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CD4
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Andy Yates
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+ +

How and why does the thymus make more CD4 than CD8 cells ?

Characteristic 4:1 ratio - 
Conserved across 
species
Why ?
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Thymocyte selection - two purposes

1. Tolerance - delete autoreactive T cells
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Thymocyte selection - two purposes

Coreceptors and T cell antigen recognition 
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2. CD4 vs CD8 lineage specification
ensuring TCR-MHC restriction and lineage correlate

TEC/DC

Thymocyte

6



 Thymic development - what happens
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Saini, M. et al. Regulation of Zap70 expression during thymocyte development enables temporal separation of CD4 and 
CD8 repertoire selection at different signaling thresholds. Sci Signal 3, ra23 (2010).
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Thymic development - how it happens

TCR

MHC

T cell

T cells need signals from 
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Positive and negative selection - goldilox models

avidity TCR for spMHC

frequency
amongst repertoire

neglect (>90%)
selection (5%)

delete (1-5% ?)
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Lineage commitment - signals instruct fate
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Origin of CD4 biased selection

Thymus

+ve
selection
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1. Instrinsic differences in
Class I and Class II 
restricted precursors due 
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generation

2. Differences in ‘efficiency’ 
of selection between CD4 
and CD8 lineage cells
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Zap70 deficient mice blocked at double positive stage

Role of Zap70 in 
positive selection :
 Conditionally express Zap70
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Conditional Zap70 expression mouse model
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Inducible T cell development
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Inducible T cell development

DP thymocytes :

SP thymocytes :
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Establishing precursor-product relationships
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Establishing precursor-product relationships - I

DP1
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Establishing precursor-product relationships - II

DP2

DP3
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Temporal dynamics of positive selection

Non-selecting
DP1

CD4 SPs

CD8 SPs
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Saini, M. et al. Regulation of Zap70 expression during thymocyte development enables temporal separation of CD4 and 
CD8 repertoire selection at different signaling thresholds. Sci Signal 3, ra23 (2010).
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Temporal regulation of thymic selection
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Mathematical description of development
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control, MHC I and MHC II knock out mice. All other parameters are unconstrained and R

is used to identify the values that best fit each dataset. The predicted rates are summarised

in Table 1. The best-fit model predictions are shown in Figure 3.
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Figure 1: Model A: Basic model of thymic development
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Thymic Development

Models of thymic development

Model A: Simplest model

A 5-compartment model is used to estimate the rate of transition between the intermedi-
ate thymocyte populations (sketched in Figure 1). Each transition is modelled by a simple
exponential rate, ie. the per-cell rate is assumed to constant throughout the experiment.
This allows the average kinetics of thymic development in the different mice to be quanti-
fied:

dx1

dt
= λ− (δ1 + µ12)x1[t] (1)

dx2

dt
= µ12x1[t]− (δ2 + µ23 + µ24)x2[t] (2)

dx3

dt
= µ23x2[t]− (δ3 + µ38)x3[t] (3)

dy4

dt
= µ24x2[t]− ν4y4[t] (4)

dy8

dt
= µ38x3[t]− ν8y8[t] (5)

where, x1=DP1; x2=DP2; x3=DP3; y4=CD4SP; and y8=CD8SP. Rates of turnover are defined
as follows: λ = input into DP1 compartment (% of total thymocytes/day); µ12 = per-cell rate
of maturation from DP1 to DP2 (/day); µ23 = per-cell rate of maturation from DP2 to DP3
(/day); µ24 = per-cell rate of maturation from DP2 to CD4SP (/day); µ38 = per-cell rate of
maturation from DP3 to CD8SP (/day); δ1, δ2, δ3 = per-cell rates of death of DP1, DP2 and
DP3 thymocytes (/day), respectively; and ν4, ν8 = per-cell rates of loss from the CD4SP, and
CD8SP, compartment (export and death combined) (/day), respectively.

The input of thymocytes into the DP1 compartment, λ, is assumed to be consistent across the

1

Population dynamics

Thymic output
21



Generating timecourse data of Class I and Class II restricted T cell 
development
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Control time course
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Class I vs Class II resticted T cell development
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Use data to identify parameters of model

Rag control MHC I knockout MHC II knockout
Parameter Estimate 95% CI Estimate 95% CI Estimate 95% CI

λ 27.503 (25.095, 29.911)
µ12 0.091 (0.076, 0.106) 0.08 (0.055, 0.106) 0.061 (0.043, 0.08)
µ̃23 0.37 (0.234, 0.506) 0.299 (0.116, 0.482) 0.48 (0.196, 0.763)
µ̃24 0.484 (0.393, 0.575) 0.583 (0.473, 0.692) 0.012 (-0.019, 0.043)
µ38 0.255 (-0.697, 1.207) 0.012 (-0.027, 0.051) 0.136 (-0.153, 0.424)
δ1 0.249 (0.218, 0.281) 0.251 (0.214, 0.289) 0.251 (0.219, 0.283)
δ2 0.653 (0.441, 0.866) 0.781 (0.365, 1.197) 0.792 (0.427, 1.158)
δ3 0.143 (-0.884, 1.171) 0.317 (-0.034, 0.669) 0.378 (-0.392, 1.149)
ν4 0.23 (0.132, 0.327) 0.142 (0.058, 0.225) - -
ν8 1 (-3.289, 5.289) - - 0.1 (-0.72, 0.92)

Table 2: Model B: Estimated rates of maturation and cell loss for DP1, DP2, DP3, CD4SP and
CD8SP thymocytes.

Rag-control MHC I KO MHC II KO

Mean time spent in DP1 (days) 1
µ12+δ1

2.94 3.02 3.2

Mean time spent in DP2 1
µ23+µ24+δ2

0.91 0.82 1.01

Mean time spent in DP3 1
µ38+δ3

3.24 3.72 3.03

Mean time spent in CD4SP 1
ν4

6.33 10.11 -

Fraction of DP1 that die δ1
µ12+δ1

0.69 0.73 0.79

Fraction of DP1 recruited to DP2 µ12
µ12+δ1

0.31 0.27 0.21

Fraction of DP2 that die δ2
µ23+µ24+δ2

0.78 0.79 0.9

Fraction of DP2 recruited to DP3 µ23
µ23+µ24+δ2

0.1 0.07 0.09

Fraction of DP2 recruited to CD4SP µ24
µ23+µ24+δ2

0.13 0.14 0.003

Fraction of DP3 that die δ3
µ38+δ3

0.78 0.96 0.61

Fraction of DP3 recruited to CD8SP µ38
µ38+δ3

0.22 0.04 0.39

Table 3: Model A: Summary Kinetics
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Log vs Lin transformed data

Assume SP plateau

Parameter estimations by 
minimising sum of 
squares residuals 

(Nelder-Mead algo in R)
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We assumed:
(i) the rate of input into the DP1 compartment of cells (cells/day) (from DNs) was the same in the WT, MHC I KO and MHC II KO mice

(ii) CD4 and CD8 cell numbers are at steady-state (or plateau) from day 7 onwards. We use this assumption to constrain our estimate for the rate of export from the SP compartments.
All other parameters were completely free.

The 95% CI  come from a bootstrap procedure:  I create a new dataset by randomly re-sampling the observations (with replacement) and find new set of parameters to describe this 
resampled-dataset. I repeat this n=10^4 times.  The 2.5 and 97.5 percentiles of the new parameters is used to determine the 95% confidence intervals.
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Model fits to timecourses of T cell development
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is used to identify the values that best fit each dataset. The predicted rates are summarised

in Table 1. The best-fit model predictions are shown in Figure 3.
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Model A: Simplest model

A 5-compartment model is used to estimate the rate of transition between the intermedi-
ate thymocyte populations (sketched in Figure 1). Each transition is modelled by a simple
exponential rate, ie. the per-cell rate is assumed to constant throughout the experiment.
This allows the average kinetics of thymic development in the different mice to be quanti-
fied:
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maturation from DP3 to CD8SP (/day); δ1, δ2, δ3 = per-cell rates of death of DP1, DP2 and
DP3 thymocytes (/day), respectively; and ν4, ν8 = per-cell rates of loss from the CD4SP, and
CD8SP, compartment (export and death combined) (/day), respectively.
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A 5-compartment model is used to estimate the rate of transition between the intermedi-
ate thymocyte populations (sketched in Figure 1). Each transition is modelled by a simple
exponential rate, ie. the per-cell rate is assumed to constant throughout the experiment.
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A 5-compartment model is used to estimate the rate of transition between the intermedi-
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where, x1=DP1; x2=DP2; x3=DP3; y4=CD4SP; and y8=CD8SP. Rates of turnover are defined
as follows: λ = input into DP1 compartment (% of total thymocytes/day); µ12 = per-cell rate
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maturation from DP3 to CD8SP (/day); δ1, δ2, δ3 = per-cell rates of death of DP1, DP2 and
DP3 thymocytes (/day), respectively; and ν4, ν8 = per-cell rates of loss from the CD4SP, and
CD8SP, compartment (export and death combined) (/day), respectively.
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A 5-compartment model is used to estimate the rate of transition between the intermedi-
ate thymocyte populations (sketched in Figure 1). Each transition is modelled by a simple
exponential rate, ie. the per-cell rate is assumed to constant throughout the experiment.
This allows the average kinetics of thymic development in the different mice to be quanti-
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where, x1=DP1; x2=DP2; x3=DP3; y4=CD4SP; and y8=CD8SP. Rates of turnover are defined
as follows: λ = input into DP1 compartment (% of total thymocytes/day); µ12 = per-cell rate
of maturation from DP1 to DP2 (/day); µ23 = per-cell rate of maturation from DP2 to DP3
(/day); µ24 = per-cell rate of maturation from DP2 to CD4SP (/day); µ38 = per-cell rate of
maturation from DP3 to CD8SP (/day); δ1, δ2, δ3 = per-cell rates of death of DP1, DP2 and
DP3 thymocytes (/day), respectively; and ν4, ν8 = per-cell rates of loss from the CD4SP, and
CD8SP, compartment (export and death combined) (/day), respectively.
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Model A: Simplest model

A 5-compartment model is used to estimate the rate of transition between the intermedi-
ate thymocyte populations (sketched in Figure 1). Each transition is modelled by a simple
exponential rate, ie. the per-cell rate is assumed to constant throughout the experiment.
This allows the average kinetics of thymic development in the different mice to be quanti-
fied:
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where, x1=DP1; x2=DP2; x3=DP3; y4=CD4SP; and y8=CD8SP. Rates of turnover are defined
as follows: λ = input into DP1 compartment (% of total thymocytes/day); µ12 = per-cell rate
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DP3 thymocytes (/day), respectively; and ν4, ν8 = per-cell rates of loss from the CD4SP, and
CD8SP, compartment (export and death combined) (/day), respectively.
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Model A: Simplest model

A 5-compartment model is used to estimate the rate of transition between the intermedi-
ate thymocyte populations (sketched in Figure 1). Each transition is modelled by a simple
exponential rate, ie. the per-cell rate is assumed to constant throughout the experiment.
This allows the average kinetics of thymic development in the different mice to be quanti-
fied:

dx1

dt
= λ− (δ1 + µ12)x1[t] (1)

dx2

dt
= µ12x1[t]− (δ2 + µ23 + µ24)x2[t] (2)

dx3

dt
= µ23x2[t]− (δ3 + µ38)x3[t] (3)

dy4

dt
= µ24x2[t]− ν4y4[t] (4)

dy8

dt
= µ38x3[t]− ν8y8[t] (5)

where, x1=DP1; x2=DP2; x3=DP3; y4=CD4SP; and y8=CD8SP. Rates of turnover are defined
as follows: λ = input into DP1 compartment (% of total thymocytes/day); µ12 = per-cell rate
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DP3 thymocytes (/day), respectively; and ν4, ν8 = per-cell rates of loss from the CD4SP, and
CD8SP, compartment (export and death combined) (/day), respectively.
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Testing for high death rate in DP2 thymocytes
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Using lineage specific death rates to quantify lineage efficiencies
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Model A: Simplest model

A 5-compartment model is used to estimate the rate of transition between the intermedi-
ate thymocyte populations (sketched in Figure 1). Each transition is modelled by a simple
exponential rate, ie. the per-cell rate is assumed to constant throughout the experiment.
This allows the average kinetics of thymic development in the different mice to be quanti-
fied:
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where, x1=DP1; x2=DP2; x3=DP3; y4=CD4SP; and y8=CD8SP. Rates of turnover are defined
as follows: λ = input into DP1 compartment (% of total thymocytes/day); µ12 = per-cell rate
of maturation from DP1 to DP2 (/day); µ23 = per-cell rate of maturation from DP2 to DP3
(/day); µ24 = per-cell rate of maturation from DP2 to CD4SP (/day); µ38 = per-cell rate of
maturation from DP3 to CD8SP (/day); δ1, δ2, δ3 = per-cell rates of death of DP1, DP2 and
DP3 thymocytes (/day), respectively; and ν4, ν8 = per-cell rates of loss from the CD4SP, and
CD8SP, compartment (export and death combined) (/day), respectively.
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Regulation of thymocyte survival
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“Paralogous” switch between Bcl-2 and Bcl-Xl sensitises DP thymocytes to 
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Test the impact of apoptosis - introduce apoptotic stress to thymocytes
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Model A: Simplest model

A 5-compartment model is used to estimate the rate of transition between the intermedi-
ate thymocyte populations (sketched in Figure 1). Each transition is modelled by a simple
exponential rate, ie. the per-cell rate is assumed to constant throughout the experiment.
This allows the average kinetics of thymic development in the different mice to be quanti-
fied:

dx1

dt
= λ− (δ1 + µ12)x1[t] (1)

dx2

dt
= µ12x1[t]− (δ2 + µ23 + µ24)x2[t] (2)

dx3

dt
= µ23x2[t]− (δ3 + µ38)x3[t] (3)

dy4

dt
= µ24x2[t]− ν4y4[t] (4)

dy8

dt
= µ38x3[t]− ν8y8[t] (5)

where, x1=DP1; x2=DP2; x3=DP3; y4=CD4SP; and y8=CD8SP. Rates of turnover are defined
as follows: λ = input into DP1 compartment (% of total thymocytes/day); µ12 = per-cell rate
of maturation from DP1 to DP2 (/day); µ23 = per-cell rate of maturation from DP2 to DP3
(/day); µ24 = per-cell rate of maturation from DP2 to CD4SP (/day); µ38 = per-cell rate of
maturation from DP3 to CD8SP (/day); δ1, δ2, δ3 = per-cell rates of death of DP1, DP2 and
DP3 thymocytes (/day), respectively; and ν4, ν8 = per-cell rates of loss from the CD4SP, and
CD8SP, compartment (export and death combined) (/day), respectively.

The input of thymocytes into the DP1 compartment, λ, is assumed to be consistent across the

1

Population dynamics

Modeling reveals unexpectedly high CD8 lineage biased death in selection
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Applying apoptotic stress preferentially kills CD8 lineage cells
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CD4:CD8 ratio only affected by Bax during DP2 stage
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TetZap70 development vs WT
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Establishing precursor-product relationships
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