

➤ Density profile within 1% of the virial radius: Still cuspy or approaching a constant density core?

Galaxy rotation curves*, strong lensing*, DM anihilation signal from the Galactic center*

> Subhalo inner structure?

Cluster galaxy and satellite galaxy rotation curves*, DM anihilation signal

> Subhalo abundance, spatial & velocity distribution?

Galactic satellite problem*, cluster galaxies*, anomalous flux ratios in strong lensing ("mililensing")

* Caution: realistic gas-simulations are needed to fully address these problems...

- ➤ Cosmological inital conditions for a LambdaCDM Universe (0.27, 0.73) realised with particles deplaced from cubic grid positions using GRAFICS by E. Bertschinger
- > Solve gravitational interactions between these particles with PKDGRAV by J. Stadel

CDM in a galaxy halo: T □ 10⁶⁵ yr >> relaxation time of any N-body halo! "Ant-Elephant Bias"???
 DM in N-body simulation: T = one Hubble time in a halo with N = 5'000, and
 T(r) = one Hubble time, for r = 0.01 rvir in a system with N = 1 million. (Power et al. 2003)
 "Resolved radius" ~ N^{-0.5}
 BUT:

 N is always small in the first CDM objects, also at high resolution! (Moore 2001, Binney & Knebe, 2002)

CDM Halos and New Constraints for Reionization

- Agreement among simulators. 5 different groups using different codes and initial conditions.
- Generalized NFW profiles with inner slopes of
 -1.16 +- 0.14 fit our 6 cluster profiles very well.
- Cored or cusped in the center? Still open at this resolution...

Reionisation and metal poor globular clusters

Simulations: four galaxy halos resolved with 2 to 4 million particles

- just dark matter, no gas
- + resolve all the progenitors above 10⁷ solar masses, i.e. all relevant star formation sites

Two Assumptions:

- Metal poor GC's form in DM halos more massive than 2 x 10⁸ solar masses
- Metal poor GC's form before reionisation, which removes the gas from these small halos (eg. Shaviv&Dekel 2003)
- => just have to mark all particles in these halos at the reionisation time to get the right spatial distribution of GC's in the Milky Way today.

Picture: The marked and other halos build up bigger systems > 10¹⁰ solar masses (the direct progenitors of the MW and its satellites) which start forming stars again (Kravtsov etal. 2004)

- inner density profiles seem to have steep cusps, on average ~r^{-1.2}, but they are very difficult to resolve.
- over 100 particles per subhalo are needed to overcome numerical overmerging.
- \bullet Large abundance of subhalos and steep mass functions, N(>m) $\sim m^{\text{-}1}$
- today's number density profile of metal poor globular clusters in the Milky Way could result from their formation in small dark matter halos before z=10.