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Outline

Randomness in the immune system:

 Random generation of lymphocyte receptors (gene rearrangement)

e Stochasticity in gene expression
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Randomness in the immune system:
 Random generation of lymphocyte receptors (gene rearrangement)

e Stochasticity in gene expression

Potential advantages for randomness:
* Recognition of a very large set of antigens (unknown, fast evolving )
e Optimal performance in an unpredictable and changing environment

e Harder to evade?




Mapping TCR repertoires
by high-throughput sequencing

Analysis of the structure of

the TCRP} naive repertoire



Making of the T cell receptor:
V-D-J recombination, a biased random process

* T cell receptors and antibodies are made through random DNA rearrangements

* Crucial for recognition of diverse, unknown antigens
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The Potential size of the TCR repertoire is huge

Estimated number of possible receptors (TCR aff, mouse): ~ 101>

Number of T cells: mouse: ~ 10%; human: ~ 10! << Repertoire size
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The TCR repertoire is dynamically changing
throughout life

The TCR repertoire represents the state of
Clonal Selection Theory the adaptive immune system and its history

. QQQQ » New HTS technologies enable
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comprehensive repertoire characterization:

self antigens self antigens

* Responses to pathogens

QQQ * Vaccinations

foreign antigen

e Autoimmunity

* Cancer

* Aging

Effector cells eliminate antigen

Figure 1-11 Immunobiology, 7ed. (© Garland Science 2008)




Mapping TCR repertoires
by high-throughput sequencing

Analysis of the structure of the TCRP naive repertoire

Are there general organizing principles ?

Wilfred Eric Asaf
Ndifon Shifrut Madi




A protocol for quantitative multiplexed high
throughput sequencing of the TCR]3 repertoire

* lllumina sequencing

* Compensating PCR biases: Control

plasmids library

* Challenges: resolving sequencing
errors from real biological variance:

Clustering, strict thresholds.

B. RNA library preparation for sequencing
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High throughput sequencing (TCR-seq) reveals
common biases in the TCR repertoire

Pyg

The TCR[ repertoire has a well defined structure, which is

similar among individual mice
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High throughput sequencing (TCR-seq) reveals
common biases in the TCR repertoire

The TCR[ repertoire has a well defined structure, which is

similar among individual mice
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Conclusions I:

The naive TCRf repertoire:
a. Is highly biased

b. Has very similar properties among individual mice
genetically identical, including MHC, young, clean environment,...

c. While randomly made, it has a well defined structure

Similarity suggests common underlying principles

Mechanistic explanations for biases ?



A biophysical model can explain bias in J usage

Physical distance R
Recombination frequency depends on the

physical distance between the segments,
which in turn depends on their genomic
distance and chromatin conformation

Genomic distance g
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A biophysical model can explain bias in J usage

D. Mouse DB-Jp distances
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A biophysical model can explain bias in J usage

Physical distance R

Recombination frequency depends on the
physical distance between the segments,
which in turn depends on their genomic

Genomic distance g distance and chromatin conformation

Tark-Dame M et al. J Cell Sci 2011;124:839-845
J-D1 J-D2
P(J.)=K[a,*/2exp(-2a,2)+a,3/2exp(-2a,2)]

aj=(dj/b)(1'dj/c)
d,; is the genomic distance between JB; and DB, , K is a normalization constant.

b and c are free parameters: chromatin flexibility and curvature, respectively.

Dekker J. et al., Science 2002
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Model fit predicts a highly flexible chromatin during D-J rearrangement

Persistence length ~20nm
(in accordance with existing data on recruitment of chromatin modifiers).



The biophysical model correctly predicts biases in
human TCR repertoire

JB-DP genomic distances are different between species:

D. Mouse DB-Jp distances
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Public TCR clones are frequently observed

Shared (“public”) clones were found between individuals that suffer from a
similar pathology (viral infection, autoimmune disease, cancer, etc.), and share

an HLA allele




Public TCR clones are frequently observed:
Viruses, cancer, autoimmunity

Disease/pathogen Bias class Target antigen MHC restriction TRB\® TRBA

Miles, Douek, Price, Immun. Cell Biol. 2011;
Convergent recombination: Venturi, Price, Douek, Davenport, Nat. Rev. Immun. 2008
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C. Sharing of selected AA sequences
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Bias affects sequence sharing: a statistical model

Assumptions:
* Each sequence has an a-priori probability of being made (f).
 Each individual has N sequences (T cell clones),

which are randomly drawn from all possible sequences.

We find that there is a threshold frequency, f;, above which
clones have a higher chance of being public:

B. Expected patterns of sequence sharing
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Estimating a-priori probability of clones to be generated

= Randomly sampled 10,000 clones from each mouse — to reduce size bias
= TCR sharing is higher than expected by uniform distribution

Histogram of calculated a-priori probabilties (P)
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Predicting clone publicity using the a-priori probability
|

Sharing by probabilty bin - AA | Sharing in two A-priori bins
7- ' K]

' 0.6

N : 3
2 I @ s%°
s | o
5 : EOA

4 | ©
0.3-
Z3 : S02-

a
2" .: 0.1

N O I
1- e o ¢ o ® % 0 ¢ & o o o o @ | 0.0-
12 10 8 6 4 1 2 3 4 5 6 7 8
log10(P) Number of mice

»




Conclusions ll:

* Bias in primary repertoire allows for seemingly contradicting properties:
Huge diversity (against unknown pathogens) together with

a predictable public “core” set of TCRs (against frequent pathogens? Self?)

Immunological homunculus? (I. Cohen)
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