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Hadronic parity nonconservation is tiny.
Need either very sensitive measurements…
..or a good amplification!
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Hadronic parity nonconservation is tiny.
Need either very sensitive measurements…
..or a good amplification!
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PNC amplitude = 
(in 1st order perturbation
theory)

So… look for nearby 
parity doublets!
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The HPNC “gang of four”:
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g.s. is 1+;  low-lying 0+,0- separated by
only 39 keV! 
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Barnes et al PRL 40, 840, 1980 

Circular polarization ~ (-0.7±2.0)×10()
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1.7 x 10-4 of superallowed

Adelberger et al PRL 46, 695, 1981 
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18F g.s. is 1+;  low-lying 0+,0- separated by
only 39 keV! -> mixing in ! decay

2-body current tricky to compute, although with new
ab initio methods (" EFT or lattice QCD) now better.

Old idea: relate 2-body 0- operator to 1-body ops
7⃗ 8 9⃗, 7⃗ 8 ∇ (1st forbidden axial vector (Gamow-Teller))

See Haxton PRL 46, 698 (1981), Haxton +CWJ, PRL 65, 1325 (1990)
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Flexible microscopic model with ab initio foundations
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Configuration-interaction shell model

Flexible microscopic model with ab initio foundations

“Diagonalize once and get lots of eigenvalues” --KN
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Configuration-interaction shell model

Flexible microscopic model with ab initio foundations

Basic idea: (1) compute matrix elements of modern 
two-body PNC operators and check robustness 
(e.g., with model space, interaction), and
(2) check proportionality hypothesis between 2- and 
1-body operators
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THE BASIC PROBLEM

12

The	basic	science	question is	to	model	detailed	
quantum	structure	of	many-body	systems,	
such	the	structure	of	an	atomic	nucleus.

To	answer	this,	we	solve	Schrödinger�s	equation:

€ 

ˆ H Ψ = E Ψ
* H is generally a very large matrix – dimensions up to
1010 have been tackled. 
* H is generally very sparse.
* We usually only want a few low-lying states
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THE BASIC PROBLEM
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€ 

ˆ H Ψ = E Ψ

so we use the matrix formalism

€ 

Ψ = cα α
α

∑

€ 

Hαβ = α ˆ H β

€ 

Hαβcβ
β

∑ = Ecα if

€ 

α β = δαβ
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Nuclear Hamiltonian: å å
<

+Ñ-=
i ji

jii rrV
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H ),(
2

ˆ 2
2!

Solve by diagonalizing H in a basis of many-body states.
The many-body states are Slater determinants, or
anti-symmeterized products of single-particle wfns.

The single-particle states are defined by 
a single-particle potential U(r) (such as 

harmonic oscillator or Hartree-Fock)

At this point one generally goes to occupation representation:

klji
i ijkl

ijkliii aaaaVaaH ˆˆˆˆˆˆˆ
4
1 +++å å+= e

single-particle energies two-body matrix elements
Maria Mayer
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When running a fermion shell model code (e.g. MFD,
BIGSTICK), one enters the following information:

(1) The single-particle valence space 
(such as sd or pf); assumes  inert core

(2) The many-body model space 
(number of protons and 
neutrons, truncations, etc.)

(3) The interaction: 
single-particle energies
and 
two-body matrix elements
VJT(ab,cd)

inert core

excluded

valence space}
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Not your grandfather’s shell model

Old shell model: good description of data, but (detailed) phenomenological

Today’s shell model: rigorous starting from  high precision nuclear forces
Good agreement without fitting to many data points 
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Not your grandfather’s shell model

Old shell model: good description of data, but (detailed) phenomenological

Today’s shell model: rigorous starting from  high precision nuclear forces
Good agreement without fitting to many data points 

(energy levels of light nuclei, scattering in light systems, 14C half-life!)
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Not your grandfather’s shell model

NN data -> high precision description of nuclear forces
e.g. Argonne potential, chiral EFT, phase-equivalent potentials (JISP, Daejeon)

Note: these all agree on phase shifts, deuteron binding = on shell matrix elements
Differ on off-shell matrix elements -> three-body forces
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Not your grandfather’s shell model

NN data -> high precision description of nuclear forces

Unitary transformations (“similarity renormalization group”) 

”soften” the hard core = reduce coupling between low and high momentum

These induce additional three (and four) body forces. 
Note: main effect is to shift energies down  [CWJ, PLB 774, 465 (2017) ]
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Not your grandfather’s shell model

NN data -> high precision description of nuclear forces

Unitary transformations ”soften” the hard core

No-core shell model space (all particles active) reduces intruder states
(some cluster states still intruders, e.g. Hoyle state in 12C, 0+

2 state in 16O)
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Not your grandfather’s shell model

NN data -> high precision description of nuclear forces

Unitary transformations ”soften” the hard core

No-core shell model space (all particles active) reduces intruder states

Modern high performance computing allows us to go to much larger spaces.

1989: 4p-4h calculation of 16O dim ~ 1.2 million bases, “state of the art”
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No-core shell model space (all particles active) reduces intruder states
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1989: 4p-4h calculation of 16O dim ~ 1.2 million bases, “state of the art”
Today: can do Nmax = 8 for 16O, dim ~ 1 billion bases is “state of the art”
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Not your grandfather’s shell model

NN data -> high precision description of nuclear forces

Unitary transformations ”soften” the hard core

No-core shell model space (all particles active) reduces intruder states

Modern high performance computing allows us to go to much larger spaces.

1989: 4p-4h calculation of 16O dim ~ 1.2 million bases, “state of the art”
Today: can do Nmax = 8 for 16O, dim ~ 1 billion bases is “state of the art”

Nmax = 10, dim = 24 billion bases within sight
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The BIGSTICK shell-model 
code, free and open-source

Download from: 
github.com/cwjsdsu/BigstickPublick

Manual at arXiv:1801.08432

BIGSTICK uses a simple M-scheme (fixed Jz) basis
of occupation-representation Slater determinants.
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The BIGSTICK shell-model 
code, free and open-source

The Hamiltonian matrix elements are ``factorized’’ 
and reconstructed on-the-fly. See CWJ,  Ormand, and 
Krastev, Comp. Phys. Comm. 184, 2761 (2013) 

Has both OpenMP and MPI parallelization; 
Runs on laptops up through supercomputers.
Both phenomenological and no-core shell model
spaces and interactions.
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18F shell model calculations

Nmax = 6 (+ parity) dim 426 million

Nmax = 7 (- parity) dim 2.7 billion
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18F shell model calculations

Nmax = 6 (+ parity) dim 426 million

Nmax = 7 (- parity) dim 2.7 billion

Will study convergence with Nmax = max # of oscillator quanta

Can also try ‘natural orbits’ (cf. M. Caprio, R. Roth) which improve
convergence, robustness in choice of h.o. basis
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19F shell model calculations

Nmax = 6 (+ parity) dim 1.3 billion

Nmax = 7 (- parity) dim 8.5 billion
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21Ne shell model calculations

Nmax = 6 (+ parity) dim 11.5 billion

Nmax = 7 (- parity) dim 71.5 billion!

more practical

Nmax = 4 (+ parity) dim 194 million

Nmax = 5 (- parity) dim 1.6 billion!
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! + #/% shell model calculations

Nmax = 20 (- parity) dim 600 million

Nmax = 21 (+ parity) dim 1 billion!
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18F shell model calculations

A big concern I have: correct 4p-4h states in wave functions.
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18F shell model calculations

A big concern I have: correct 4p-4h states in wave functions.

Near the p-sd boundary, we see strong 4p-4h correlations. These 
include the famous Hoyle state in 12C 
and the analogous 0+

2 state at 6 MeV in 16O. 

No-core shell model calculations have these too high in the spectra.
These probably cannot be arrived at by brute force.
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16O B(GT) experimentally measured via (n,p) at TRIUMF!
Hicks et al PRC 43, 2554 (1991)
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16O B(GT) experimentally measured via (n,p) at TRIUMF!
Hicks et al PRC 43, 2554 (1991)
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Experimental result: sum B(GT) up to 40 MeV ~ 0.7-0.8
(Old calculation: 0.66)

NCSM: ~ 0.14 up to 40 MeV,  ~ 0.8 up to 250 MeV
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16O B(GT) experimentally measured via (n,p) at TRIUMF!
Hicks et al PRC 43, 2554 (1991)
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18F shell model calculations

It’s not clear what effect these correlations will have 
on PNC matrix elements. 

Can test by artificially lowering 4p-4h states in 12C, 16O by 
adjusting single-particle energies, monopole terms.
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Conclusions

We’re in a new ‘golden age’ of nuclear structure calculations, 
powered by new techniques and supercomputers!

Can do rigorous ab initio calculations of many nuclear properties, 
especially in the lower p-shell.  

But additional challenges arise in the upper p-shell and lower sd-
shell, specifically the alpha-particle clusters seen in the Hoyle state 
and analogs in nearby nuclei. 


