# Theoretical study of the parity-violating asymmetry in the ${}^{3}\text{He}(\vec{n}, p){}^{3}\text{H}$ reaction

M. Viviani

INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy)

### Workshop on Hadronic Parity Nonconservation



March 15–16, 2018 Santa Barbara, USA



M. Viviani (INFN-Pisa)

<sup>3</sup>He $(\vec{n}, p)^3$ H Asymmetry

KITP, March 15, 2018 1 / 22





Calculation of  $A_L(\vec{n}^3 \text{He})$ 



Results for  $A_L(\vec{n}^3\text{He})$  with the DDH and  $\chi$ EFT PV potentials





### Study of PV in few-nucleon systems



- Interest: quark-quark weak interaction
- ΔT = 1 component: dominated by neutral currents see, for example, [Haxton & Holstein, 2013]
- Several discrepancies theory-experiment in hyperon non-leptonic decays Λ → p + π<sup>-</sup>, etc.

#### Experiments in few-nucleon systems

- Longitudinal asymmetries p
   p
   , p
   <sup>4</sup>He,
   <sup>3</sup>He
- Neutron spin rotation np, nd, n<sup>4</sup>He
- Longitudinal asymmetries in EM capture *n* + *p* → γ + *d*, *n* + *d* → γ + <sup>3</sup>H
- $\gamma$  polarization  $\vec{n} + p \rightarrow \gamma d$
- Nuclear dynamics under control the "theoretical uncertainties" can be estimated

#### Theoretical frameworks

- meson-exchanges: DDH [Desplanques, Donoghue, & Holstein, 1980]
- Pionless EFT [Schindler & Springer, 2013],[Haxton & Holstein, 2013]
- Pionfull EFT [Kaplan & Savage, 1993],
   [Zhu et al., 2005], [De Vries et al., 2014]
   [MV et al., 2014]
  - derived up to N2LO [De Vries et al., 2014], [Gnech & MV, 2016]

# Longitudinal asymmetry in $\vec{n} + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$





#### Studies already published

- [MV et al., PRC 82, 044001 (2010)] AV18/UIX + DDH PV pot.
- [MV et al., PRC 89, 064004 (2014)] N3LO/N2LO + NLO χEFT PV pot.
- A. Gnech, Master Thesis (2016)] N2LO χEFT PV pot.

### Contributing waves

- initial state  $(n {}^{3}\text{He}) q \approx 0$ :  ${}^{1}S_{0}, {}^{3}S_{1}$
- final state  $(p {}^{3}H) q = 0.165 \text{ fm}^{-1}$ :
  - $J = 0: {}^{1}S_{0}, {}^{3}P_{0}$
  - $J = 1: {}^{3}S_{1} {}^{3}D_{1}, {}^{1}P_{1} {}^{3}P_{1}$

Neglecting  ${}^{3}D_{1}$ , we have to compute the matrix elements  $T_{LS,L'S'}^{(nh,pt),J}$ 

|                               | <u> </u>                | PV                                        |                         |
|-------------------------------|-------------------------|-------------------------------------------|-------------------------|
| PC                            | (ab at) 0               | $1.S_0 \rightarrow {}^3P_0$               | $T^{(nh,pt),0}$         |
| $^1S_0  ightarrow {}^1S_0$    | $T_{00.00}^{(nn,pt),0}$ |                                           | -00,11<br>-(nh,pt),1    |
| ${}^3S_1 \rightarrow {}^3S_1$ | $T^{(nh,pt),1}$         | $^{\circ}S_{1} \rightarrow ^{\circ}P_{1}$ | 01,10                   |
|                               | 101,01                  | ${}^3S_1  ightarrow {}^3P_1$              | $T_{01,11}^{(nn,pt),1}$ |

• PC T-matrix elements +  $\Psi_{LS}^{J}$ : using the KVP+HH method, starting from a NN+3N interaction model (neglecting the PV potential)

• PV T-matrix elements:  $T_{0J,1S}^{(nh,pt),J} = \langle T\Psi_{1S}^{J-} | V_{PV} | \Psi_{0J}^{J+} \rangle$  (Monte Carlo code by R. Schiavilla)

### 4N wave functions

### $n^{3}$ He $\rightarrow n^{3}$ He $+ p^{3}$ H process

$$\Omega_{AB,LS}^{\pm} = \sqrt{\frac{1}{N}} \sum_{perm.=1}^{N} \left[ Y_L(\hat{\mathbf{y}}_p) \otimes [\phi_A \otimes \phi_B]_S \right]_{JJ_z} \left( f_L(y_p) \frac{G_L(\eta, q_{AB}y_p)}{q_{AB}y_p} \pm \mathrm{i} \frac{F_L(\eta, q_{AB}y_p)}{q_{AB}y_p} \right)$$

$$|\Psi_{nh,LS}\rangle = \sum_{n,[K]} a_{nh,LS,[K]} |n,[K]\rangle + |\Omega_{nh,LS}^{-}\rangle - \sum_{L'S'} S_{LS,L'S'}^{(nh,nh),J} |\Omega_{nh,L'S'}^{+}\rangle - \sum_{L'S'} S_{LS,L'S'}^{(nh,pt),J} |\Omega_{pt,L'S'}^{+}\rangle$$

In, [K] HH states – essentially, homegeneous polynomials of degree K

• 
$$S_{LS,L'S'}^{(AB,a'B'),J} = \text{S-matrix} (T = (S - I)2\pi)$$

•  $a_{AB,LS,[K]}$  and  $S_{LS,LS'}^{(AB,A'B'),J}$  computed using the Kohn variational principle

For a review, see [J. Phys. G: Nucl. Part. Phys. 35, 063101 (2008) ]

M. Viviani (INFN-Pisa)

### 4N wave functions

### $n^{3}$ He $\rightarrow n^{3}$ He $+ p^{3}$ H process

$$\Omega_{AB,LS}^{\pm} = \sqrt{\frac{1}{N}} \sum_{perm.=1}^{N} \left[ Y_L(\hat{\mathbf{y}}_p) \otimes [\phi_A \otimes \phi_B]_S \right]_{JJ_Z} \left( f_L(y_p) \frac{G_L(\eta, q_{AB}y_p)}{q_{AB}y_p} \pm \mathrm{i} \frac{F_L(\eta, q_{AB}y_p)}{q_{AB}y_p} \right)$$

$$|\Psi_{nh,LS}\rangle = \sum_{n,[K]} a_{nh,LS,[K]} |n,[K]\rangle + |\Omega_{nh,LS}^{-}\rangle - \sum_{L'S'} S_{LS,L'S'}^{(nh,nh),J} |\Omega_{nh,L'S'}^{+}\rangle - \sum_{L'S'} S_{LS,L'S'}^{(nh,pt),J} |\Omega_{pt,L'S'}^{+}\rangle$$

In, [K] HH states – essentially, homegeneous polynomials of degree K

• 
$$S_{LS,L'S'}^{(AB,a'B'),J} =$$
S-matrix ( $T = (S - I)2\pi$ )

•  $a_{AB,LS,[K]}$  and  $S_{LS,US'}^{(AB,A'B'),J}$  computed using the Kohn variational principle

For a review, see [J. Phys. G: Nucl. Part. Phys. 35, 063101 (2008) ]

M. Viviani (INFN-Pisa)

### 4N wave functions

### $n^{3}$ He $\rightarrow n^{3}$ He $+ p^{3}$ H process

$$\Omega_{AB,LS}^{\pm} = \sqrt{\frac{1}{N}} \sum_{perm.=1}^{N} \left[ Y_L(\hat{\mathbf{y}}_p) \otimes [\phi_A \otimes \phi_B]_S \right]_{JJ_z} \left( f_L(y_p) \frac{G_L(\eta, q_{AB}y_p)}{q_{AB}y_p} \pm \mathrm{i} \frac{F_L(\eta, q_{AB}y_p)}{q_{AB}y_p} \right)$$

$$|\Psi_{nh,LS}\rangle = \sum_{n,[K]} a_{nh,LS,[K]} |n,[K]\rangle + |\Omega_{nh,LS}^{-}\rangle - \sum_{L'S'} S_{LS,L'S'}^{(nh,nh),J} |\Omega_{nh,L'S'}^{+}\rangle - \sum_{L'S'} S_{LS,L'S'}^{(nh,pt),J} |\Omega_{pt,L'S'}^{+}\rangle$$

In, [K] HH states – essentially, homegeneous polynomials of degree K

• 
$$S_{LS,L'S'}^{(AB,a'B'),J} =$$
S-matrix ( $T = (S - I)2\pi$ )

•  $a_{AB,LS,[K]}$  and  $S_{LS,L'S'}^{(AB,A'B'),J}$  computed using the Kohn variational principle

For a review, see [J. Phys. G: Nucl. Part. Phys. 35, 063101 (2008)]

M. Viviani (INFN-Pisa)

### Benchmark test of 4N scattering calculations



AGS= Deltuva & Fonseca – FY= Lazauskas & CarbonelL-- HH= present work

M. Viviani (INFN-Pisa)

 $^{3}$ He $(\vec{n}, p)^{3}$ H Asymmetry

KITP, March 15, 2018 7 / 22

### Extraction of the resonance parameters (1)

- $p {}^{3}H$  phase-shifts (deg)
- $S_{LS,LS}^{(pt,pt),J} = \eta e^{2i\delta}$
- PC potential N3LO [Entem & Machleidt, 2003]
- Extraction of the resonance parameters from the S matrix elements [Rakityansky, Sofianos, & Elander (2011)]



|                 | <sup>1</sup> S              | n       | <sup>3</sup> P <sub>0</sub> |         |  |
|-----------------|-----------------------------|---------|-----------------------------|---------|--|
| Interaction     | E <sub>R</sub> (MeV)        | Г (MeV) | E <sub>R</sub> (MeV)        | Г (MeV) |  |
| N3LO500         | 0.080                       | 0.40    | 0.96                        | 0.42    |  |
| N3LO500/N2LO500 | 0.085                       | 0.28    | 0.96                        | 0.44    |  |
| Expt.           | 0.39                        | 0.50    | 1.20                        | 0.84    |  |
|                 | <sup>3</sup> P <sub>1</sub> |         | <sup>3</sup> P <sub>2</sub> |         |  |
| Interaction     | E <sub>R</sub> (MeV)        | Г (MeV) | E <sub>R</sub> (MeV)        | Γ(MeV)  |  |
| N3LO500         | 1.02                        | 4.60    | 1.28                        | 2.00    |  |
| N3LO500/N2LO500 | 1.26                        | 4.72    | 1.93                        | 2.56    |  |
| Expt.           | 4.43                        | 6.10    | 2.02                        | 2.01    |  |

A B F A B F

### Results for the PC asymmetry



PC asymmetry at  $E_n = 4.9 \text{ meV} - \text{N3LO}$  pot. by Entem & Machleidt + 3N force at N2LO

|                       | including contribut           | ion of the $J = 2^{-3}$    | <sup>3</sup> P <sub>2</sub> wave |
|-----------------------|-------------------------------|----------------------------|----------------------------------|
|                       | $\Lambda_F = 500 \text{ MeV}$ | $\Lambda_F=600~\text{MeV}$ | Expt.                            |
| $A_y(90 \text{ deg})$ | $-3.1 \cdot 10^{-7}$          | $-2.7 \cdot 10^{-7}$       | $-(4.4\pm0.7)\cdot10^{-7}$       |

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

## Results for the AV18/UIX + DDH potential

#### From [MV et al., (2010)]

$$|\Psi_{nh,LS}\rangle = \sum_{n,[K]} a_{nh,LS,[K]} |n,[K]\rangle + |\Omega_{nh,LS}^{-}\rangle - \sum_{L'S'} S_{LS,L'S'}^{(nh,nh),J} |\Omega_{nh,L'S'}^{+}\rangle - \sum_{L'S'} S_{LS,L'S'}^{(nh,pt),J} |\Omega_{pt,L'S'}^{+}\rangle$$

Contribution of  $h^1\pi$  coming from  $\langle \Psi | (\tau_i \times \tau_j)_z | \Psi \rangle$ mainly due to the difference between  $n + {}^{3}\text{He}$  and  $p + {}^{3}\text{H}$  wave functions

$$A_{z} = \underbrace{\left[h_{\pi}^{1}C_{\pi}^{1} + h_{\rho}^{0}C_{\rho}^{0} + h_{\rho}^{1}C_{\rho}^{1} + h_{\rho}^{2}C_{\rho}^{2} + h_{\omega}^{0}C_{\omega}^{0} + h_{\omega}^{1}C_{\omega}^{1}\right]}_{a_{z}}\cos\theta$$

| Inter.   | $C_{\pi}^{1}$ | $C^0_ ho$ | $C_{ ho}^{1}$ | $C_{ ho}^2$ | $C^0_\omega$ | $C^1_\omega$ |
|----------|---------------|-----------|---------------|-------------|--------------|--------------|
| AV18     | -0.189        | -0.036    | 0.019         | -0.001      | -0.033       | 0.041        |
| AV18/UIX | -0.185        | -0.038    | 0.023         | -0.001      | -0.023       | 0.050        |

For the allowed ranges of the DDH coupling constants

$$a_z \times 10^8 = -30 \leftrightarrow +10$$

M. Viviani (INFN-Pisa)

・ロン ・四 と ・ 回 と ・ 回 と

### The PV potential in $\chi$ EFT







### The PV potential in $\chi$ EFT at N2LO



- First derived at N2LO by [De Vries et al., 2014]
- Rederived using our approach by A. Gnech for his Master Thesis

- To be used in the Schroedinger equation, the potential has to be regularized
- Each term is multiplied by  $f_{\Lambda}(k) = e^{-\left(\frac{k}{\Lambda_F}\right)^4}$
- Dependence on Λ<sub>F</sub> taken as measure of the theoretical uncertainty

Results presented at the DNP16 (Vancouver) - 11 LECs!

### The PV potential in $\chi$ EFT at N2LO



- First derived at N2LO by [De Vries et al., 2014]
- Rederived using our approach by A. Gnech for his Master Thesis

- To be used in the Schroedinger equation, the potential has to be regularized
- Each term is multiplied by  $f_{\Lambda}(k) = e^{-\left(\frac{k}{\Lambda_F}\right)^4}$
- Dependence on Λ<sub>F</sub> taken as measure of the theoretical uncertainty

Results presented at the DNP16 (Vancouver) - 11 LECs!

12/22

#### [Gardner, Haxton, Holstein (GHH), 2017]

$$\begin{split} V_{CT}^{PV}(\mathbf{r}) &= \Lambda_{0}^{1} S_{0}^{-3} P_{0} \left( \frac{1}{i} \frac{\overleftarrow{\nabla}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2}) + \frac{1}{i} \frac{\nabla}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot i(\sigma_{1} \times \sigma_{2}) \right) \\ &+ \Lambda_{0}^{3} S_{1}^{-1} P_{1} \left( \frac{1}{i} \frac{\overleftarrow{\nabla}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2}) - \frac{1}{i} \frac{\nabla}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot i(\sigma_{1} \times \sigma_{2}) \right) \\ &+ \Lambda_{1}^{1} S_{0}^{-3} P_{0} \left( \frac{1}{i} \frac{\overleftarrow{\nabla}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2})(\tau_{1z} + \tau_{2z}) \right) \\ &+ \Lambda_{1}^{3} S_{1}^{-3} P_{1} \left( \frac{1}{i} \frac{\overleftarrow{\nabla}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} + \sigma_{2})(\tau_{1z} - \tau_{2z}) \right) \\ &+ \Lambda_{2}^{1} S_{0}^{-3} P_{0} \left( \frac{1}{i} \frac{\overleftarrow{\nabla}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2})(\tau_{1} \otimes \tau_{2})_{20} \right) \end{split}$$

 $\Lambda_0^{1S_0-^3P_0}, \dots$ : LECs to be determined S – P transitions: [Danilov, 1965] – From general properties of the Lagrangian: [Girlanda, 2008]

M. Viviani (INFN-Pisa)

 $^{3}$ He $(\vec{n}, p)^{3}$ H Asymmetry

KITP, March 15, 2018 13 / 22

### Large N<sub>c</sub> analysis

#### [Schindler, Springer, & Vanasse, 2016]

$$\begin{split} \Lambda_{0}^{+} &\equiv \frac{3}{4} \Lambda_{0}^{3} S_{1}^{-1} P_{1} + \frac{1}{4} \Lambda_{0}^{1} S_{0}^{-3} P_{0} \quad \sim \quad N_{c} \\ & \Lambda_{2}^{1} S_{0}^{-3} P_{0} \quad \sim \quad N_{c}, \\ \Lambda_{0}^{-} &\equiv \frac{1}{4} \Lambda_{0}^{3} S_{1}^{-1} P_{1} - \frac{3}{4} \Lambda_{0}^{1} S_{0}^{-3} P_{0} \quad \sim \quad 1/N_{c} \\ & \Lambda_{1}^{1} S_{0}^{-3} P_{0} \quad \sim \quad \sin^{2} \theta_{W} \\ & \Lambda_{1}^{3} S_{1}^{-3} P_{1} \quad \sim \quad \sin^{2} \theta_{W} \end{split}$$

 $1/N_c^2 = 1/9$ ,  $\sin^2 \theta_W/N_c \sim 1/12$  3 LECs suppressed LQCD calculation of  $\Lambda_2^{1S_0-3P_0}$  in progress [Tiburzi, 2012], [Kurth *et al.*, 2016], [Walker-Loud, this workshop], ...

In the following all the coupling constants are given in units of  $10^{-7}$ 

| M. Viviani | (INFN-Pisa) |
|------------|-------------|
|------------|-------------|

 ${}^{3}\text{He}(\vec{n}, p){}^{3}\text{H}$  Asymmetry

э

・ロット 御マ キョン・

# Calculation of $A_L(\vec{n}^3 \text{He})$

#### Two difficulties

$$\delta(\mathbf{r}) 
ightarrow rac{\mathbf{\Lambda}^3}{(2\pi)^{rac{3}{2}}} e^{-rac{1}{2}(\mathbf{\Lambda}r)^2}$$

Which PC interaction one should use?

#### pp longitudinal asymmetry

- At low energies only the  ${}^1S_0 \rightarrow {}^3P_0$  transition
- The isospin state is  $|T = 1, T_z = +1\rangle$

$$\langle pp|V_{CT}^{PV}|pp\rangle = \left(\Lambda_0^{1} \frac{S_0 - {}^3P_0}{2} + \Lambda_1^{1} \frac{S_0 - {}^3P_0}{\sqrt{6}} + \frac{\Lambda_0^{1} \frac{S_0 - {}^3P_0}{\sqrt{6}}}{\sqrt{6}}\right) \langle \frac{1}{i} \frac{\overleftarrow{\nabla}}{2m_N} \frac{\delta^3(\mathbf{r})}{m_\rho^2} \cdot (\sigma_1 - \sigma_2) \rangle$$

$$\langle pp | V_{CT}^{PV} | pp \rangle = a_1 \Lambda_0^{1} S_0^{-3} P_0 + a_2 \Lambda_0^{3} S_1^{-3} P_1 + a_3 \Lambda_1^{1} S_0^{-3} P_0 + a_4 \Lambda_1^{3} S_1^{-3} P_1 + a_5 \frac{\Lambda_0^{1} S_0^{-3} P_0}{\sqrt{6}}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Dependence on  $\Lambda$  [N3LO potential –  $E_p = 45$  MeV]

| ۸ (GeV) | a <sub>1</sub> | a <sub>2</sub> | a <sub>3</sub> | $a_4$ | <b>a</b> 5 |
|---------|----------------|----------------|----------------|-------|------------|
| 5.0     | -0.01121       | 0.00002        | -0.01118       | 0     | -0.01118   |
| 0.5     | -0.01493       | 0.00070        | -0.01423       | 0     | -0.011423  |
| 0.138   | -0.00804       | 0.00411        | -0.01251       | 0     | -0.01251   |

Dependence on the PC interaction [ $\Lambda = 5 \text{ GeV} - E_p = 45 \text{ MeV}$ ]

| Int.          | a <sub>1</sub> | a <sub>2</sub> | a <sub>3</sub> | $a_4$ | $a_5$    |
|---------------|----------------|----------------|----------------|-------|----------|
| AV18          | -0.00029       | 0.00001        | -0.00028       | 0     | -0.00028 |
| N3LO500(2003) | -0.01121       | 0.00002        | -0.01118       | 0     | -0.01118 |
| N3LO500(2017) | -0.01860       | 0.00004        | -0.01856       | 0     | -0.01856 |
| N4LO500       | -0.01980       | 0.00003        | -0.01978       | 0     | -0.01978 |

[Haxton and Holstein, 2013], [GHH, 2017]

# Results for $A_L(\vec{n}^3 \text{He})$ with the GHH PV potential

PV asymmetry

$$A_{L}(\vec{n}^{3}\text{He}) = a_{+}\Lambda_{0}^{+} + a_{2}\Lambda_{2}^{1}S_{0}^{-3}P_{0} + \left[a_{-}\Lambda_{0}^{-} + a_{1}\Lambda_{1}^{1}S_{0}^{-3}P_{0} + \tilde{a}_{1}\Lambda_{1}^{3}S_{1}^{-3}P_{1}\right]$$

#### N3LO500/N2LO500 PC interaction PRELIMINARY

| $a_+$ & $a_2$ extracted from [MV <i>et al.</i> , (2010)] |
|----------------------------------------------------------|
| PC interaction AV18/UIX, $\Lambda = 0.138$ GeV           |
| $\delta  ightarrow$ Yukawian                             |

| Λ (GeV) | $a_+$               | <i>a</i> <sub>2</sub> |
|---------|---------------------|-----------------------|
| 5.0     | $7.1 	imes 10^{-4}$ | $9.3	imes10^{-6}$     |
| 0.5     | $1.4	imes10^{-3}$   | $3.8	imes10^{-6}$     |

 a<sub>+</sub>
 a<sub>2</sub>

 GHH paper
 -2.7 × 10<sup>-4</sup>
 6.2 × 10<sup>-5</sup>

Using the best-values  $\Lambda_0^+ = 717$  and  $\Lambda_2 = 324$  from

 $A_L(\vec{n}^3 \text{He}) = (0.5 \pm 0.1) \times 10^{-7}$   $\Lambda = 5 \text{ GeV}$ 

However, it is not correct to use the values extracted using the pionless theory...

M. Viviani (INFN-Pisa)

 $^{3}$ He $(\vec{n}, p)^{3}$ H Asymmetry

KITP, March 15, 2018 17

# Results for $A_L(\vec{n}^3 \text{He})$ with the GHH PV potential

PV asymmetry

$$A_{L}(\vec{n}^{3}\text{He}) = a_{+}\Lambda_{0}^{+} + a_{2}\Lambda_{2}^{1}S_{0}^{-3}P_{0} + \left[a_{-}\Lambda_{0}^{-} + a_{1}\Lambda_{1}^{1}S_{0}^{-3}P_{0} + \tilde{a}_{1}\Lambda_{1}^{3}S_{1}^{-3}P_{1}\right]$$

#### N3LO500/N2LO500 PC interaction PRELIMINARY

| $a_+$ & $a_2$ extracted from [MV <i>et al.</i> , (2010)] |
|----------------------------------------------------------|
| PC interaction AV18/UIX, $\Lambda = 0.138$ GeV           |
| $\delta  ightarrow$ Yukawian                             |

| Λ (GeV) | $a_+$               | a <sub>2</sub>    |
|---------|---------------------|-------------------|
| 5.0     | $7.1 	imes 10^{-4}$ | $9.3	imes10^{-6}$ |
| 0.5     | $1.4	imes10^{-3}$   | $3.8	imes10^{-6}$ |

 a<sub>+</sub>
 a<sub>2</sub>

 GHH paper
 -2.7 × 10<sup>-4</sup>
 6.2 × 10<sup>-5</sup>

### Using the best-values $\Lambda_0^+ = 717$ and $\Lambda_2 = 324$ from [GHH, 2017]

$$A_L(\vec{n}^3 \text{He}) = (0.5 \pm 0.1) \times 10^{-7}$$
  $\Lambda = 5 \text{ GeV}$ 

However, it is not correct to use the values extracted using the pionless theory....

|                        | <                                               | • 🗗 🕨 | < ≣ >    | < 王 >      | з. | 200   |
|------------------------|-------------------------------------------------|-------|----------|------------|----|-------|
| M. Viviani (INFN-Pisa) | <sup>3</sup> He $(\vec{n}, \rho)^3$ H Asymmetry | KITF  | P, March | n 15, 2018 |    | 17/22 |

# Using the pp data to fix the two LO LECs

#### Measurements

| $E_{\rho}$ (MeV) | $A_L(\vec{p}p)$              | $(\theta_1, \theta_2)$ | Lab. (year)            |
|------------------|------------------------------|------------------------|------------------------|
| 13.6             | $(-0.97\pm0.20)	imes10^{-7}$ | (20°,78°)              | Bonn Germany (1991)    |
| 45               | $(-1.53\pm0.21)	imes10^{-7}$ | (23°, 52°)             | PSI Switzerland (1987) |
| 221              | $(+0.84\pm0.34)	imes10^{-7}$ | (5°,90°)               | TRIUMF Canada (2003)   |

• Problem: The two data at lower energies are not independent  $A_L \sim \sqrt{E_p}$ 

- Question: Is possible to use also the TRIUMF datum at E<sub>P</sub> = 221 MeV?
- Take into account of the two scales in NP:  $\epsilon = a^{-1} \approx 10 40$  MeV and  $m_{\pi}, f_{\pi}$
- Contact interactions are promoted with respect to pion vertices by a factor  $f_{\pi}/\epsilon$

$$\mathcal{L} = c_{\ell m n} \left(\frac{\bar{N}...N}{f_{\pi}\Lambda_{\chi}\epsilon}\right)^{\ell} \left(\frac{\pi}{f_{\pi}}\right)^{m} \left(\frac{\partial_{\mu}, m_{\pi}}{\Lambda_{\chi}}\right)^{n} \Lambda_{\chi}^{2} f_{\pi}\epsilon \qquad \Lambda_{\chi} \approx 1 \text{ GeV}$$

#### [Kievsky, MV, Gattobigio, & Girlanda, 2016]

The GHH contact interactions could be the LO up to pion threshold (??)

M. Viviani (INFN-Pisa)

#### $^{3}$ He $(\vec{n}, p)^{3}$ H Asymmetry

KITP, March 15, 2018 18 / 22

### Fit of all three $\vec{p}p$ data

### $A_L(\vec{p}p)$ asymmetry

$$A_L(\vec{p}p) = a_+ \Lambda_0^+ + a_2 \Lambda_2^{1S_0 - {}^3P_0}$$

Exploratory study!! - N3LO500(2003) PC interaction - A = 0.5 GeV

| E <sub>p</sub> (MeV) | <b>a</b> + | a <sub>2</sub> |
|----------------------|------------|----------------|
| 13.6                 | -0.002036  | -0.002404      |
| 45                   | -0.003747  | -0.004478      |
| 221                  | -0.004342  | -0.001521      |



"central values"  $\Lambda_0^+ = -450 \quad \Lambda_2 = +734$ Results for  $A_L(\vec{n}^3 \text{He})$   $A_L(\vec{n}^3 \text{He}) = -(0.61 \pm 0.20) \times 10^{-7}$ For excitmented using the "Leggin" method

Error estimated using the "Hessian" method Covariance matrix  $C = 2\mathcal{H}^{-1}$ 

M. Viviani (INFN-Pisa)

#### ${}^{3}\text{He}(\vec{n}, p){}^{3}\text{H}$ Asymmetry

### Conclusions

#### Study of PV observables witht he GHH PV potential

- Longitudinal asymmetry in  $\vec{p} p$  scattering
- Longitudinal asymmetries in  $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$  scattering
- $A_L(\vec{n}^3 \text{He}) = -(0.61 \pm 0.20) \times 10^{-7} \dots$
- ... but what I should do?

#### Future work

- $\vec{n}\alpha$  spin rotation
- *pd* longitudinal asymmetry at several energies
- Extension to time-reversal violation: EDMs & nA spin rotation along the y direction [Kabir, 1982], [Gudkov, 1992]
  - $\vec{n}p: d\phi_y/dz \approx (-6.0 \times \bar{\theta}) \text{ rad } m^{-1} \lesssim 10^{-11} \text{ Rad } m^{-1} \Rightarrow \text{too small} \dots$
  - but it may be enhanced in medium heavy nuclei [Gudkov, 1992]
  - beyond standard model contributions? see, for example, [Mereghetti & van Kolck, 2015], [Bsaisou *et al.*, 2015]

- E. Filandri (Ms. student) , A. Kievsky & L.E. Marcucci INFN & Pisa University, Pisa (Italy)
- A. Gnech PhD student, GSSI, L'Aquila, (Italy)
- L. Girlanda INFN & Universitá del Salento, Lecce (Italy)
- R. Schiavilla ODU & Jefferson Lab. Newport News (USA)

4 A N

→ ∃ →

# Thank you!

æ