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A historical introduction

- Thucididies (430 BC)
Those who had successfully recovered from disease were able to
take care of the ill during a plague in Athens.

Panum (1847)
Memory lasted between 1781 & 1846
measles epidemics in the Faroe islands.

Yellow fever (1931)

Antibody titers persisted for decades following a 1855 epidemic in
Norfolk, VA. Measured by protection of monkeys conferred by
transferred immune sera.
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Memory in mice

Mice: CD8 T cell responses following LCMV infection ........ De Boer et al JI (2003)
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Memory in

mice
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Memory in mice and men

Hammarlund ... and Slifka (2003) Nat. Med
CD4+ T cells (t,,= 10 years) CD8+ T cells (t,/,= 15years)
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Hypothesis for immune memory

CD4 CD8
- Immortal memory cells —
Tough and Sprent ® o
rejected this 20 years ago 3 ol | gsol ’
JEM 1994 # o .t
“long-lived memory from short lived cells” Bogr—o " Q '
1. HOW’p ° ' Dzazs oo Days ’

2. Rules for the longevity of memory?

« Maintenance of memory requires antigen:
association of antigen with memory

— persistent antigen (as antigen or live pathogen)
— reexposure to antigen (infection)
— anti-idiotypic networks

«  Memory does not require antigen:
adoptive transfer experiments

— bystander stimulation
— homeostasis: (active and passive attrition models)



Constructing a simple model

Define memory
as the number of antigen-specific cells following stimulation

Memory is a general phenomenon
(i.e. it is possible to make a general model for memory)

Include the relevant biology
Repertoire of lineages with

(i) input (from thymus),

(ii) specific-stimulation,

(iii) cross-reactivity,
(iv)homeostasis (total population)

(v) turnover/death, 10°
Memory >> acute infection.

On the timescale of memory, an 1o

specific-cells

acute infection is approximated
by a jump in the # of pathogen- .
specific immune cells. \

W\
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Model-1

“effective repertoire” n very large ~ 107

x; = number of cells in the i” lineage
X=2x; = total number of cells

deterministic terms bystander homeostasis deat

dx; / / /

— = a;-k +mquTk +cqx; + S(X)x; —dx;
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stochastic terms  input stimulation
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Results - either memory or a diverse repertoire

The decline of memory is exponential at rate
na+ nmgq

R=- =
X

_ Input + expansion due to other pathogens

total population size

The longevity of memory is
(i) independent of cross-reactivity
(i) relatively long if thymic input small
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Model 2

“naive” X 1%y |3
expansion
memory” b Lo
input
/
dx; % %
“naive”’ 7; =da; —{g; X; + SX (X,Y)Xl' — dxi
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Results - memory

Independent homeostasis of naive and memory populations results in
the maintenance of memory and the naive repertoire

Loss of memory at rate

R=-

nmgq

expansion to other pathogens
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size of memory compartment

Memory repertoire
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A simple model for immmune memory

PATHOGEN .
stimulation of stimulation of memory lineages 1 |nCOI’pOI’a’[I0n Of
‘lineages =l (b%‘a"def “new” memory
= o cells
a(t)
® 2. Change in size of

‘q a cr::)er:ln poarr}’:ment
-

exsisting memory cells
homeostatically regulated
total population size Y

¥() = number of memory cells of Y(t)=Y(0)—= Y(t) ( zﬁ )

purging out
existing memory cells

a given specificity Y(O) ( )
_ - —~
a(t) = influx of new memory cells Change in size of Purging due to
_ _ memory addition of memory
Y(1) = total population size of all compartment cells to new

memory cells pathogens



Testing the model

» Assumptions:
— All “memory cells” equal
— Turnover/homeostasis is independent of:
— antigenic specificity
— previous division history
* Predictions:

— Loss of preexisting memory on exposure
to novel pathogens



Are all memory cells “equal”

The CFSE dye dilution assay allows us to look at the

turnover of memory cells specific for different lineages with
unprecedented accuracy.

Using this assay we would like to test the assumptions of
the model, namely

1. Does the turnover of memory cells depend on their
antigenic specificity?

2. Does it depend on time since the primary response
or the number of divisions a cell has undergone?
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Turnover of antigen-specific memory cells
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Prediction — loss of memory following exp. to new pathogens

First suggested by Selin and Welsh. Some potential problems
|. Need to measure total cell numbers (not percentages).

2. Inter mouse variation in numbers of cells about 50%.

PATHOGEN T

stimulation of  stimulation of memory lineages

new naive Cross- pystander
lineages reactive -

purging out
existing memory cells

exsisting memory cells

homeostatically regulated befo re after

total population size Y . .
pop infection



Experimental design

Immunization regime results in over half the CD8 memory population
being specific for new pathogens.

%)

LCMV

: aa 1

Transfer 3 x 104 N PBS —_ PBS —_— PBS

55 days 67 days 94 days 94 days
—— — —— —
LCMV
\ VSV-NJ VWn VSV-IND
P14 CD8 T cells
Monoclonal LCMV- n\/ l l i

specific transgenic CD8 T cells

—
o
o

\/

]
a

relative to PBS control
N 1oy
ol o

o

\/

Percentage P14 of CD8* PBLs

[6)]
[6)]

ercentage N-specific (of CD8

105 155 205 255 3'05EL

VSV
memory

Other
specificities
LCMV
memory

Other
specificities

LCMV
memory

LCMV memory
CD8 T-cell frequency
and numbers reduced

What is the relative contribution of
— attrition in existing memory vsv

Other memory

— increase in size of memory pool specifcites

LCMV
memory

other

specificities

LCMV
memory

——
LCMV memory
CD8 T-cell numbers

preserved, but
frequency reduced

Vezyz et al Nature 2009



Change in the numbers of cells in the spleen
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Specificity of memory CD8 cells
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Open questions

Discrepancy between memory in mice and men
(numbers of CD4 and CD8, and rates of decay )

Flexibility in size of the memory compartment
(causes, limits and consequences ... )

Potential heterogeneity in memory
(Rob’s talk)

The role of cross-reactivity in the maintenance of

memory.
(Matzinger, Selin and Welsh, Ganusov ... )

Heterogeneity in protection by vaccination.



Repertoire and aging



What happens during aging?
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Naive CD4 T cell repertoire

25-30 years 60-65 years 75-80 years
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Thymic output declines much earlier
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What causes the crash in the repertoire?

Classic population genetics problem?

1. Involution of the thymus and decline in
production of new naive cells (loss of immigration)

2. Stochastic extinction during homeostatic
replication or conversion into memory T cells
(genetic drift or emigration)

3. Decline in total number of naive T cells with age
(population shrinkage)

Conventional “neutral” model



Testing the conventional “neutral” model

We perform a forward simulation of A | T s L -
the naive T cell population and track N =
the following transitions: oC S .
- Emigration from the thymus O ©
with a TCR chosen at random from the o) _
potential repertoire. New lineages emigrate >
at time-dependent rate v[t] and start with A=) (@)
clone size C=500. % QO -
e e Al
*  Homeostatic division
at rate A(1{N[t)/K[t]), where A=1, N[t] is the O -
total population size and K[t] is the age- (@)
dependent carrying capacity. Due to B 8 N
computational constraints, K[0]=5x105. —
-  Cell death / conversion to a et e
memory at rate 6=0.001/day o o
-
_ _ _ 8 8 J| — Constant pop + const thymus
For parameters_ in a biologically & o — — Constant pop + aging thymus
reasonable regime or how the I< Constant pop + no thymus
total naive population size n o - =+ 50% reduction + aging thymus
Changes’ thlS neutral model 8 i — = 95% reduction + aging thmeS
cannot reproduce the abrupt o | | |
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Alternative “selection” models

We now modify our neutral model A
) o
to consider the effect of O -
. L : 9N oo
mutations  (either genetic or oC
epigenetic) that might lead to a CI_J il
heritable change in a lineage's S |
homeostatic division rate. We o> <
implement this change using two g 1 O Additive mod

different models: B Jackpot model
« “additive” in which each

0

additional mutation, m,

increases the division rate by B =
(1+C, min[m,3]) 0 |
. “jackpot” in which multiple =
mutations must accrue before c -
any benefit arises and increases 3 <
the division rate by (1+C,) g' o |
N i
Since mutations arise o
stochastically, we shade regions o L | | |

where 90% of simulated 20 40 680 80 100

trajectories fall. _
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Similarities with cancer models

Armitage-Doll model
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Figure 1. Two-mutation model for carcinogenesis.
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Implications and conclusions

Ao
While the form of selection has o D |
yet to be determined, these % _
alternative “selection” models fit - o
the observed data much better =
: o
than the conventional model. ‘:E, | —  Additive model \
. T - = kpot model
Our finding has implications for o - Jackpot mode ~
Immunosenescence therapy: B
thymic rejuvenation will have | \
little effect under a selection N g - \
model, since new TCR 1% \
. . C - \
lineages from the thymus will S \
be less fit than the mutated a Y- ‘
lineage(s) in the population. (% ] \
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An open problem : measuring the immunological repertoire

o chain B chain

How diverse is the immune system?
TcR

Vo VB

We can count the number of distinct o

Ca Cp and f chains

@ & ]} Hinge The problem is determining the
- & association between TCR a and f3 chains
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Exhaustive T-cell repertoire sequencing of human peripheral blood

Limitations of simple diversity measures

samples reveals signatures of antigen selection and a directly repertoire between
measured repertoire size of at least 1 million clonotypes . 0
Hené L. Warren, J. Douglas Freeman, Thomas Zeng, et al. 10 - 10

Genome Res. published online February 24, 2011

29 OCTOBER 1993 VOL 286 SCIENCE

A Direct Estimate of the Human

aff T Cell Receptor Diversity # of o chains 106 comment by Kesmir,

: - 7 Borgans &DeBoer
T. Petteri Arstila,* Armanda Casrouge, Véronique Baron, O('B dlverSIty > 25 10 ? g

Jos Even, Jean Kanellopoulos, Philippe Kourilsky



unique TCRPB

ul

A potential solution

=T I R
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