

cluster tests of dark energy		
Friedmann equation		
H	$H^{2}(z) = H_{0}^{2} \left[\Omega_{m}(1+z)^{3} + \Omega_{X}(1+z)^{3(1+w)}\right]$	
controls distance/volume as function of redshift		
	$r(z) \;=\; \int_0^z rac{dz'}{H(z')}$	
and growth rate of linear perturbations		
	$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m \delta = 0$	
<u>Phenomenology:</u> number counts: N(M,z) clustering: ξ(r M,z) ; counts in cells characteristic sizes: f _{gas} ; angular sizes		

Dr. Gus Evrard, KITP & University of Michigan (KITP Galaxy-IGM 10/14/04)

Dr. Gus Evrard, KITP & University of Michigan (KITP Galaxy-IGM 10/14/04)

Dr. Gus Evrard, KITP & University of Michigan (KITP Galaxy-IGM 10/14/04)

Dr. Gus Evrard, KITP & University of Michigan (KITP Galaxy-IGM 10/14/04)

Dr. Gus Evrard, KITP & University of Michigan (KITP Galaxy-IGM 10/14/04)

virial scaling between mass and temperature links total mass to direct observables (gas T & galaxy velocities) $\sigma^2 \approx \frac{kT_x}{\mu m_p} \propto \frac{GM_{\Delta}}{r_{\Delta}}$ for mass defined within a *Critical* density threshold Δ , expect selfsimilar clusters (fixed concentration c_{NFW}) to follow $H(z)M_{\Delta} = A_T(c_{NFW})T^{3/2} = A_{\sigma}(c_{NFW})\sigma^3$

Dr. Gus Evrard, KITP & University of Michigan (KITP Galaxy-IGM 10/14/04)

