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Motivation

M-theory on G2-manifolds is in theory a perfect place to construct 4d
N = 1 SYM coupled to matter, with interactions, and coupling to
(super-)gravity:

SO(7) → G2

8 → 7⊕ 1 .

• Interesting 4d gauge theories: non-compact G2s with codimension 4
and 7 singularities [Acharya, Witten, Atiyah, Maldacena, Vafa...] ⇒Main
challenge: compact G2s with codim 4 and 7 conical singularities

• Compact G2-manifolds:

– Joyce orbifolds T 7/Γ

– CY3 × S1/Ω

– Twisted Connected Sums: Kovalev; Corti, Haskins, Nordstrom,
Pascini,⇒ codim 4 & 6 singularities but not codim 7

A useful way to guide the search: Higgs bundles
Proposed first by [Pantev, Wijnholt, 2009]



Some Lessons from F-theory

The framework of choice in recent years for geometric engineering, e.g.
4d N = 1, is F-theory (i.e. Type IIB with varying axio-dilaton τ ) on elliptic
Calabi-Yau four-folds (CY4). Lessons we learned there:

• Start with ‘local’ models, i.e. Higgs bundles, encoding gauge sector of
7-branes on M4 inside CY4:

7-branes on M4 ×R1,3 ≡ {(φ,A) : ω∧FA+ i[φ, φ̄] = 0, ∂̄φ= 0 , F (0,2) = 0}

VEV for adjoint valued Higgs field 〈φ〉 6= 0 breaks G̃→ G×G⊥.

• Spectral cover description for [φ, φ̄] = 0:
The local ALE-fibration over M4 is encoded in the eigenvalues of
φ ∼ diag(λ1, · · · , λn).

• Most importantly: these spectral cover models opened up the
systematic study of global F-theory compactifications. ⇒ Precise
connection between elliptic fibrations (+ flux) and Higgs bundles



Higgs bundles/Hitchin systems ubiquitous in the description of the
gauge sectors in string theory.

Dp-branes on calibrated cycles Md in reduced holonomy manifolds X :
partial topological twist of the p+ 1 dimensional supersymmetric
Yang-Mills theory on Md always yields an equation on Md of the type

F + [φ,φ] = 0 , Dφ = D†φ = 0

The specific details of this depend on the characteristics of X and Md.

For the gauge sector of M-theory compactifications a similar argument
holds, as we shall see, using the Super-Yang-Mills (SYM) arising from
twisted dimensional reduction

M-theory on ALE-space C2/ΓADE ⇒ 7d SYM with gauge group G

Further reduction from 7d to 4d⇒ Higgs bundle on M3, which
reconstructs ALE-fibration over M3



Plan

1. Gauge sector of G2-compactifications:
Local Higgs bundles for G2s

2. Twisted Connected Sum (TCS) G2

3. From TCS to chiral models.



4d N = 1 Gauge Theories from
G2 Holonomy



Gauge Sector of M-theory on G2 Manifolds

• M-theory on C2/ΓADE gives 7d SYM with G=ADE: gauge connection
A, adjoint scalars φi, i = 1, · · · ,3, and fermions λ
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• ADE-singularity fibered over a three-manifold:

C2/ΓADE →M3

This can be given a local G2-structure.

• Adiabatic picture: 7d SYM on M3

SO(1,6)L × SU(2)R → SO(1,3)L × SO(3)M × SU(2)R

To retain susy in 4d, topologically twist SO(3)M with SU(2)

R-symmetry: SO(3)twist = diag(SO(3)M × SU(2)R)



Higgs bundle on M3

The supersymmetric field configurations on M3 are characterized by the
BPS equations
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After the twist: background fields are one-forms 3 of SO(3)twist:

• φ twisted scalars are adjoint valued one-forms, i.e. Ω1(M3)⊗Ad(G⊥)

• A gauge field for principal G⊥ bundle, components along M3

0 = FA − i[φ,φ] , 0 = DAφ

0 = D†Aφ .

[Pantev, Wijnholt][Braun, Cizel, Huebner, SSN]

〈φ〉 6= 0 breaks G̃→ G×G⊥, e.g. SU(N + 1)→ SU(N)×U(1).



Solutions

Higgs bundle (φ,A):

0 = FA − i[φ,φ] , 0 = DAφ

0 = D†Aφ .

Consider first [φ,φ] = 0 and so FA = 0. If φ regular:

• π1(M3) = 0 then φ = 0

• π1(M3) 6= 0: φ can have non-trivial solutions

Relax regularity: allow φ to have poles. Model by electrostatics

φ = df , ∆f = ρ
ρ = charge distribution on M3

f = electrostatics potential



M3

T( )

M3=M3\T( )

φ singular along support of ρ: Γ. Excise a tubular neighborhood T (Γ) and
consider instead manifold with boundary

M 3→M3 = M3\T (Γ)

In summary: we consider solutions to the Hitchin equations on M3 that
satisfy:

• ∂M3 6= ∅

• φ ∈ Γ(Ω1(M3,AdG̃) with non-trivial entries along G⊥

• φ regular, φ = df and ∆f = 0 and suitable boundary conditions on
∂M3

φ = (φ1, φ2, φ3) vanishes generically in codim 3 in M3, where gauge group
is unhiggsed from G to G̃.



ALE-fibration

As per usual: Higgs bundles define ALE-fibrations over the base, here
M3. Local geometry

φ = φi,αdx
iTα , Tα = generators of Lie (G⊥)

then the vevs of φi,α give the volume of the rational curves in the ALE
fiber with HK structure ω1, ω2, ω3

φi,α =

∫
Piα
ωi .

E.g. for f = c+
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2 + z2
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2
i in C3 ×R3 gives a local

ALE fibration where fiber collapses at x = 0.
⇒ Critical points of f correspond to collapse of cycles in the fiber. Defines
a local G2: ALE-fibration over M3.



Spectrum

Consider φ U(1)-Higgs field, Higgsing

AdSU(N + 1)→ AdSU(N)⊕AdU(1)⊕Rq ⊕R−q .

Given background values ”vevs” for (φ,A), i.e. a local G2, what is 4d
matter content? 7d SYM dimensionally reduced along M3 yields:

Fermions:
χα ∈ H3

D(M3)

ψα ∈ H1
D(M3)

where D = d+ [ϕ∧ ·] , ϕ = φ+ iA .

Compute twisted cohomology for D = d+ [ϕ∧ ·] and D† = d− [ϕ̄∧ ·] with
φ = df , or harmonic forms for twisted Laplacian

∆f = DD† +D†D = d†d+ dd† + q2|df |2 + q
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where Hf= Hessian of f , (ai)† = dxi∧ and ai = ι∂i .



Zero-Modes

Boundary conditions: D and D† acting on forms are not adjoints unless
we impose on the boundary ∫

∂M3

ᾱ∧ ?β = 0

αt,n be the tangent (i.e. pullback of α to the boundary) and normal
components α = αt + αn, of the forms and ∂M3 = Σ+ ∪Σ−:

Dirichlet b.c. on Σ−: αt|Σ− = 0

Neumann b.c. on Σ+: ? αn|Σ+
= 0

Then the twisted cohomologies are computed by the relative cohomology
wrt Σ−

H∗D(M3) = H∗(M3,Σ−)



Example

M3 = S3\T (Γ), where Γ= points, links.

n± = #components with charge ±

`± = #loops with charge ±

r = #- charged looops that are independent in homology in S3\Γ+

Then the zero-mode spectrum is

b1(M3,Σ−) = `+ + n− − r− 1 , b2(M3,Σ−) = `− + n+ − r− 1 ,

and the chiral index is simply

χ = (n+ − `+)− (n− − `−)
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Next: Interactions

However to describe the interactions we first need to take an alternative,
but equivalent description, of the zero-mode spectrum, using
Super-Quantum Mechanics (SQM) and Morse/Morse-Bott theory (cf.
Witten)

4d Effective Theory SQM

Matter fields State Space

D, D† Supercharges

∆f Hamiltonian

Higgs field φ = df f=Superpotential

Matter zero modes Ground states



For U(1) Higgs field and f = c+ 1
2

∑3
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i)2 + · · · with isolated critical
points
⇒ f Morse.
Let µ(p) be the Morse index of the critical point p, i.e. #ci < 0. Then
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So that zero modes are to this order (”perturbative zero-modes”) are
essentially harmonic oscillator wave-functions:
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ψ take care of the spinor nature of the fields.



Instanton Corrections

In the 7d SYM: Tr(ψ ∧Dψ) coupling, which descends to a mass term
(pa, pb critical points of f )

Mab = 〈ψ(pa,q)|Dψ(pb,q)〉

=
1

qf(pa)− qf(pb)

∫ γ(−∞)=pb

γ(+∞)=pa

DγDηDη̄ [D, f ]e−SSQM ,

where the action for the SQM is the sigma model into M3, with the fields
being paths γ : pa→ pb
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This localizes on gradient flow trajectories for f
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Zero-mode counting gets correct by

Mab =
∑

gradientflowγ:pa→pb

nγe
−q(f(pa)−f(pb))

where nγ = ±1 depending on orientation on the moduli space of gradient
flows.

M3

+

S 3
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π

Sγ3 are associatives iff γ is a gradient flow line
⇒ non-trivial M2-instanton contributions from associatives in G2 (cf.
[Harvey, Moore]), depending on # of γ from pa to pb, and nγ .
Upshot: This reproduces H∗(M3,Σ−).



Spectral Cover

Consider [φ,φ] = 0, diagonalizable φ in U(1)n

C : 0 = det(φ− s) =
n∑
i=0

bn−is
i = b0

n∏
i=1

(s− λi)

φ = df = 0 becomes λi = 0 loci, i.e. when one of the covers intersects the
zero-section M3.

M3

p

If p is connected by a flow line to another critical point, there is a
corresponding associative three-cycle which is built by fibering the
collapsing S2 (blue) over the flow line.



Couplings

From the 7d SYM the following coupling decends:

Y abcpqr =

∫
M3

ψ(a,p1) ∧ϕ(b,p2) ∧ψ(c,p3) , Q1 +Q2 +Q3 = 0

pi are the points where matter is localized; a, b, c labels the modes.

p1 p2

p3

(f3)

(f1) (f2)

α1 α2

α3

This localizes along gradient flows
γ(f)

dγ(f)i

ds
= qgij∂jf

which emanuate from each critical
point. The S2s in ALE-fiber fibered
over the gradient flow tree gives rise to
a supersymmetric three-cycle
⇒M2-instanton contribution.



Building of Models

G̃→ G×U(1)n, ti generate U(1)s, and consider a charge configuration

i = 1, . . . , n : φ = tidfi , ρ = tiρi , ∆fi = ρi ,

∫
M3

ρi = 0 .

Then for Q = (q1, · · · , qn)

ρQ =

n∑
i=1

qiρi , fQ =

n∑
i=1

qifi

At every point in M3 where dfQ = 0, there is a localized chiral multiplet
transforming in RQ.



Example: Top Yukawa

E6 → SU(5)×U(1)a ×U(1)b ,

Let the matter be localized along the critical loci of the following Morse
functions, i.e. f :

5−3,3 : f5 = −3fa + 3fb ,

10−1,−3 : f
(1)
10 = −fa − 3fb ,

104,0 : f
(2)
10 = 4fa .
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fQ3
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2. Local Models for TCS G2-Manifolds



Twisted Connected Sums

S1 x Z+\S+
0

S-

S1 x Z-\S-
0

HKR

S+
S-K3

Building blocks: Calabi-Yau three-folds = K3s
S± over P1. Remove a fiber (S±0 ), take a prod-
uct with S1 and glue S± with a hyper-Kähler
rotation (HKR)

ω±↔ Re Ω
(2,0)
∓ , Im Ω(2,0)↔− Im Ω(2,0)

[Kovalev; Corti, Haskins, Nordström, Pacini]

S
3

P
1

E

K3

Let S± be elliptically fibered K3 with sections,
i.e. Weierstrass models over P1, and e.g.
S+: smooth elliptic fibration
S−: two II∗ singular fibers
Singular K3-fibers result in non-abelian
gauge groups, e.g. En

[Braun, SSN]



Field Theoretic Interpretation of TCS

S1 x Z+\S+
0

S-

S1 x Z-\S-
0

HKR

S+
S-K3

• M-theory on Calabi-Yau Z± ×S1 preserves N = 2 in 4d.

• Central region: K3× T 2×interval preserves N = 4 in 4d.

• HyperKähler rotation and gluing retains only a common N = 1 susy.

• Key: building blocks have algebraic models.

• TCS are globally K3→ S3. Apply M on K3/het on T 3 duality; and
even het/F-theory duality to e.g. understand instantons [Braun, SSN;

Braun, del Zotto, Halverson, Larfors, SSN; Acharya, Braun, Svanes, Valandro]



TCS Higgs-Bundle

Local Higgs bundle model for Calabi-Yau threefolds in each building
block is a spectral cover model over P1 (with charge loci excised).
Charges: circles (red/blue), and critical loci are circles (yellow).

S1 x Z+\S+
0

S-

S1 x Z-\S-
0HKR

S+
S-K3

Due to product structure of each building block the critical loci of f , and
so matter loci, are always 1d! Requires generalization to Morse-Bott
theory. Upshot: Matter Spectrum is always non-chiral.



Morse-Bott generalization for TCS

Example: f(x, y, z) = z2: two critical points and one critical
line.
Gradient ”curves”, connect the critical loci (black lines)

μ=0

μ=2

μ=2

SQM analysis generalizes to gradient trajectories between Nµ=critical
submanifolds of Morse index µ

M(Nm,Nn) =

{
γ : R→M

∣∣∣∣ lim
t→±∞

γ(t) ∈ Nn,m ,
dγi

ds
= tqgij∂jf

}/
R.

Applied to M3 we have N1,N2 only. The Morse-Bott complex is built from

C1 = Ω0(N1) , C2 = Ω1(N1)⊕Ω0(N2) .

Applied to critical loci in the TCS

C1 = Ω0(S1)k , C2 = Ω1(S1)k

H1(M3,Σ−) ∼= Rk , H2(M3,Σ−) ∼= Rk .



Singular Transitions in TCS G2-manifolds

Can TCS be deformed to yield chiral 4d theories?

Deformation of concentric circular charge configurations to e.g. ellipses:
gives 4 critical points with equal chiral and conjugate-chiral matter:



Singular Transitions in TCS G2-manifolds

To change chirality, recall:

n± = #components with charge ±

`± = #loops with charge ±

r = #- charged looops that are independent in homology in S3\Γ+

Then the zero-mode spectrum is

b1(M3,Σ−) = `+ + n− − r− 1 , b2(M3,Σ−) = `− + n+ − r− 1 ,

and the chiral index is simply

χ = (n+ − `+)− (n− − `−)

Singular transitions in the local model that will generate chirality:



Spin(7)

– See Andreas Braun’s Talk

Recent resurgence of insights in 3d N = 1 theories and dualities.
Geometric engineering of these in M-theory: Spin(7) 8-manifold.

[Alternatively: M5-branes on associative three-cycles in G2 [Eckhard, SSN,

Wong]]

Compact Spin(7) manifolds are equally sparse:

• [Joyce (2000)] orbifold T 8/Γ

• Calabi-Yau four-fold orientifold [Kovalev (2018?)]

• Inspired by TCS for G2 we developed a Generalized Connected Sum
construction. [Braun, SSN (2018)]



Generalized Connected Sum Spin(7)-manifolds

Generalized Connected Sum (GCS): [Braun, SSN (2018)]

Z+=CY4 Z-=G2 x S
1

CY3

Field theoretic construction: Z± preserves 3d N = 2. Central region
preserves 3d N = 4, but gluing retains only common 3d N = 1. Examples
of new compact Spin(7) manifolds [Braun, SSN].

Higgs bundle for Spin(7): [Heckman, Lawrie, Lin, Zoccarato]



Summary and Outlook

• G2 manifolds provide a purely geometric way of engineering gauge
theories in 4d with minimal susy.

• Local Higgs bundle model gives insights into the structure of the
gauge sector

• Future: using insights into deformations of TCS form local model, try
to construct compact G2 with codim 7 singularities


