HPV of Deuteron Photodisintegration at HIγS2

Motivations:

- Sensitive to $\Delta I = 2$ NN parity violation
- Sensitive to a unique combination of HPV coupling parameters

Schindler, Springer, Vanasse, PRC 93, 025502 (2016).

Imposing LO large N_c symmetry

$$\begin{split} pp &\to \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=0)} , \ \mathcal{C}_{(^{1}S_{0}}^{(\Delta I} \overset{1)}{_{3P_{0})}} , \ \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=2)} \to \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})}, \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=2)} \\ nn &\to \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=0)} , \ \mathcal{C}_{(^{1}S_{0}}^{(\Delta I=2)} , \ \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=2)} \to \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})}, \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=2)} \\ np \ (^{1}S_{0}) &\to \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=0)} , \ \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=2)} \to \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})}, \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=2)} \\ np \ (^{3}S_{1}) &\to \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})} , \ \mathcal{C}_{(^{3}S}^{(\Delta I=0)} \to \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})} \\ (\vec{n}p \to d\gamma) \to \mathcal{C}_{(^{3}S}^{(\Delta I=1)} , \ \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=2)} , \ \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})} , \ \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=2)} , \ \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})} , \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=2)} \\ n \ rotation \ off \ d \to \mathcal{C}_{(^{3}S}^{(\Delta I=1)} , \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})} , \ \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})} , \ \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})} , \ \mathcal{C}_{(^{1}S_{0}-^{3}P_{0})}^{(\Delta I=2)} , \ \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})} , \ \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})} , \ \mathcal{C}_{(^{3}S_{1}-^{1}P_{1})} , \ \mathcal{C}_{(^{3}S_{1}-^{3}P_{0})}^{(\Delta I=2)} , \ \mathcal{C}_{(^{3}S_{1}-^{3}P_{0})$$

NC STATE

By: C.R. Howell, Duke University and TUNL

Vanasse/Schindler, PRC 90, 044001 (2014)

 A_{γ} (threshold)= -8.44 h_{ρ}^{0} +3.63 h_{ω}^{0} -17.6 h_{ρ}^{2}

C.-P. Liu, C.H. Hyun and B. Desplanques, arXiv:nucl-th/0403009v1

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL HPNC Workshop: March 15 - 16, 2018

PV Asymmetry in $\gamma d \rightarrow np$

UNI

RSI

TUNI

C.-P. Liu, C.H. Hyun and B. Desplanques, arXiv:nucl-th/0403009v1.

UNIVERSITY

from M. Snow

Suggested beam parameters for PV in deuteron photodisintegration.

at CHAPEL HILL

Example of LD target at $HI\gamma S$

UNIVERSITY

D.P. Kendellen et al., NIMA 840, 174 (2016)

Main instrumental asymmetries from γ -ray beam

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- 1. Nuclear-Physics Research Opportunities
 - Low-Energy QCD
 - Nucleon polarizabilities
 - Testing confinement scale QCD with photopion production
 - Hadronic Parity Violation
 - Nuclear Structure
 - Nuclear Astrophysics
 - Applications
 - Security
 - Medicine
- 2. Gamma-ray Source Technology
 - Electron accelerators
 - Lasers
 - Optics

WS: Low-energy QCD - medium energies

The emergence of hadron structure and the nuclear force from QCD is a key scientific problem. These phenomena are a consequence of quarks and gluons interacting at confinement-scale distances where color forces are strong. The beams at a next generation Compton γ -ray source will enable measurements that uniquely probe hadron structure and hadronic interactions in this non-perturbative regime of QCD, achieving unprecedented precision in the photon energy range from about 60 MeV to the Nucleon-to-Delta(1232) transition. Key elements of the program include high-precision nucleon polarizability (scalar and spin) measurements by Compton scattering and near-threshold photo-pion production measurements; both rely on polarized beams and targets. Such measurements, together with advances in calculations using Lattice QCD and QCD-based effective field theories, will explore the QCD origin of nucleon structure and charge-symmetry breaking in novel contexts and with unprecedented sensitivity.

Physics Contributions:

- Highest precision determinations of nucleon polarizabilities
 - > Nucleon EM polarizabilities ($E_{\gamma} = 65 250 \text{ MeV}$): α^{p} , β^{p} , α^{n} , β^{n}
 - > Nucleon spin polarizabilities ($\dot{E}_{\gamma} = 120 250 \text{ MeV}$): γ_{E1E1} , γ_{M1M1} , γ_{E1M2} , γ_{M1E2}
- High-energy resolution measurement of π⁰ production cross section near threshold (ΔE_γ/E_γ < 0.015)

Gamma-ray Source Capabilities:

- $E_{\gamma} = 60 350 \text{ MeV}$
- Flux > 3 x $10^8 \gamma$ /s on target
- $\Delta E_{\gamma}/E_{\gamma} < 0.02$
- Circular and Linear Polarization > 90%
- Fast switching of beam polarization direction

NC STATE

UNIVERSITY

TUNI

Hadronic Parity Violation:

The beams at an advanced γ -ray beam facility will enable measurements of parity violating (PV) photodisintegration of few-nucleon systems. In particular, a measurement of parity violation in deuteron photodisintegration near threshold is sensitive to a nucleon-nucleon (NN) PV amplitude that is not accessible using other systems. Such measurements sample the short-range part of the NN interaction, providing unique quantities for comparison with Lattice QCD calculations.

Physics Contributions:

• First measurements of parity violating asymmetry for photodisintegration of deuterium

Gamma-ray Source Capabilities:

- $E_{\gamma} = 1 10 \text{ MeV}$
- Flux > 1 x 10^{11} y/s on target
- $\Delta E_{\gamma}/E_{\gamma} < 0.02$
- Circular Polarization > 90% and unpolarized

- It is unlikely that a single γ -ray beam source can meet the requirements of the low-energy and medium-• energy parts of the field.
- γ -rays are produced by Compton scattering of electrons from photons inside an optical cavity that is pumped with an external laser.
- **Low-energy facility (E** γ < 20 MeV): Options included an energy-recovery linac (with superconducting RF cavities) and a storage ring.
- **Medium-energy facility (E** γ = 60 350 MeV): A storage ring was the primary option for the higher • energy γ -ray source. There is confidence that a high electron beam quality (low emittance and low energy spread) can be maintained in modern storage-ring lattices, thereby enabling production of γ -ray beams with low energy spread.
- **New facility cost:** The new facility construction cost of the storage-ring option for either a low-energy • or medium-energy next-generation Compton γ -ray source will be over about \$150M. This is extremely coarse and is intended only to set the cost scale within about a factor of two. Less expensive options for the low-energy sources, e.g., upgrades to existing facilities, were also presented.

- R&D recommended to reduce risk on γ-ray source design, e.g., optical cavity development
- R&D to develop an alternative option to Compton scattering for producing γ-rays with energies above the pion-production threshold, e.g., a system for virtual photon tagging in small-angle electron scattering
- Investments in polarized targets needed to prepare for experiments at next generation Compton γ-ray beam facilities
- Investments in active targets are needed to carryout the highest impact nuclear astrophysics measurements at a γ-ray beam facility
- Investments in nuclear theory are needed to support LE QCD experiments at the next generation γ-ray beam facilities

HI_γS Facility Layout

of NORTH CAROLINA

at CHAPEL HILL

UNIVERSITY

12

TUN	

		Hours	Hours	
Program	Hours Approved	Completed	Continue	Run Plans
Nuclear				
Structure	659	659		
LEQCD -				
Compton	341	0	341	2018-19
				P-12-16, 2020
LEQCD - FB	304	0	304	P-13-16, 2018
Total	1304	659	645	

HlγS: FEL Wiggler Switchyard

HPNC Workshop: March 15 – 16, 2018

HlγS2 Design Concept

Projected Performance

- 1.064 micron FP cavity: 2 18 MeV
- 2.5 MeV performance:
 - Total Flux: 2 4 x 10¹² gamma/s
 - Pol: Linear, or Circular (rapid switch)
 - Flux on-target: 2 5 x 10¹⁰ gamma/s, 1% FWHM

Research Programs

Hadronic Parity Violation

NC STATE

UNIVERSITY

1

- Nuclear Astrophysics
- Nuclear Structure

HIγS2: γ-ray Beam Flux Projection

Total flux (γ/s) (in 4π) -0

Gamma-ray energy (MeV)

NC STATE UNIVERSITY

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

HIgS2: Beam Spatial/Energy Distribution

TUNE

IVERSITY

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

HPNC Workshop: March 15 - 16, 2018

Aiming Stability of Electron Beam in $HI\gamma$ S Storage Ring

INTRAL NIVERSITY

UNIVERSITY

CAROLINA

at CHAPEL HILL

HPNC Workshop: March 15 - 16, 2018

Projected Parameters for 2.5 MeV production

- Laser: 1.064 micron fiber laser, 89 MHz intracavity power 50 kW
- Electron beam: 380 MeV, 300 mA in 32 bunches (89 MHz)
- Gamma-ray beam: 2.56 MeV, total flux: 2 4 x 10¹² gamma/s
 - Pol: Linear, or Circular (rapid switch)
 - Energy resolution: 1% (FWHM)
 - Flux on-target: 2 5 x 10¹⁰ gamma/s (1% FWHM)

Requirement: $|\Delta r_c| < 60 \ \mu m$

Requires simulation to assess whether the Δr_c requirement is achieved

- The U.S. Low-energy QCD Community supports R&D on optical cavity for use in a next generation laser Compton γ-ray Source;
- The features of the HIγS electron storage ring are highly compatible with optical cavity R&D;
- The electron beam current and beam aiming stability performance of the HIγS storage ring meets the requirements of HPV using photonuclear reactions on few-nucleon systems;
- We plan to develop a HI γ S2 proposal for submission in 2019 (estimated budget = \$5M)
 - Mirror Cavity R&D for Next Generation Laser Compton γ-ray Source (includes: mirror cavity, laser and optics for loading the cavity, laser polarization, polarization orientation change, modifications to straight section of storage for collision for electron-photon collision in optical cavity);
 - Creates new reach capabilities at HIγS: (1) HPV measurements on fewnucleon systems, (2) Nuclear Astrophysics, e.g., ¹⁶O(γ, α)¹²C, and (3) Nulcear Structure (NRF on weak dipole states)

