6)_L \times SU(2)_R \rightarrow SO(1,3)_L \times SO(3)_M \times SU(2)_R$

To retain susy in 4d, topologically twist $SO(3)_M$ with SU(2)R-symmetry: $SO(3)_{\text{twist}} = \text{diag}(SO(3)_M \times SU(2)_R)$

Higgs bundle on M_3

The supersymmetric field configurations on M_3 are characterized by the BPS equations

$$\langle \delta \lambda \rangle = 0$$

where

$$\delta\lambda_{\alpha\hat{\alpha}} = -\frac{1}{4}F_{MN}(\hat{\gamma}^{MN})_{\alpha}^{\ \beta}\epsilon_{\beta\hat{\alpha}} + \frac{i}{2}D_M\phi_i(\hat{\gamma}^M)_{\alpha}^{\ \beta}(\sigma^i)_{\hat{\alpha}}^{\ \hat{\beta}}\epsilon_{\beta\hat{\beta}} - \frac{1}{4}[\phi_i,\phi_j]\epsilon^{ij}_{\ k}(\sigma^k)_{\hat{\alpha}}^{\ \hat{\beta}}\epsilon_{\alpha\hat{\beta}}$$

After the twist: background fields are one-forms **3** of $SO(3)_{\text{twist}}$:

- ϕ twisted scalars are adjoint valued one-forms, i.e. $\Omega^1(M_3) \otimes \operatorname{Ad}(G_{\perp})$
- \mathcal{A} gauge field for principal G_{\perp} bundle, components along M_3

$$0 = F_{\mathcal{A}} - i[\phi, \phi], \qquad 0 = D_{\mathcal{A}}\phi$$
$$0 = D_{\mathcal{A}}^{\dagger}\phi.$$

[Pantev, Wijnholt][Braun, Cizel, Huebner, SSN]

 $\langle \phi \rangle \neq 0$ breaks $\widetilde{G} \to G \times G_{\perp}$, e.g. $SU(N+1) \to SU(N) \times U(1)$.

Solutions

Higgs bundle (ϕ, \mathcal{A}) :

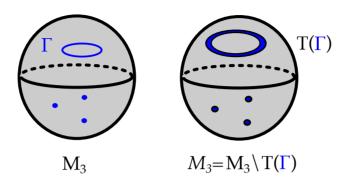
$$0 = F_{\mathcal{A}} - i[\phi, \phi], \qquad 0 = D_{\mathcal{A}}\phi$$
$$0 = D_{\mathcal{A}}^{\dagger}\phi.$$

Consider first $[\phi, \phi] = 0$ and so $F_A = 0$. If ϕ regular:

- $\pi_1(M_3) = 0$ then $\phi = 0$
- $\pi_1(M_3) \neq 0$: ϕ can have non-trivial solutions

Relax regularity: allow ϕ to have poles. Model by electrostatics

 $\phi = df$, $\Delta f = \rho$ f = electrostatics potential



 ϕ singular along support of ρ : Γ . Excise a tubular neighborhood $T(\Gamma)$ and consider instead manifold with boundary

$$M_3 \to M_3 = M_3 \backslash T(\Gamma)$$

In summary: we consider solutions to the Hitchin equations on M_3 that satisfy:

- $\partial M_3 \neq \emptyset$
- $\phi \in \Gamma(\Omega^1(M_3, \operatorname{Ad} \tilde{G}))$ with non-trivial entries along G_{\perp}
- ϕ regular, $\phi = df$ and $\Delta f = 0$ and suitable boundary conditions on ∂M_3

 $\phi = (\phi_1, \phi_2, \phi_3)$ vanishes generically in codim 3 in M_3 , where gauge group is unhigged from G to \tilde{G} .

ALE-fibration

As per usual: Higgs bundles define ALE-fibrations over the base, here M_3 . Local geometry

$$\phi = \phi_{i,\alpha} dx^i T_{\alpha}$$
, T_{α} = generators of Lie (G_{\perp})

then the vevs of $\phi_{i,\alpha}$ give the volume of the rational curves in the ALE fiber with HK structure $\omega_1, \omega_2, \omega_3$

$$\phi_{i,\alpha} = \int_{\mathbb{P}^i_\alpha} \omega_i \, di$$

E.g. for $f = c + \sum_i x_i^2$ then $z_1^2 + z_2^2 + z_3^2 = \sum_i x_i^2$ in $\mathbb{C}^3 \times \mathbb{R}^3$ gives a local ALE fibration where fiber collapses at $\mathbf{x} = \mathbf{0}$.

 \Rightarrow Critical points of *f* correspond to collapse of cycles in the fiber. Defines a local *G*₂: ALE-fibration over *M*₃.

Spectrum

Consider $\phi U(1)$ -Higgs field, Higgsing

 $\operatorname{Ad}SU(N+1) \to \operatorname{Ad}SU(N) \oplus \operatorname{Ad}U(1) \oplus \mathbb{R}_q \oplus \overline{\mathbb{R}}_{-q}$.

Given background values "vevs" for (ϕ, A) , i.e. a local G_2 , what is 4d matter content? 7d SYM dimensionally reduced along M_3 yields:

Fermions: $\begin{aligned} &\chi_{\alpha} \in H^{3}_{\mathcal{D}}(M_{3}) \\ &\psi_{\alpha} \in H^{1}_{\mathcal{D}}(M_{3}) \end{aligned} \quad \text{where } \mathcal{D} = d + [\varphi \wedge \cdot], \quad \varphi = \phi + i\mathcal{A}. \end{aligned}$

Compute twisted cohomology for $\mathcal{D} = d + [\varphi \land \cdot]$ and $\mathcal{D}^{\dagger} = d - [\bar{\varphi} \land \cdot]$ with $\phi = df$, or harmonic forms for twisted Laplacian

$$\Delta_f = \mathcal{D}\mathcal{D}^{\dagger} + \mathcal{D}^{\dagger}\mathcal{D} = d^{\dagger}d + dd^{\dagger} + q^2|df|^2 + q\sum_{i,j=1}^3 (H_f)_{ij}[(a^i)^{\dagger}, a^j].$$

where H_f = Hessian of f, $(a^i)^{\dagger} = dx^i \wedge \text{ and } a^i = \iota_{\partial_i}$.

Zero-Modes

Boundary conditions: \mathcal{D} and \mathcal{D}^{\dagger} acting on forms are not adjoints unless we impose on the boundary

$$\int_{\partial M_3}\bar{\alpha}\wedge\star\beta=0$$

 $\alpha_{t,n}$ be the tangent (i.e. pullback of α to the boundary) and normal components $\alpha = \alpha_t + \alpha_n$, of the forms and $\partial M_3 = \Sigma_+ \cup \Sigma_-$:

Dirichlet b.c. on Σ_{-} : $\alpha_{t}|_{\Sigma_{-}} = 0$ Neumann b.c. on Σ_{+} : $\star \alpha_{n}|_{\Sigma_{+}} = 0$

Then the twisted cohomologies are computed by the relative cohomology wrt Σ_-

$$H^*_{\mathcal{D}}(M_3) = H^*(M_3, \Sigma_-)$$

Example

$$M_3 = S^3 \setminus T(\Gamma)$$
, where Γ = points, links.

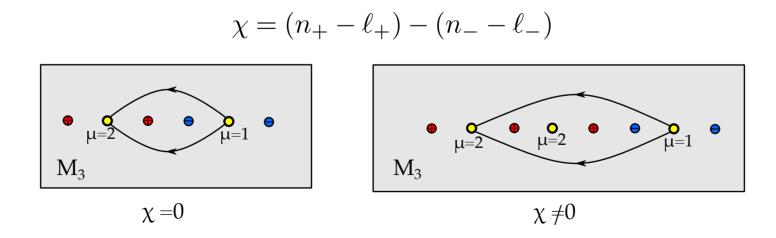
$$n_{\pm} = \#$$
components with charge \pm

- $\ell_{\pm} = \#$ loops with charge \pm
 - r = #- charged looops that are independent in homology in $S^3 \backslash \Gamma_+$

Then the zero-mode spectrum is

$$b^{1}(M_{3}, \Sigma_{-}) = \ell_{+} + n_{-} - r - 1, \qquad b^{2}(M_{3}, \Sigma_{-}) = \ell_{-} + n_{+} - r - 1,$$

and the chiral index is simply



Next: Interactions

However to describe the interactions we first need to take an alternative, but equivalent description, of the zero-mode spectrum, using Super-Quantum Mechanics (SQM) and Morse/Morse-Bott theory (cf. Witten)

4d Effective Theory	SQM
Matter fields	State Space
\mathcal{D} , \mathcal{D}^{\dagger}	Supercharges
Δ_f	Hamiltonian
Higgs field $\phi = df$	f=Superpotential
Matter zero modes	Ground states

For U(1) Higgs field and $f = c + \frac{1}{2} \sum_{i=1}^{3} c_i (x^i)^2 + \cdots$ with isolated critical points

 $\Rightarrow f$ Morse.

Let $\mu(p)$ be the Morse index of the critical point p, i.e. $\#c_i < 0$. Then

$$\Delta_{f} = d^{\dagger}d + dd^{\dagger} + q^{2}|df|^{2} + q\{d, \iota_{\text{grad }f}\} + q\{d^{\dagger}, df \wedge\}$$
$$= \sum_{i=1}^{3} -\frac{\partial^{2}}{\partial(x^{i})^{2}} + q^{2}c_{i}^{2}(x^{i})^{2} + qc_{i}[dx^{i}, \iota_{\partial/\partial x^{i}}] + \cdots$$

So that zero modes are to this order ("perturbative zero-modes") are essentially harmonic oscillator wave-functions:

$$\mu(p) = 1: \quad \psi_{(p,q)} = \psi \exp\left(-q \sum_{i=1}^{3} |c_i| (x^i)^2\right) dx^1$$
$$\mu(p) = 2: \quad \bar{\psi}_{(p,q)} = \bar{\psi} \exp\left(-q \sum_{i=1}^{3} |c_i| (x^i)^2\right) dx^1 \wedge dx^2$$

 ψ take care of the spinor nature of the fields.

Instanton Corrections

In the 7d SYM: $Tr(\psi \land D\psi)$ coupling, which descends to a mass term $(p_a, p_b \text{ critical points of } f)$

$$M^{ab} = \langle \psi_{(p_a,q)} | \mathcal{D}\psi_{(p_b,q)} \rangle$$
$$= \frac{1}{qf(p_a) - qf(p_b)} \int_{\gamma(+\infty)=p_a}^{\gamma(-\infty)=p_b} D\gamma D\eta D\bar{\eta} [\mathcal{D}, f] e^{-S_{\text{SQM}}},$$

where the action for the SQM is the sigma model into M_3 , with the fields being paths $\gamma : p_a \to p_b$

$$\begin{split} S_{\text{SQM}} &= \int_{\mathbb{R}} ds \left(\frac{1}{2} g_{ij} \frac{d\gamma^{i}}{ds} \frac{d\gamma^{j}}{ds} + \frac{q^{2}t^{2}}{2} g^{ij} \partial_{i} f \partial_{j} f \right. \\ &+ g_{ij} \bar{\eta}^{i} D_{s} \eta^{j} + q D_{i} \partial_{j} f \bar{\eta}^{i} \bar{\eta}^{j} + \frac{1}{2} R_{ijkl} \eta^{i} \bar{\eta}^{j} \eta^{k} \bar{\eta}^{l} \right) \,, \end{split}$$

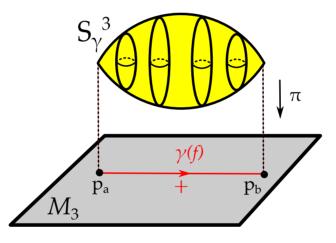
This localizes on gradient flow trajectories for f

$$\frac{d\gamma^i}{ds} = qg^{ij}\partial_j f$$

Zero-mode counting gets correct by

$$M^{ab} = \sum_{\text{gradientflow}\gamma: p_a \to p_b} n_{\gamma} e^{-q(f(p_a) - f(p_b))}$$

where $n_{\gamma} = \pm 1$ depending on orientation on the moduli space of gradient flows.



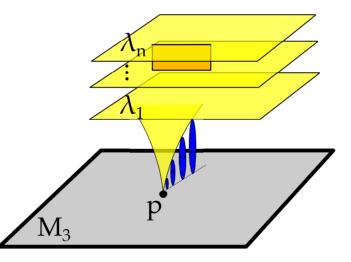
 S_3^{γ} are associatives iff γ is a gradient flow line \Rightarrow non-trivial M2-instanton contributions from associatives in G_2 (cf. [Harvey, Moore]), depending on # of γ from p_a to p_b , and n_{γ} . Upshot: This reproduces $H^*(M_3, \Sigma_-)$.

Spectral Cover

Consider $[\phi, \phi] = 0$, diagonalizable ϕ in $U(1)^n$

$$C: \qquad 0 = \det(\phi - s) = \sum_{i=0}^{n} b_{n-i} s^{i} = b_0 \prod_{i=1}^{n} (s - \lambda_i)$$

 $\phi = df = 0$ becomes $\lambda_i = 0$ loci, i.e. when one of the covers intersects the zero-section M_3 .



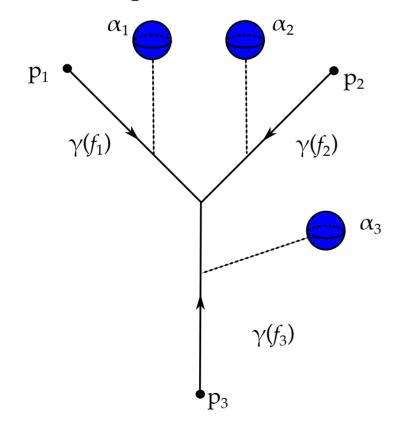
If p is connected by a flow line to another critical point, there is a corresponding associative three-cycle which is built by fibering the collapsing S^2 (blue) over the flow line.

Couplings

From the 7d SYM the following coupling decends:

$$Y_{pqr}^{abc} = \int_{M_3} \psi^{(a,p_1)} \wedge \varphi^{(b,p_2)} \wedge \psi^{(c,p_3)}, \qquad Q_1 + Q_2 + Q_3 = 0$$

 p_i are the points where matter is localized; a, b, c labels the modes.



This localizes along gradient flows $\gamma(f)$

$$\frac{d\gamma(f)^i}{ds} = qg^{ij}\partial_j f$$

which emanuate from each critical point. The S^2 s in ALE-fiber fibered over the gradient flow tree gives rise to a supersymmetric three-cycle \Rightarrow M2-instanton contribution.

Building of Models

 $\widetilde{G} \to G \times U(1)^n$, \mathfrak{t}^i generate U(1)s, and consider a charge configuration

$$i = 1, \dots, n$$
: $\phi = \mathfrak{t}^i df_i$, $\rho = \mathfrak{t}^i \rho_i$, $\Delta f_i = \rho_i$, $\int_{M_3} \rho_i = 0$.

Then for $Q = (q_1, \cdots, q_n)$

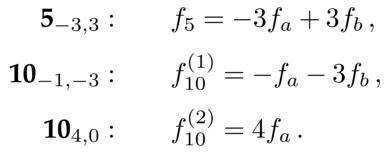
$$\rho_Q = \sum_{i=1}^n q_i \rho_i, \qquad f_Q = \sum_{i=1}^n q_i f_i$$

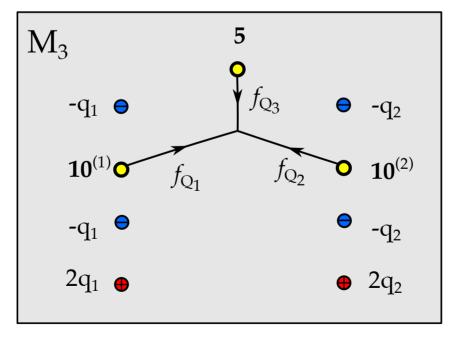
At every point in M_3 where $df_Q = 0$, there is a localized chiral multiplet transforming in \mathbf{R}_Q .

Example: Top Yukawa

 $E_6 \rightarrow SU(5) \times U(1)_a \times U(1)_b$,

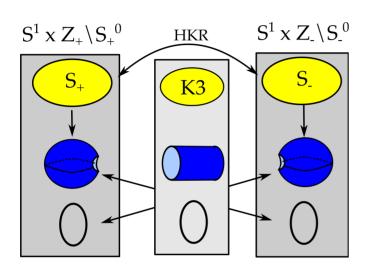
Let the matter be localized along the critical loci of the following Morse functions, i.e. *f*:





2. Local Models for TCS *G*₂-Manifolds

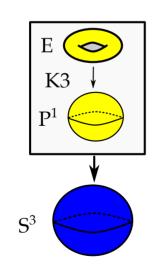
Twisted Connected Sums



Building blocks: Calabi-Yau three-folds = K3s S_{\pm} over \mathbb{P}^1 . Remove a fiber (S_0^{\pm}) , take a product with S^1 and glue S_{\pm} with a hyper-Kähler rotation (HKR)

$$\omega_{\pm} \leftrightarrow \operatorname{Re} \Omega_{\mp}^{(2,0)}, \quad \operatorname{Im} \Omega^{(2,0)} \leftrightarrow -\operatorname{Im} \Omega^{(2,0)}$$

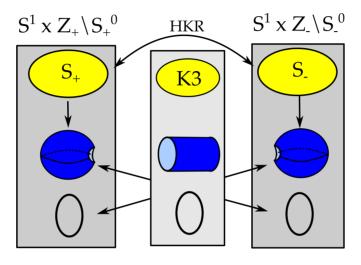
[Kovalev; Corti, Haskins, Nordström, Pacini]



Let S_{\pm} be elliptically fibered K3 with sections, i.e. Weierstrass models over \mathbb{P}^1 , and e.g. S_+ : smooth elliptic fibration S_- : two II^* singular fibers Singular K3-fibers result in non-abelian gauge groups, e.g. E_n

[Braun, SSN]

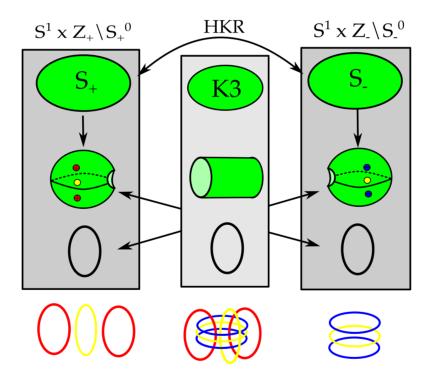
Field Theoretic Interpretation of TCS



- M-theory on Calabi-Yau $Z_{\pm} \times S^1$ preserves $\mathcal{N} = 2$ in 4d.
- Central region: $K3 \times T^2 \times \text{interval preserves } \mathcal{N} = 4 \text{ in 4d.}$
- HyperKähler rotation and gluing retains only a common $\mathcal{N} = 1$ susy.
- Key: building blocks have algebraic models.
- TCS are globally K3 → S³. Apply M on K3/het on T³ duality; and even het/F-theory duality to e.g. understand instantons [Braun, SSN; Braun, del Zotto, Halverson, Larfors, SSN; Acharya, Braun, Svanes, Valandro]

TCS Higgs-Bundle

Local Higgs bundle model for Calabi-Yau threefolds in each building block is a spectral cover model over \mathbb{P}^1 (with charge loci excised). Charges: circles (red/blue), and critical loci are circles (yellow).



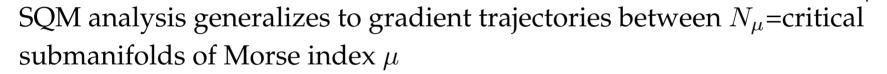
Due to product structure of each building block the critical loci of f, and so matter loci, are always 1d! Requires generalization to Morse-Bott theory. Upshot: Matter Spectrum is always non-chiral.

Morse-Bott generalization for TCS

μ=0

Example: $f(x, y, z) = z^2$: two critical points and one critical line.

Gradient "curves", connect the critical loci (black lines)



$$\mathcal{M}(N_m, N_n) = \left\{ \gamma : \mathbb{R} \to M \left| \lim_{t \to \pm \infty} \gamma(t) \in N_{n,m}, \ \frac{d\gamma^i}{ds} = tqg^{ij}\partial_j f \right\} \right/ \mathbb{R}.$$

Applied to M_3 we have N_1, N_2 only. The Morse-Bott complex is built from

$$C^{1} = \Omega^{0}(N_{1}), \qquad C^{2} = \Omega^{1}(N_{1}) \oplus \Omega^{0}(N_{2}).$$

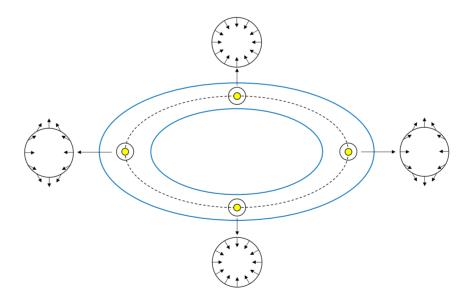
Applied to critical loci in the TCS

$$C^{1} = \Omega^{0} (S^{1})^{k}, \qquad C^{2} = \Omega^{1} (S^{1})^{k}$$
$$H^{1} (M_{3}, \Sigma_{-}) \cong \mathbb{R}^{k}, \qquad H^{2} (M_{3}, \Sigma_{-}) \cong \mathbb{R}^{k}$$

Singular Transitions in TCS G₂-manifolds

Can TCS be deformed to yield chiral 4d theories?

Deformation of concentric circular charge configurations to e.g. ellipses: gives 4 critical points with equal chiral and conjugate-chiral matter:



Singular Transitions in TCS G₂-manifolds

To change chirality, recall:

 $n_{\pm} = \#$ components with charge \pm

 $\ell_{\pm} = \#$ loops with charge \pm

r = #- charged looops that are independent in homology in $S^3 \backslash \Gamma_+$

Then the zero-mode spectrum is

 $b^{1}(M_{3}, \Sigma_{-}) = \ell_{+} + n_{-} - r - 1, \qquad b^{2}(M_{3}, \Sigma_{-}) = \ell_{-} + n_{+} - r - 1,$

and the chiral index is simply

$$\chi = (n_+ - \ell_+) - (n_- - \ell_-)$$

Singular transitions in the local model that will generate chirality:

Spin(7)

– See Andreas Braun's Talk

Recent resurgence of insights in $3d \mathcal{N} = 1$ theories and dualities. Geometric engineering of these in M-theory: *Spin*(7) 8-manifold.

[Alternatively: M5-branes on associative three-cycles in G_2 [Eckhard, SSN, Wong]]

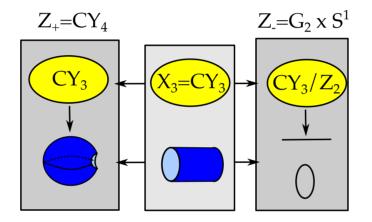
Compact Spin(7) manifolds are equally sparse:

- [Joyce (2000)] orbifold T^8/Γ
- Calabi-Yau four-fold orientifold [Kovalev (2018?)]
- Inspired by TCS for G_2 we developed a Generalized Connected Sum construction. [Braun, SSN (2018)]

Generalized Connected Sum Spin(7)-manifolds

Generalized Connected Sum (GCS):

[Braun, SSN (2018)]



Field theoretic construction: Z_{\pm} preserves 3d $\mathcal{N} = 2$. Central region preserves 3d $\mathcal{N} = 4$, but gluing retains only common 3d $\mathcal{N} = 1$. Examples of new compact Spin(7) manifolds [Braun, SSN].

Higgs bundle for Spin(7): [Heckman, Lawrie, Lin, Zoccarato]

Summary and Outlook

- *G*² manifolds provide a purely geometric way of engineering gauge theories in 4d with minimal susy.
- Local Higgs bundle model gives insights into the structure of the gauge sector
- Future: using insights into deformations of TCS form local model, try to construct compact G_2 with codim 7 singularities